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Abstract

Multi-Agent Path Finding (MAPF) is the combinatorial prob-
lem of finding collision-free paths for multiple agents on
a graph. This abstract describes MAPF-based software for
solving train planning and replanning problems on large-scale
rail networks under uncertainty. The software recently won
the 2020 Flatland Challenge, a NeurIPS competition trying
to efficiently manage dense traffic on rail networks. The soft-
ware incorporates many state-of-the-art MAPF or, in general,
optimization technologies, such as prioritized planning, safe
interval path planning, parallel computing, simulated anneal-
ing, large neighborhood search, and minimum communica-
tion policies. It can plan collision-free paths for thousands of
trains within a few minutes and deliver deadlock-free actions
in real-time during execution.

Introduction
The 2020 Flatland Challenge is a NeurIPS competition set
up to answer the question “How to efficiently manage dense
traffic on complex rail networks?” It consists of an idealized
rail planning problem. Given a map showing rail tracks and
train stations (see Figure 1) and a set of m trains with start
and target stations, we need to move the trains from their
start stations to their target stations so that no two trains oc-
cupy the same track segment (a vertex collision) or cross
each other by moving in opposite directions from adjacent
track segments (an edge collision) simultaneously. Trains
may malfunction during execution. That is, a train may stop
at a random timestep for a random duration. Our goal is to
maximize the number of trains that reach their target stations
before the given deadline and minimize their arrival times.

The competition was supported by three large European
railway network operators and involved more than 700 par-
ticipants from 51 countries making more than 2,000 sub-
missions over 4 months. We outperformed all other entries
in both rounds, including all Reinforcement Learning en-
tries. In this abstract, we focus on the framework of our
software for the main round, which asked us to maximize
the accumulated reward over an infinite number of instances
of increasing difficulty within 8 hours. Please see our tech-
nical paper (Li et al. 2021b) and video demonstration at
https://youtu.be/Pw4GBL1UhPA for more details.
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Figure 1: Flatland environment represented by a 229 × 229
grid map. The grey lines represent rail tracks, and the red
houses on the rail tracks represent train stations.

System Framework
The academic version of the competition is called Multi-
Agent Path Finding (MAPF), which is moving multiple
agents from their start vertices to their target vertices on a
graph while avoiding vertex and edge collisions. Our soft-
ware (https://github.com/Jiaoyang-Li/Flatland) incorporates
many state-of-the-art MAPF or, in general, optimization
technologies. Figure 2 shows the high-level framework.

Offline Planning Phase (Before Timestep 0)
In the planning phase (with a runtime limit of 10 minutes),
we take as input the map and the start and target stations of
the trains and plan collision-free paths (called a MAPF plan)
for them under the assumption that no malfunctions occur.

Prioritized Planning (PP). We use PP, a popular MAPF
algorithm, to generate an initial MAPF plan. PP first sorts
all trains according to a priority ordering and then, from
the highest-priority train to the lowest-priority train, plans
a shortest path for each train that does not collide with any
already planned path. We use SIPP (Phillips and Likhachev
2011), an advanced version of A*, to plan each path.

Large Neighborhood Search (LNS). Although PP can
find a MAPF plan rapidly, its quality is sometimes far from
optimal. We thus follow Li et al. (2021a) by repeating a
neighborhood search process via LNS to improve the quality
of the MAPF plan until an iteration limit is reached. In each
iteration, we select a subset of trains and replan their paths
using PP. The new paths need to avoid collisions with each
other and with the paths of the other trains.



Figure 2: System framework. The modules for generating a
feasible solution are colored in yellow while the modules for
improving the solution quality are colored in blue.

Simulated Annealing (SA). As the competition imposes
an overall runtime limit of 8 hours with an infinite number of
instances, we need to trade-off solution quality with runtime.
We thus collect training data offline and use SA to determine
the LNS iteration limits for instances of different sizes.

Parallel Computing. As the competition provides 4 CPUs
for evaluation, we run in parallel 4 PPs with different priority
orderings followed by 4 LNSes and pick the best plan.

Online Execution Phase (After Timestep 0)
In the execution phase (with a runtime limit of 10 seconds
per timestep), we handle malfunctions and deliver deadlock-
free move commands to the trains at each timestep.

Minimum Communication Policies (MCP). When trains
malfunction during execution, deadlocks could happen if all
trains stick to their original paths. MCP (Ma, Kumar, and
Koenig 2017) avoids the deadlocks by using simple tempo-
ral networks to stop some trains so as to maintain the order-
ing in which trains visit each rail segment.

Partial Replanning (PR). MCP sometimes stops trains
unnecessarily. We developed a PR mechanism to avoid such
unnecessary waits. When train A encounters a malfunction
at some timestep, we collect all switches and crossing rail
segments that train A is going to visit in the future and then
collect the trains that are going to visit at least one of these
switches or crossing rail segments after train A. We use PP
to find better paths for these trains one at a time.

Lazy Planing (LP). The single-agent path planner is slow
when there are thousands of trains to schedule because, as
the paths of more trains are planned, it has to plan paths that
avoid collisions with an increasing number of existing paths,
resulting in its runtime growing rapidly. We thus used an
LP scheme that plans paths for only some of the trains dur-
ing the planning phase, then lets the trains move, and plans
paths for the rest of the trains during the execution phase.

Figure 3: Success rate (= percentage of trains completed be-
fore the given deadline) and runtime of the system on the
leaderboard. x-axis labeled (m,n) represents instances with
m trains on n × n grids. Each instance size has 10 dots (=
10 instances), with the lines indicting their mean values.

LP has two benefits: (1) It avoids pushing too many trains
into the environment at once, which can prevent severe traf-
fic congestion, and (2) it takes into account the influence of
the malfunctions that have already happened.

Performance
Figure 3 shows the performance of our system on the leader-
board. The runtime of our software was probably much
smaller than what is shown in the figure as the runtime
shown in the figure also includes the runtime of the Flat-
land simulator, which consumed 70% of the 8-hour runtime
budget when we ran the evaluation on our local server.
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