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Abstract

We demonstrate a system with integrated acting, planning and
learning algorithms that uses hierarchical operational models
to perform tasks in dynamically changing environments. In
AI research, synthesizing a plan of action has typically used
descriptive models of the actions that abstractly specify what
might happen as a result of an action, and are tailored for
efficiently computing state transitions. However, executing
the planned actions has needed operational models, in which
rich computational control structures and closed-loop online
decision-making are used to specify how to perform an action
in a nondeterministic execution context, react to events and
adapt to an unfolding situation. Deliberative actors, which
integrate acting and planning, have typically needed to use
both of these models together—which causes problems when
attempting to develop the different models, verify their con-
sistency, and smoothly interleave acting and planning. As an
alternative, we demonstrate an acting and planning engine
in which both planning and acting use the same operational
models. These rely on hierarchical task-oriented refinement
methods offering rich control structures. In addition, we also
have learning strategies that guide the actor and the planner.
Demo video: https://youtu.be/T1ZkBmHrERk
Source code: https://bitbucket.org/sunandita/rae/

Introduction
Consider autonomous AI actors performing a diverse set of
tasks in dynamically changing environments. Such actors
(Patra et al. 2021a, 2020, 2019, 2018; Ghallab, Nau, and
Traverso 2016) need to be reactive and they need to act in a
purposeful deliberative way. The tight integration of acting
and planning is important in domains with dynamic events,
concurrent tasks, sensing actions with an unfolding execu-
tion context. Such requirements are fulfilled by our system
by combining a reactive approach and a plan-based approach
using hierarchical operational models. The acting compo-
nents (RAE/APE), are inspired by the well-known PRS sys-
tem. At each decision step, they can get advice from a plan-
ner (APEPlan/RAEPlan/UPOM) for a near-optimal choice
with respect to a utility function. In contrast to APE (Pa-
tra et al. 2018), RAE (Patra et al. 2021a) can also take the
advice from a learning strategy when there is not enough
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time to plan. APEPlan can only be used with the actor, APE.
RAEPlan and UPOM are used with RAE. UPOM is an any-
time planner that uses a UCT-like Monte Carlo Tree Search
procedure whose rollouts are simulations of the actor’s op-
erational models. RAE and UPOM can take the advice from
learning strategies, LearnM, LearnH and LearnMI that ac-
quire, from online acting experiences and/or simulated plan-
ning results, a mapping from decision contexts to method
instances as well as a heuristic function to guide the planner.

Architecture and Representation
Our approach integrates reactive and deliberative capabil-
ities on the basis of hierarchical operational models. The
main ingredients of the operational models are tasks (τ ),
actions and refinement methods. Refinement methods (m)
provide alternative procedures for accomplishing a task. The
state s is represented using a Python object with variable
bindings. (Patra et al. 2021a) has the details of our for-
malism. Our system focuses on a reactive perspective, inte-
grated with planning and learning capabilities. The popular
three-layer architectures for autonomous deliberative actors
usually combine a platform layer with sensory-motor mod-
ules, a reactive control layer, and deliberative planning layer.
Our approach merges the last two layers within a reactive-
centered perspective.

The central component of the architecture (labelled
“RAE” in Figure 1) interacts with the environment for sens-
ing and actuation through an execution platform, from which
it receives events and world state updates. It also inter-
acts with users getting tasks to be performed and reporting
on their achievement. The actor reacts to tasks and events
through hierarchical refinements specified by a library of
operational models. At each decision step, the actor may
use the planner to make the appropriate choice. The plan-
ner performs a look-ahead by simulating available options in
the current context. Supervised learning is used to speed-up
the planner with a heuristic, avoiding very deep and costly
Monte Carlo rollouts; it also provides a base policy for an
anytime strategy when the actor has no time for planning.

Domain Deployment
The domains we focus on have dynamic events, dead ends,
actions that sense some kind information from the environ-
ment, actor collaboration and concurrent tasks. Our system
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Figure 1: Architecture of our refinement acting, planning
and learning system. Knowledge represented via hierarchi-
cal operational models.

comes with a few test domains whose features are summa-
rized in Table 1 and Figure 2.

Dynamic Dead Sensing Robot Concurrent
Domain events ends collaboration tasks

S&R X X X X X
Explore X X X X X
Fetch X X X – X
Nav X – X X X

Deliver X X – X X

Table 1: Features of the available test domains.

To deploy the proposed approach in a new domain, it is
necessary to have an execution platform or the equivalent
collection of sensing and primitive actions, as well as a set
of methods. The human experts define the tasks and events,
and a set of refinement methods in a corresponding domain
file. The deployment of RAE and UPOM in a prototype ap-
plication for security monitoring and recovery from attacks
on Software-Defined Networks is described in (Patra et al.
2021b).

Environment Simulation The chosen acting engine exe-
cutes methods and triggers the execution of primitive actions
by the platform. The planner has to simulate both. The relia-
bility of such a simulator affects the quality of plans. In some
cases, available simulation tools can be useful, e.g., physics-
based simulations, robotic simulations, automated manufac-
turing simulations and so forth. A fallback option would be
to sample the possible outcomes of every action from proba-
bility distributions, which are initialized by a human expert.

Optimization Criteria and Evaluation Metrics The ap-
propriate utility function can be application dependent. One
may consider a function combining rewards for desirable or
undesirable states, and costs for the time and resources of
actions. The efficiency utility function maximizes values to
easily account for failures. Using the success ratio utility, the
actor seeks a method that has a good chance to succeed. The

Figure 2: In all the domains of Table 1, the actor needs to ac-
complish concurrent tasks, e.g., collecting different kinds of
balls and boxes. There are dynamically changing obstacles
in its path and emergency events. There are dead ends, e.g,
falling in lava, battery discharge, etc that the actor cannot
recover from. The actor only has partial view of the environ-
ment (gray shaded region).

user can define their own utility function.

Conclusions
We have demonstrated a novel system for integrating acting,
planning and learning using hierarchical operational models
for domains with challenging features such as dynamicity,
dead-ends, exogenous events, sensing and information gath-
ering actions, collaborative and concurrent tasks. The actors
may choose to get advice from an online planner to choose
efficient methods for performing a task. The planners pro-
vide near-optimal method instances with respect to utility
functions that may be quite general. Our system also has
three learning strategies: LearnM and LearnMI to learn a
mapping from a task in a given context to a good method,
and LearnH, to learn a domain specific heuristic function
for our hierarchical refinement framework. Rather than just
evaluating the system’s planning functionality, we have de-
vised simulations and measurements that assess its overall
acting performance, with and without planning and learning,
taking into account exogenous events and failure cases.
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