
PDSim: Simulating Classical Planning Domains with the Unity Game Engine

Emanuele De Pellegrin, Ronald P. A. Petrick
Edinburgh Centre for Robotics

Heriot-Watt University
Edinburgh, Scotland, United Kingdom

{ed50,R.Petrick}@hw.ac.uk

Abstract

The solution of a classical planning problem consists of a se-
quence of actions mapping the initial state to the goal state.
The output of a plan is often provided as raw text, which
can be difficult to follow and interpret, especially with large
plans. Simulating a plan generated by an automated planner
using visual feedback, such as animations of 3D models and
environments, can be an important tool for quickly evaluat-
ing the quality of a plan and improving the design of plan-
ning domains and problems. In this system demonstration,
we present the latest version of PDSim, an external tool that
can be installed on the Unity game engine adding support for
the simulation of classical plans using 3D animations and vi-
sualisation methods that can be defined by the user.

Introduction

Modelling planning domains and verifying plan correctness
can be challenging tasks, especially for real-world problems.
Although a plan could be valid, relying solely on planner
output won’t always help the user catch domain modelling
errors that may be apparent when displayed in a more in-
tuitive form such as a 2D or 3D visualisation (Chen et al.
2020). While systems that use such methods to illustrate
the generated plan do exist (Vrakas and Vlahavas 2005; Va-
quero et al. 2007; Chen et al. 2020; Tapia, San Segundo,
and Artieda 2015; Muise 2016; Magnaguagno et al. 2017;
Le Bras et al. 2020), PDSim (De Pellegrin 2020) uses the
infrastructure and components of the Unity game engine
(Unity Technologies 2020) to deliver a visualisation of the
planning problem, that can help spotting errors or wrong
definitions of the planning domain. With PDSim, the user
can customise the model that represents the objects of the
planning problem, as well as define the animations. This
may include moving an object onto another object, letting
the agent follow a path between two points on a map, playing
a sound every time a particular condition is met, spawning
a particle system, etc. The user is able to create real-world
scenes that reflect the execution environment of the planning
problem, exploiting the functionalities of the Unity game en-
gine to be used as an automated planning tool.

Figure 1: PDSim system architecture.

PDSim System
PDSim (De Pellegrin 2020) has been developed as an exter-
nal module for the Unity game engine, a 2D and 3D game
environment widely used in the video game industry. Unity
offers an intuitive Graphical User Interface (GUI) editor and
many available components such as a built-in physics en-
gine, realistic shaders and materials, and a path planning li-
brary. Thanks to its modularity, it is possible to extend the in-
terface to fit user needs, for instance by defining custom an-
imations for PDDL objects or by extending existing anima-
tions to reuse models from different simulations without cre-
ating them from scratch every time. A general overview of
the system architecture is given in Figure 1, showing the in-
dividual core components and the communication between
them. In Example, the simulation manager is the main com-
ponent that handles the animations and serialization of the
PDDL problem. The Predicate Animations components de-
fines the specific animations for each PDDL predicate the
user wants to animate. The Unity front-end (editor) makes
use of the Planning.Domains (Muise 2016) web services to
generate the plan with the domain and problem files the user
provides.

Plan Visualisation
The text output from an automated planner is converted
into 3D animations, as illustrated in Figures 2-5. Figure 2
shows the Blocks World domain and the stacking animation
of blocks during plan execution. Figure 3 shows the plan

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.



Figure 2: Blocks World plan execution

Figure 3: Sokoban plan execution

Figure 4: Logistics plan execution

Figure 5: Robots and Boxes plan execution

animation for the Sokoban domain, where the green cube
represents the player and the grey spheres the stones being
pushed to the goal tiles. Figure 4 shows the plan animation
for the Logistics domain with custom models of cities, air-
ports, trucks and aeroplanes. Figure 5 shows a custom do-
main called Robots and Boxes where robots need to pick
up and drop boxes in specific rooms defined in the problem.
This domain was created to demonstrate the application of
Unity’s path planning system for animating the movements
of the robots. Finally, Figure 6 shows the importance of plan-
ning simulation to discover errors in the domain model, even
though the planner can generate a plan. Here, the Blocks
World domain has been purposely modified to introduce er-
rors in the stack action. A plan is found but it is not valid:
at the end of plan execution a block is floating in mid-air,
suggesting a possible error in the domain definition.

Figure 6: Plan validation check in PDSim.

Conclusion
We described the core features of PDSim, an extension to
the Unity game engine for simulating plans. PDSim focuses
on user interaction to specify the animations and models rel-
ative to a given PDDL domain and problem. In this system
demonstration, we will present the main PDSim front-end,
consisting of the Unity interface navigation, and the impor-
tant components of the system, such as creating custom an-
imations from scratch and the key aspects of the Simulation
Manager. The demo will also cover the future work in plan
for the system and the main changes such as: the temporal
planning support, a new parser and a new workflow for cre-
ating animation definitions. The system demonstration video
is hosted on YouTube1.

References
Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; Johnson,
G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil, T.; and
Lipovetzky, N. 2020. Planimation. doi:10.5281/zenodo.3773027.

De Pellegrin, E. 2020. PDSim: Planning Domain Simulation with
the Unity Game Engine. In Proc. ICAPS Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS).

Le Bras, P.; Carreno, Y.; Lindsay, A.; Petrick, R. P. A.; and
Chantler, M. J. 2020. PlanCurves: An Interface for End-Users to
Visualise Multi-Agent Temporal Plans. In Proc. ICAPS Workshop
on Knowledge Engineering for Planning and Scheduling (KEPS).

Magnaguagno, M. C.; Fraga Pereira, R.; Móre, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop classi-
cal planning domains and visualize heuristic state-space search. In
ICAPS Workshop on User Interfaces and Scheduling and Planning.

Muise, C. 2016. Planning.domains. ICAPS System Demonstration.

Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A PDDL-based
simulation system. In Proceedings of the IADIS International Con-
ference Intelligent Systems and Agents.

Unity Technologies. 2020. Unity. URL https://unity.com.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R. 2007. it-
SIMPLE2.0: An Integrated Tool for Designing Planning Domains.
In Proceedings of ICAPS, 336–343.

Vrakas, D.; and Vlahavas, I. 2005. A Visualization Environment
for Planning. Int. J. Artif. Intell. Tools 14(6): 975–998.

1PDSim demonstration video: https://youtu.be/5CRYWIcFIw4


