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Abstract

The implementation of use cases in Social Autonomous
Robotics is a complex and time-consuming task to be de-
veloped by domain experts and engineers, involving a large
knowledge acquisition process. The resulting use case de-
scription must also be formalized taking into account stochas-
tic events that may occur in the real world. Existing works
rely on Automated Planning to deploy robotic use cases,
where the standard Planning Domain Description Language
(PDDL) is assumed. In order to facilitate to domain experts
the description of the use case we propose a novel tool to
create the model through state transition diagrams. From this
diagram, the system automatically generates the PDDL files.
A video demonstration is available'.

Introduction

Social Autonomous Robotics working in real scenarios must
act according to the environment and show flexible and ro-
bust behaviors, useful in dynamic and changing situations.
Some approaches in the literature (Bandera et al. 2016;
Cashmore et al. 2015; Gonzailez, Pulido, and Fernandez
2017; Mohseni-Kabir, Veloso, and Likhachev 2020) rely on
Automated Planning (AP) to achieve this autonomous be-
havior by using a problem solver and a control architecture:
the problem solver creates a plan of actions to be performed
and the control architecture deals with execution and sens-
ing. However, problem solving in realistic scenarios requires
a large amount of knowledge to be processed by specific rea-
soning engines. It involves both knowledge on the applica-
tion field and expertise in programming, in the frame of a
time-consuming knowledge engineering process, presenting
a bottleneck for developers and an entry barrier for novice
users. Therefore, a growing demand for frameworks helping
users to develop models in a seamless manner has emerged
in the last years. Although there are tools to model AP do-
mains prior to this work (Vaquero et al. 2013; Simpson,
Kitchin, and McCluskey 2007), they usually require deep
knowledge about the specification language and become un-
manageable for large domains, in addition to the lack of fea-
tures for interactive scenarios.
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In this work we propose a knowledge representation based
on Classical Planning concepts but suitable for people with
little knowledge of its formal language. Thank to this, users
can define their own use case using a simple language based
on a workflow representation of the expected robot be-
haviour. Once the model is created it can be automatically
translated into its PDDL formalization. It provides a func-
tional model ready to be injected into an AP-based con-
trol architecture, where the uncertainty is solved by replan-
ning (Yoon, Fern, and Givan 2007).

AP Knowledge Representation Model

Knowledge engineers have to recognise the information in-
volved in the desired use case to model it according to the
AP concepts. Represented as predicates, it is essential at
runtime to distinguish which information is dynamic (can
change during execution), sensed from the exterior (ob-
jects colours, etc.), internal, or static or persistent (data that
should not be removed, such as room locations). Such in-
formation is grouped into states, which conform the current
knowledge the agent must reason with. Since reasoning usu-
ally involves just some of the facts present in the state, a
partial state definition is enough to reason about it. To tran-
sit between successive states the user also has to define ac-
tions. A simple way to elicit them is to ask the expert what
characteristics the scenario must hold to carry out the ac-
tion (represented by an state) and how that state changes af-
ter its execution, transiting to another new state. Therefore,
both states are connected by the action, where effects must
be specified by the user to indicate how the action changes
the world. These components shapes an agent-based model
through a workflow representation. Finally, the user has to
specify goals to set the real purpose of the robot.

Planning Tasks as Workflows

Based on the previous concepts, the agent model is depicted
through a directed graph. It can be formalized using the
concept of options (Sutton, Precup, and Singh 1999), com-
posed by a state where the option starts, the policy followed
throughout the option, and the partial state where the option
terminates. Figure 1 shows a complex Social Robotics use
case where the different options that a robot and a child can
carry out are shown, such as the initial phase to introduce



the exercise or or the placement of the blocks to put them in
a certain order. Is the task of the reasoning engine to choose
the most promising options sequence to solve the use case.
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Figure 1: Use case involving an interactive blocks game

To be able to combine different options we also define
partial options: non-empty sequences of states and actions
which may be incomplete, being open to interleave any num-
ber of actions to meet intermediate states. Figure 2 considers
a real use case in which relatives of residents in a retirement
home can choose a time slot to make a video call by using
a robot with a tablet entering the room. The option at nurs-
ery - out of the room represent the general video call pro-
cess, which needs to interleave another options such us being
disinfected or navigate to reach specific locations. Together
with corrective actions to solve unexpected situations, users
can also choose checkpoints from which to recover again the
normal execution (highlighted in red in Figure 1).
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Figure 2: Videocall robot use case

From Workflows to PDDL

The model of the use case is automatically translated into its
PDDL formalization, taking into account the next concepts:
Sequential actions add the state from which they start
as precondition of the action, while effects are taken from
the action definition. Parameters are defined by the objects
involved in the facts of the preconditions and effects.
Loops are represented by two actions leaving from the
same state. Such state must contain two possible situations

for the exit condition: it is different from the current value
of the control variable (assigned with the action that stays
inside the loop), or it is equal to it (added as precondition of
the action that leaves the loop).

Recovery actions are tasks defined by the expert to deal
with unexpected situations (ask-for-help action in Figure 2).
They will be included by replanning only after such cases.

Checkpoints work as restoration points, defined by the
expert as places where the execution is desired to return after
correcting an exogenous situation, instead of the point where
the interruption took place.

Backwards actions are used for this checkpoint recov-
ery, deleting all intermediate effects (excepts the informa-
tion marked as persistent or sensed) added between succes-
sive checkpoints, forcing to restart the execution from the
desired point. The compiler automatically generates one of
these actions for each checkpoint.

Conclusions

We implemented a tool for Social Robotics use cases devel-
opment, facilitating its modelling and formalization by us-
ing a workflow representation. Such model is automatically
translated into its corresponding PDDL code. An interesting
future line is to improve it with controls for flagging incon-
sistent domain construction or incompleteness in the model,
warning the user about possible loss of information.
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