
31st International Conference on
Automated Planning and Scheduling
August 2-13, 2021, Guangzhou, China (virtual)

FinPlan 2021
Preprints of the 2nd Workshop on

Planning for
Financial Services (FinPlan)

Edited by:

Shirin Sohrabi, Sameena Shah, Daniele Magazzeni and Daniel Borrajo

Organization

Shirin Sohrabi
IBM Research

Sameena Shah
J.P.Morgan AI Research

Daniele Magazzeni
J.P.Morgan AI Research & King’s College London, UK

Daniel Borrajo
J.P.Morgan AI Research & Universidad Carlos III de Madrid, Spain

Program Committee

Daniel Borrajo (J.P. Morgan AI Research, consultant, USA)
Amedeo Cesta (ISTC-CNR, Italy)
Giuseppe De Giacomo (Sapienza Università di Roma, Italy)
Mark Feblowitz (IBM, USA)
Fernando Fernández (Universidad Carlos III de Madrid, Spain)
Sarah Keren (Harvard University, USA)
Daniele Magazzeni (J.P. Morgan AI Research, UK)
Fabio Mercorio (Università di Milan-Bicocca, Italy)
Sameena Shah (J.P. Morgan AI Research, USA)
Shirin Sohrabi (IBM, USA)
Biplav Srivastava (University of South Carolina, USA)

ii

Foreword

Planning is becoming a mature field in terms of base techniques and algorithms to solve goal- oriented tasks. It has been
successfully applied to many domains including classical domains such as logistics or mars rovers, or more recently in oil and
gas, as well as mining industry. However, very little work has been done in relation to financial institutions problems. Recently,
some big financial corporations have started AI research labs and researchers at those teams have found there are plenty of open
planning problems to be tackled by the planning community. For example, these include, trading markets, workflow learning,
generation and execution, transactions flow understanding, risk management, fraud detection and customer journeys.

FinPlan’21 is the second workshop on Planning for Financial Services held in conjunction with ICAPS, whose aim is to
bring together researchers and practitioners to discuss challenges for Planning in Financial Services, and the opportunities such
challenges represent to the planning research community. The workshop consisted of paper presentations and a panel that
discussed the current state of planning applied to finance, as well as open problems.

Shirin Sohrabi, Sameena Shah, Daniele Magazzeni and Daniel Borrajo, August 2021

iii

Contents

A Planning Approach to Agile Project Management. The JIRA Planner
Salwa Alamir, Parisa Zehtabi, Rui Silva, Alberto Pozanco, Daniele Magazzeni, Daniel Borrajo, Sameena Shah and
Manuela Veloso 1

TD3-Based Ensemble Reinforcement Learning for Financial Portfolio Optimisation
Nigel Cuschieri, Vincent Vella and Josef Bajada 6

Scenario Planning In The Wild: A Neuro-Symbolic Approach
Michael Katz, Kavitha Srinivas, Shirin Sohrabi, Mark Feblowitz, Octavian Udrea and Oktie Hassanzadeh 15

GPT3-to-plan: Extracting plans from text using GPT-3
Alberto Olmo, Sarath Sreedharan and Subbarao Kambhampati 24

Similarity Metrics for Transfer Learning in Financial Markets
Diego Pino González, Fernando Fernández Rebollo, Francisco Javier Garcı́a Polo and Svitlana Vyetrenko 29

Proving Security of Cryptographic Protocols using Automated Planning
Alberto Pozanco, Antigoni Polychroniadou, Daniele Magazzeni and Daniel Borrajo 38

iv

A Planning Approach to Agile Project Management. The JIRA Planner

Salwa Alamir, Parisa Zehtabi Rui Silva, Alberto Pozanco,

Daniele Magazzeni, Daniel Borrajo, Sameena Shah, Manuela Veloso
J.P. Morgan Chase

salwa.alamir, parisa.zehtabi, rui.silva, alberto.pozancolancho,
daniele.magazzeni, daniel.borrajo, sameena.shah, manuela.veloso@jpmorganchase.com

Abstract

Currently, planning software development is mostly per-
formed by humans. This task requires reasoning over
multiple factors and constraints. Thus, it takes humans
time to generate those plans. Also, the resulting plans
often do not estimate well how good specific developers
will address a task or how long it will take. In this
paper, we present an automated approach to generate
project plans, assigning human resources to tasks ac-
cording to previous projects, and taking into account a
variety of real constraints. We combine machine learn-
ing, to acquire a person’s key skills based on previous
development tasks performed, with planning technol-
ogy in order to provide a unified end-to-end project
management tool. This planning application has been
developed within a large corporation utilizing historical
data from an internal system that stores project tasks.
We validate our approach by comparing the plans origi-
nally proposed by humans, against those generated by
the planning tool. For this comparison, we contribute
a set of metrics that assess different properties of the
plans, such as the quality of task assignments.

Introduction
Software Project Scheduling (SPS) is an optimization
problem within the broader field of Project Management
that amounts to decide who does what and when on a
software project Chicano et al. (2011). This problem is
usually solved manually by project managers, who try to
accommodate all the resources and constraints to create
a plan that maximizes/minimizes a set of objective func-
tions. In recent years, there have been some attempts
to automate this process by using different Artificial
Intelligence (AI) techniques that range from genetic
algorithms Chang, Christensen, and Zhang (2001); Ro-
dríguez et al. (2011) to ant colony optimization Xiao,
Gao, and Huang (2015). Most current AI based ap-
proaches assume a static view of the project, not consid-
ering dynamic events such as the leave of an employee or
the arrival of new tasks Rezende et al. (2019). Moreover,
given the lack of publicly available data, they usually
test their models in synthetically generated benchmarks,

Copyright © 2021, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

which might undermine the credibility of the computed
solutions Vega-Velázquez, García-Nájera, and Cervantes
(2018).

In this paper, we propose to combine planning and
learning to solve the SPS problem. It is important to
note that the type of planning we consider in this paper
concerns about resource allocation and the terminology
has been used interchangeably. For the learning side of
our approach, we obtain task data from projects within
J.P. Morgan Chase. Values such as developer skills are
learned from the historical data using an unsupervised
(clustering) approach. The values are then provided
to the planner as inputs for the resource allocation.
Empirical results show how our model can produce
solutions fast. Also, they resemble the ones generated
by project managers.The approach got positive feedback
in a user study stating that the plans returned by our
approach could be used within J.P. Morgan Chase.

Project development
The software development process at many companies
follows the Agile methodology. In this section, we first
introduce the Agile methodology and JIRA, a collabo-
rative tool for tracking and managing projects.
In the Agile methodology for software development,

a developers team D = {d1, . . . , dD} and a manager m
work on a project. At any given time there exists a pool
of tasks T = {t1, . . . , tT } that eventually need to be
completed. The timeline of the project is divided into
sprints of L = {1, . . . , N} days. Typically the sprints
last 2 weeks, i.e. N = 14, but this varies across teams.

Before a new sprint starts, the team meets for a Sprint
Planning Meeting, where they: add new tasks to the
pool T ; order the tasks in the pool by priority (Low,
Medium, High, Major, Show Stopper); break down
larger tasks into smaller more manageable subtasks;
add dependencies between the tasks (i.e., define task
precedence); estimate the complexity of the tasks using a
relative scale of effort dubbed story points;1 and, finally,
commit on the subset of tasks that should be completed
by the end of the sprint, given the team bandwidth.

1Story points reward team members for solving problems
based on complexity, and not on time spent.

1

Task Pool
P

Planner

Task
Duration

Task
Priorities

Developers
D

Task
Precedences

Developer
Skill

Task
Assignments

Legend:

Automated or
Learned

Specified
manually

Figure 1: Architecture of the planning system.

The subset of tasks to be completed in the sprint is
then assigned to the developers. This process is con-
strained by the skills of the developers and their per-
sonal preferences. The tasks follow a workflow. The
default workflow is composed of three states: Open, In
Progress and Closed. Additionally, we also assume
that each task is assigned to a single developer, i.e., it
is not reassigned between the Open and Close states.

At J.P. Morgan Chase, the Agile methodology is sup-
ported by JIRA—an online collaborative tool for teams
to perform sprint planning activities. In this work, the
relevant features extracted are either industry standard
(story points) or mandatory fields (description and pri-
ority).

Approach
We propose a planning approach for solving the afore-
mentioned SPS problem, combining planning and
scheduling, with learning techniques. Given a task pool
T and a set of developers D as inputs, the goal of the
planning system is to output a schedule of the tasks to
be completed by each developer throughout the sprint.
This scheduling process assumes a daily temporal reso-
lution, and is constrained by different properties of the
tasks and the developers, which are also provided as
inputs. We delve into these constraints in this section.
Our overall approach is depicted in Figure 1, where

some of the aforementioned inputs are manually specified
by the users, and others are automatically estimated
through models learned from previous project data. In
this paper, we propose a novel learning approach for
estimating the expertise of a developer on a given task.

Developer Skill Estimator
The developer skill estimator learns a model S(d, t) :
D × T → [0, 1] that estimates the expertise level of a
developer d at a task t based on the tasks the developer
has previously completed in the project. The more
similar tasks the developer has completed, the higher
its expertise. In practice, we cluster tasks based on
their description, and assess the skills of the developer
in terms of the space of clusters.

Learning clusters of tasks The first step aims to
learn how to cluster project tasks into a set of task classes

C = {c1, . . . , ck}. For this purpose, we assume that
tasks can be clustered based on their descriptions, which
contain text paragraphs that provide technical details
on the task. We first build a dictionary D of all the
words observed in the descriptions of the tasks within the
project. We use this to create a vector representation of
the tasks based on the tf-idf method. Each task is then
represented by a |D|-dimensional vector where the vector
task tj has i-th entry wj(i) = tfi,j × log

(
N
dfi

)
, where

tfi,j is the frequency of word i in the task description
tj , dfi is the frequency of i in all task descriptions, and
N is the number of previous tasks in the project.

Given the vector representation of all tasks, we adopt
the Latent Dirichlet Allocation (LDA) topic modelling
method in order to extract tasks clusters Blei, Ng, and
Jordan (2003). Like most unsupervised clustering meth-
ods, LDA depends on a parameter k that specifies the
number of clusters. For each project, we select a value
k that leads to the highest cross-validated coherence
score Röder, Both, and Hinneburg (2015). After trained,
the LDA model allows us to cluster a new task. Specif-
ically, for a new task t, LDA : T → [0, 1]k outputs a
distribution over the set of k tasks classes C. In practice,
we assume that each task t is classified into the highest
probability cluster outputted by the LDA model—for
convenience, we denote with C : T → C.
Estimating the expertise of each developer for
every task We assume the expertise of a developer d
on a task t is captured by his/her expertise on the corre-
sponding task class c = C(t). Specifically, the expertise
of d in task class c is defined as the normalized frequency
of this class in the history of tasks the developer has
completed, and can be found on JIRA. Formally,

S(d, t) =

∑
t′∈H(d) I (C(t′) = C(t))

|H(d)| ,

where H(d) denotes the history of tasks completed by
developer d, and where I(x = y) is the indicator function
taking value 1 if x = y, and 0 otherwise. Consequently,
the expertise of a developer d at a task t grows with the
number of tasks of similar class he/she has completed.

Manually Specified Inputs
We assume some properties of the tasks and the devel-
opers are to be estimated manually by the team, and
provided as input to the planner.

Task Duration Estimator The planner is provided
a map D : T → [1, N], where D(t) denotes the duration
of task t in days. Moreover, we assume that the duration
of a given task ranges between a minimum of 1 day and a
maximum of N days—the entire duration of the sprint.

Task Dependencies The planner is provided a map
R(t) denoting the set of tasks that need to be completed
before task t can start—i.e., its dependencies. Formally,
R : T → P(T), where P(T) is the power set of all tasks.
If task t has no dependencies, we have R(t) = ∅.

2

Task Priorities The task priorities—Low, Medium,
High, Major, Show Stopper—are provided as inputs.
We assign each priority a value in {1, . . . , 5}. Formally,
we let P (t) denote the priority of task t.

Planner
We adopted an Integer Linear Programming (ILP) ap-
proach to model the SPS problem as an optimization
problem. Our approach starts with the following binary
variables that take value 1, when
• xi,j , if we assign task j ∈ T to developer i ∈ D;
• yi,j,k, if developer i∈D starts task j∈T on day k ∈ L;
• zi,j,k, if developer i ∈ D works on task j ∈ T on day
k ∈ L,

yielding a total of (|T |×|D|)+2(|T |×|D|×N) variables.
The objective function is defined as

max
x,y,z

∑

i∈D
j∈T

S(i, j) P (j) xi,j − α
∑

i∈D, j∈T
k∈L

k yi,j,k,

where α is a normalization constant. The first term of
the objective function aims to maximise the number
of tasks completed, while trying to assign each task
to developers with higher corresponding expertise, and
also considering task priority. The second term of the
objective function aims at scheduling tasks as early as
possible in the sprint. This second term is weighted by a
small scalar α as it is a secondary objective. Our model
considers multiple constraints.

Number of developers per task We enforce that
each task may only start once, by letting

∑

i∈D,k∈L
yi,j,k ≤ 1, ∀j ∈ T . (1)

Moreover, each task may only be assigned to one devel-
oper: ∑

i∈D
xi,j ≤ 1, ∀j ∈ T . (2)

Task dependencies The dependencies are enforced
by two sets of constraints. The first ensures any task j is
only assigned if all dependencies R(j) are also assigned:

∑

i∈D
xi,j ≤

∑

i∈D
xi,r, ∀j ∈ T , r ∈ R(j). (3)

The second set of constraints ensures that a task j may
only start after its dependencies R(i) finish:

∑

i∈D

k+D(r)∑

k′=1

yi,j,k′ ≤
(
1−

∑

i∈D
yi,r,k

)
N,

∀j ∈ T , r ∈ R(j), k ∈ {1, . . . , N −D(r)}.
(4)

This constraint enforces that, if a dependency r ∈ R(j)
starts on a day k by some developer i (i.e., yi,r,k = 1),
then task j may only start after r finishes at k +D(r).

Multi-tasking We enforce that, on any given day, a
developer i may work on at most tmax tasks in parallel.
This is enforced by the set of constraints:

∑

j∈T
zi,j,k ≤ tmax, ∀i ∈ D, k ∈ L. (5)

Makespan We enforce that a task j may only start
on a day k if it can be completed within the sprint
yi,j,k = 0, ∀i ∈ D, j ∈ T , k ∈ {N −D(t), . . . , N}. (6)

Connections Between Variables The final set of
constraints establishes the connections between the dif-
ferent decision variables in our model. We start by
enforcing that a task j may only start on some day k if
it is assigned to some developer i:

∑

k∈L
yi,j,k = xi,j , ∀i ∈ D, j ∈ T . (7)

Finally, if a developer i is assigned to task j, then i must
be busy with j for the duration of the task:

∑

k∈L
zi,j,k = D(j) xi,j , ∀i ∈ D, j ∈ T . (8)

These constraints indirectly connect variables y and z,
rendering it redundant to specify their direct connection.

Task Assignment
The task assignments generated by the planner associate
tasks to developers and days of the sprint. Formally, for
a given developer i ∈ D and day j ∈ L, the assignment
may map to, either a task t, or none if no tasks are to
be performed by the developer on that day.

Experimental Evaluation
We empirically evaluate our approach and show that
the solutions computed resemble those generated in real
projects developed at J.P. Morgan Chase, and could
be used within the company. Our evaluation is from
a quantitative perspective—through a set of metrics
comparing the resulting plans against those of the real
projects—and from a qualitative perspective—through
a user study.

Data Collection
We start by describing the process followed for collecting
the data used for training and testing our approach. We
used JIRA’s REST API to fetch all projects, and corre-
sponding historical tasks, stored in a specific server. All
projects with less than 100 Closed tasks were discarded.
We then generated a training and test datasets as fol-
lows. For each project, we first fetch the most recent
Closed task, and then pull all tasks leading up to 1
month before that. This entire month of Closed tasks
corresponds to the test set, whereas the training set
corresponds to all the tasks before that. A second round
of filtering occurs at this stage, by discarding all projects
with less than 15 tasks in the test set. This yielded a
grand total of 88 projects used in our experiments.

3

Table 1: Mean and standard deviation of the different metrics values from planning multiple sprint intervals (S).
Test/Plan are the test tasks and proportion planned. Train tasks are used to train solvable projects. Devs is number
of developers, and Runtime is time to solve the problem in seconds. Solved/Total is the proportion of projects that
had at least 1 optimal solution.

S m1 (s.d) m2 (s.d) m3 (s.d) Test/Plan Task Train Task Devs. Runtime (sec) Solved/Total

1 0.83± 0.22 0.42± 0.35 0.92± 0.13 10± 09/08± 07 231± 159 4± 3 08.18± 53.57 88/88
2 0.84± 0.21 0.40± 0.31 0.93± 0.11 12± 10/09± 08 235± 161 4± 3 38.91± 122.9 61/88
3 0.79± 0.25 0.45± 0.33 0.92± 0.12 13± 11/11± 11 223± 159 4± 3 86.38± 184.3 37/88

Quantitative Evaluation
We evaluate our approach by comparing the plans com-
puted against sprints of real projects. For a given project
and sprint, we assume the task pool T corresponds to
the set of tasks that were performed by the available
developers D during that sprint. The duration estima-
tor of the tasks D was defined to match the duration
of the tasks in the real project. For the first round
of experiments we made two assumptions. First, task
dependencies are provided as a manual input; if not
provided, no dependencies exist. Second, we assumed
that the developers could work on at most tmax = 1
simultaneous tasks. We then impose a 15 minutes time-
out for the planner. Thus, if a project plan exceeds this
limit, we deem it Unsolvable. Given this setup, we assess
if the solutions generated by the planner are similar to
the actual plans using three metrics.

Jaccard Similarity This metric assesses if the plan-
ner schedules a similar number of tasks to be completed
during the sprint. Formally, m1 is the Jaccard similarity
m1(T , T̂) = |T ∩T̂ |

|T ∪T̂ | , where T and T̂ are the set of tasks
planned by the developers and by the planner, respec-
tively. m1 takes value 1 when the tasks planned are the
same, and 0 when the planner outputs no tasks.

Task Matching This metric assesses if the task as-
signments computed by the planner are similar to those
in the real plans. Let A denote the set of assignments
(ti, dj) in the real plan, and Â the set of assignments
proposed by the planner. Formally, we define the metric

as m2(A, Â) =

∑
(ti,dj)∈Â I((ti,dj)∈A)

|Â| . The metric takes
value 1 when all the task assignments proposed by the
planner match those followed by the developers. The
metric takes value 0 when no task assignments match.

Expertise-Aware Task Matching Metric m3 ex-
tends m2 by assessing if the planner assigns tasks to de-
velopers with similar, or higher, estimated expertise lev-

els. Formally, m3(A, Â) =

∑
(ti,dj)∈Â I(S(ti,d̂j)≥S(ti,dj))

|Â| .
The metric takes value 1 when all the task assignments
computed by the planner assign a developer with similar
or higher expertise when compared to the assignment

in the real plan. This metric is inspired by the observa-
tion that, on a given project, there may exist multiple
developers equally capable of performing the same task.

We experimented on a project where a team of develop-
ers manually specified the dependencies existing between
the tasks of the one month long test set. The plans were
generated for 14 tasks and 6 programmers over a 2-week
sprint. The metrics with and without precedences were
the same (M1: 0.93, M2: 0.31, M3:0.92). However,
the new plan showed a different order where the prece-
dences were respected as per the user inputs. We ran
the experiment on a 3-week sprint and observed the
same behaviours between the plans with and without
precedence defined. We then investigate the impact of
varying sprint size.

Table 1 summarizes the results achieved under varying
sprint sizes. The test set is divided by the number weeks
in a sprint and is run accordingly (i.e: for a 1 week sprint,
4 runs per project, 2 weeks twice, and 3 weeks once). We
observe that the number of tasks to plan for increases
with respect to the size of the sprint; as expected, this
affects runtime exponentially. Metric 1 reduces as the
number of tasks increase due to overlapping tasks whilst
the planner assigns only 1 task per person at a time. We
observe that metric 2 is also reduced when developers
have overlapping skillsets. The planner will assign tasks
to any qualified developer. This is validated by Metric
3 which remains close to 0.92 regardless of sprint size.

Qualitative Evaluation

We obtained feedback from 3 project teams in the form
of a survey comprised of 2 questions, where the responses
are on a scale of "Strongly Agree" to "Strongly Disagree" :

• Q1: Would you find an automated planning tool useful
for planning your software developer sprints?

• Q2: Does the automatically generated plan make sense
for your project and team? If not, why?

All users responded ’Strongly Agree’ to Q1, whereas
a 33.3% ’Agree’ and 66.7% ’Neutral’ response for Q2.
Enquiry into how to improve the generated plans yielded
a request for learning task precedence. This is expected
as the current planner is equipped to handle this feature
as a manual input.

4

Conclusions
In this paper we contributed an approach to solve the
Software Project Scheduling problem, combining plan-
ning and scheduling, with learning techniques. The
introduction of the learning component successfully al-
lows our approach to tailor the planner for different
software engineering projects. We empirically evaluate
our planning approach on a large number of real software
engineering projects, showing that the plans computed
resemble those generated by the humans themselves.
In fact, we evaluate the quality of the plans produced
both quantitatively—through a set of metrics that mea-
sure plan similarity—and qualitatively—through a user
study. The results show that the plans returned by
our approach could be used within our company. In
the future, we plan to learn models for the remaining
inputs to the planner. We also intend to correlate the
implementation of the learning approach with developer
competence and planner performance.

Disclaimer This paper was prepared for informa-
tional purposes by the Artificial Intelligence Research
group of JPMorgan Chase & Coȧnd its affiliates (“JP
Morgan”), and is not a product of the Research Depart-
ment of JP Morgan. JP Morgan makes no representation
and warranty whatsoever and disclaims all liability, for
the completeness, accuracy or reliability of the informa-
tion contained herein. This document is not intended as
investment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase or sale
of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any
person, if such solicitation under such jurisdiction or to
such person would be unlawful.

References
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
Dirichlet Allocation. Journal of Machine Learning
Research 3(Jan): 993–1022.

Chang, C. K.; Christensen, M. J.; and Zhang, T. 2001.
Genetic algorithms for project management. Annals
of Software Engineering 11(1): 107–139.

Chicano, F.; Luna, F.; Nebro, A. J.; and Alba, E. 2011.
Using multi-objective metaheuristics to solve the soft-
ware project scheduling problem. In Proceedings of the
13th Annual Genetic and Evolutionary Computation
Conference, GECCO 2011, 1915–1922.

Rezende, A. V.; Silva, L.; Britto, A.; and Amaral, R.
2019. Software project scheduling problem in the
context of search-based software engineering: A sys-
tematic review. Journal of Systems and Software 155:
43–56.

Röder, M.; Both, A.; and Hinneburg, A. 2015. Exploring
the space of topic coherence measures. In Proceedings

of the eighth ACM International Conference on Web
Search and Data Mining, 399–408.

Rodríguez, D.; Carreira, M. R.; Riquelme, J. C.; and
Harrison, R. 2011. Multiobjective simulation optimi-
sation in software project management. In Proceedings
of the 13th Annual Genetic and Evolutionary Compu-
tation Conference, GECCO 2011, 1883–1890.

Vega-Velázquez, M. Á.; García-Nájera, A.; and Cer-
vantes, H. 2018. A survey on the software project
scheduling problem. International Journal of Produc-
tion Economics 202: 145–161.

Xiao, J.; Gao, M.; and Huang, M. 2015. Empirical
Study of Multi-objective Ant Colony Optimization to
Software Project Scheduling Problems. In Proceed-
ings of the Genetic and Evolutionary Computation
Conference, GECCO 2015, 759–766.

5

TD3-Based Ensemble Reinforcement Learning for
Financial Portfolio Optimisation

Nigel Cuschieri and Vince Vella and Josef Bajada
Department of Artificial Intelligence,

Faculty of Information & Communication Technology
University of Malta

Abstract

Portfolio Selection (PS) is a perennial financial engi-
neering problem that requires determining a strategy for
dynamically allocating wealth among a set of portfolio
assets to maximise the long-term return. We investigate
state-of-the-art Deep Reinforcement Learning (DRL)
algorithms that have proven to be ideal for contin-
uous action spaces, mainly Deep Deterministic Policy
Gradient (DDPG) and Twin Delayed Deep Determin-
istic Policy Gradient (TD3), for the PS problem. Further-
more, we investigate the effect of including stock move-
ment prediction indicators in the state representation,
and the potential of using an ensemble framework that
combines multiple DRL models. Our experiments show
that TD3-based models generally perform better than
DDPG-based ones when used on real stock trading data.
Furthermore, the introduction of additional financial indi-
cators in the state representation was found to have a
positive effect over all. Lastly, an ensemble model also
showed promising results, consistently beating the base-
lines used, albeit not all other DRL models.

Introduction
Portfolio Selection (PS) has now been studied extensively
for almost 70 years (Markowitz 1952; Pogue 1970; Rubin-
stein 2002; Zhou and Yin 2003; Fagiuoli, Stella, and Ventura
2007). Throughout literature, two major schools for investi-
gating the PS problem are identified. These are the Mean Vari-
ance Theory (Markowitz 1952) originating from the finance
community, and the Capital Growth Theory (Kelly 1956;
Cover 1996) originating from information theory (Li and Hoi
2014). The Mean Variance Theory focuses on a single-period
or batch portfolio selection. It aims to trade off expected
return with risk (variance), to create an optimal portfolio
subject to the investor’s risk-return profile (Li and Hoi 2014).
In contrast, the Capital Growth Theory focuses on multiple-
period or sequential portfolio selection. Additionally, it aims
to maximise the portfolio’s expected growth rate, or expected
log return (Li and Hoi 2014). Both theories pose a solution to
the portfolio selection task. However, only the Capital Growth
Theory incorporates the online machine learning perspective
(Li and Hoi 2014). A variety of Online Portfolio Selection

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(OLPS) strategies and approaches, such as Online Newton
Step (ONS) and Passive Aggressive Mean Reversion (PAMR)
have been proposed, which are popularly used as baselines
to evaluate stock trading performance (Islam et al. 2017;
Jiang and Liang 2017).

Deep Reinforcement Learning (DRL) combines Reinforce-
ment Learning (RL) with Deep Learning (DL) to address
tasks with high-dimensional input and action spaces (Khadka
et al. 2019). DL has become very popular in speech recog-
nition (Noda et al. 2015) and image identification (Liu et
al. 2020), and has been shown to work well with complex
non-linear patterns (Liang et al. 2018). DRL algorithms such
as Deep Deterministic Policy Gradient (DDPG) (Silver et
al. 2014; Hunt et al. 2016), and Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) (Fujimoto, Van Hoof, and
Meger 2018) provide greater support for continuous action
spaces such as the one encountered in PS, and for this reason,
DDPG and its variants have been proposed for this problem
domain (Hegde, Kumar, and Singh 2018; Zhang et al. 2020;
Kanwar 2019; Gran, Holm, and Søgård 2019).

At the time of writing, TD3 has been scarcely used in PS.
The findings presented by Fujimoto, Van Hoof, and Meger
(2018), together with the use of TD3 in other domains (Li
and Yu 2020; MacHalek, Quah, and Powell 2020), suggest
that TD3 also has the potential to perform well in financial
planning for PS.

In this work we present the results of different experiments
that use TD3 for portfolio selection, mainly:

• TD3 using only normalised asset logarithmic returns in the
state representation, with different time window sizes.

• TD3 using normalised asset logarithmic returns together
with Robust Median Reversion (RMR) predictions in the
state representation, also using different time window
sizes.

• An ensemble model that combines the best four models
together and switches between them according to their
performance.

These models were compared to their DDPG counterparts
and also the state-of-the-art OLPS baselines. The perfor-
mance of each model was measured in terms of Average Daily
Yield, Sharpe Ratio (Sharpe 1966), Sortino Ratio (Sortino
and Price 1994), and Maximum Drawdown. Throughout the
study, we follow the below two assumptions:

6

• Zero Slippage: All market assets are liquid enough to
make every trading at the last price immediately possible
when an order is placed.

• Zero impact on market: The investments done by our
trading agents are so small that they have no effect on the
market.

Due to this, the implemented models are mainly directed at
optimising portfolios for retail consumers. All the software
developed for this work has been open-sourced and made
publicly available on GitHub 1.

Background
Problem Setting
OLPS algorithms typically model the PS problem as a finan-
cial market withm assets and a series of n trading steps, each
consisting of wealth distributed over all the assets. The price
relative vector, consisting of m dimensions, represents the
portfolio price change for each trading step. This is defined
as xt ∈ Rm+ , t = 1, ..., n, where the tth price relative vector
consists of the ratio of tth closing prices to the previous
(t − 1)th. Therefore, the investment in an asset i during
step t is increased (multiplied) by a factor of xt,i (Li and
Hoi 2014). Naturally, the investment for the asset would
decrease if the factor is less than 1. The portfolio vector
represents the allocation of investment wealth throughout
the trading steps, and is denoted as bt, for the tth portfolio.
Therefore, bt,i represents the ratio of wealth assigned to the
ith asset. No negative entries are allowed in the capital invest-
ment, as it is assumed that a portfolio is self-financed (Li
and Hoi 2014). A portfolio strategy for n periods can be
denoted as: bn1 = b1, ..., bn. At any period t, the capital is
adjusted according to portfolio bt at the opening time. Then,
the position is held until the closing time is met. Therefore the
portfolio value, when excluding transaction costs, increases
by a factor of bTt xt =

∑m
i=1 bt,ixt,i. The goal of a port-

folio manager is to produce a portfolio strategy bn1 , that is
computed in a sequential fashion in order to achieve certain
targets, such as maximising the portfolio cumulative wealth
Sn (Li and Hoi 2014).

Reinforcement Learning
Reinforcement Learning is typically modelled as a Markov
Decision Process (MDP). An MDP is a directed graph with
state nodes, S, action nodesA, and directed edges connecting
states to actions and actions to states. An action can have
multiple outcomes if its effects are stochastic, with a prob-
ability associated with each outcome. State transitions can
also carry rewards. An optimal policy, π∗, maps states to
actions, such that the sum of all rewards, R, for each tran-
sition between a state, st, executed at time step t, and its
successor, st+1, with a chosen action, a, is maximised. A
policy could also be in itself stochastic, selecting which
action, a, to take in a specific state, s, out of a probability
distribution, π(a|s). A discount factor, 0 ≤ γ ≤ 1, makes the

1https://github.com/NigelCusc/DDPG TD3 Portfolio
Optimization tensorflow-1.15.4

policy prefer solutions that achieve rewards sooner. Equation
1 shows the expected reward of an optimal policy, where Rt
is the reward obtained in step t, and n is the total number of
actions executed (t = 0 corresponds to the initial state).

maxE

[
n∑

t=0

γtRt

]
(1)

The value of any state can thus be computed as the
expected return over the possible actions and outcomes, each
weighted by their respective probabilities. The Bellman Equa-
tion (Bellman 1954) shown in Equation 2, defines the value,
v(st), of a state, st, by computing the expected discounted
reward that can be obtained from each of its possible succes-
sors, st+1.

v(st) = E [Rt+1 + γv(st+1)|st] (2)
Similarly, the state-action value function or Q-Function,

measures how good it is for an action to be taken in a specific
state. Equation 3 defines the Q-Function of an action, at, to
be taken in a state, st, given a policy, π. This is expressed
in terms of the immediate expected rewards, Rt+1, from
the possible successors of st after executing at, and the
discounted value of each possible action, at+1, that can be
taken at step t+ 1.

qπ(st, at) = E
[
Rt+1 + γqπ(st+1, at+1)

∣∣st, at
]

(3)

Finding an optimal policy is very hard (Papadimitriou and
Tsitsiklis 1987), and the goal of RL is to learn a policy, π,
that approximates π∗ as closely as possible. At each step, the
learning agent can sense the state of its environment, decide
which action to take, perceive the new state, and collect a
numeric reward signal associated with the state transition.

RL is also effective when the probabilities of the MDP are
not known, since the RL agent can also infer these probabili-
ties by interacting with the environment repeatedly (Sutton
and Barto 1999) and sampling the outcomes. This approach
is known as model-free RL and is ideal for problem domains
such as stock trading or PS, where the outcome of investing
in a specific asset is hard to predict (Liang et al. 2018;
Jiang and Liang 2017).

Model-free RL algorithms are typically either off-Policy,
where the agent improves a different policy than the one being
followed, or on-Policy, where the agent optimises and follows
the same policy (Sutton and Barto 1999). Q-Learning is one
example of an off-policy algorithm, while SARSA is on-
policy (Sutton and Barto 1999). In order to balance the trade-
off between both approaches (Kanwar 2019), more sophisti-
cated algorithms such as DDPG (Silver et al. 2014) and TD3
(Fujimoto, Van Hoof, and Meger 2018), have been proposed,
which also incorporate an Artificial Neural Network (ANN)
to learn the Q-Function and the policy.

Various attempts were made to use RL in finance, where
the objective was to output discrete trading signals on singular
assets (Cumming 2015; Deng et al. 2017). More recent
studies have set new benchmarks for portfolio optimisation
by using Deep Reinforcement Learning (DRL) (Jiang, Xu,
and Liang 2017; Jiang and Liang 2017; Liang et al. 2018).

7

These models operate over continuous action spaces, and are
typically based on the DDPG framework (Silver et al. 2014;
Hunt et al. 2016). These techniques were also extended to:
work with more risk-averse strategies (Hegde, Kumar, and
Singh 2018; Zhang et al. 2020), focus on asset correlation
(Zhang et al. 2020), and also incorporate genetic algorithms
and sentiment analysis (Gran, Holm, and Søgård 2019). Addi-
tionally, an ensemble strategy for automated stock trading
with three different trading agents: Proximal Policy Optimi-
sation (PPO), Advantage Actor Critic (A2C), and DDPG, has
also been used (Yang et al. 2020). The aim of this ensemble
strategy was to benefit from the best features of the three
algorithms, thereby robustly adjusting to different market
situations.

Deep Deterministic Policy Gradient
DDPG and its variants have been used in finance in various
prior works (Hegde, Kumar, and Singh 2018; Zhang et al.
2020; Kanwar 2019; Gran, Holm, and Søgård 2019). DDPG
combines Policy Gradient and Q-learning frameworks in
an off-policy actor-critic framework, and provides greater
support for continuous action spaces such as the one encoun-
tered in PS (Hunt et al. 2016). DDPG evolved from Deep
Q-network (DQN) methodologies (Mnih et al. 2015), where
deep learning was introduced to allow for policies to be learnt
from highly dimensional state spaces. As its name implies,
DDPG learns a deterministic policy that maps the state vector
to an action vector.

If the optimal action-value function, Q∗(s, a), is known,
the best action for any given state, s, is defined as a∗(s) =
argmaxaQ

∗(s, a). In a continuous action space, the func-
tion Q∗(s, a) is presumed to be differentiable with respect
to the action argument. This way an efficient, gradient-based
learning rule for a policy µ(s) can be set up, making use
of the approximation maxaQ(s, a) ≈ Q(s, µ(s)) (Kanwar
2019). Q∗(s, a) is thus defined as:

Q∗(s, a) = E
s′∼P

[r(s, a) + γmax
a′

Q∗(s′, a′)] (4)

where s′ ∼ P is the next state s′ sampled from some distri-
butionP (·|s, a) and r(s, a) is any immediate reward obtained
from executing action a in state s. In order to approximate
Q∗(s, a), a neural network based predictor is used, Qφ(s, a),
where φ corresponds to its parameters and the collected set
of transitions D consisting of (s, a, r, s′, d), with d ∈ {0, 1}
indicating whether s′ is a terminal state.

DDPG makes use of a Replay Buffer in which experi-
ences are accumulated by the algorithm, and a mini-batch
is used to compute the gradient in every iteration (Hunt et
al. 2016). The neural network is trained to minimise an
error function such as the Mean Squared Bellman Error
(MSBE) (Zhang, Boehmer, and Whiteson 2020). In order to
improve the convergence stability, updates to the parameters,
φ, towards the target network are performed using Polyak
Averaging, φ′ ← pφ′+(1− p)φ, with p ∈ [0, 1] (Polyak and
Juditsky 1992). In order to encourage exploration, noise is
also added to the actions during training, typically using the
Ornstein-Uhlenbeck method (Uhlenbeck and Ornstein 1930;
Hunt et al. 2016; Lillicrap et al. 2015).

One of the weaknesses of DDPG is its susceptibility to
overestimation due to taking the maximum of the estimated
value, which ends up propagating error that builds up over
time, resulting in an inferior policy.

Twin Delayed Deep Deterministic Policy Gradient
The TD3 algorithm was introduced to address the issue of
overestimation bias in DDPG (Fujimoto, Van Hoof, and
Meger 2018). It uses Clipped Double Q-learning (Van
Hasselt 2010) to replace the critic in the actor-critic frame-
work, together with Delayed Policy Updates and Target
Policy Smoothing Regularisation (Fujimoto, Van Hoof, and
Meger 2018). This approach was found to significantly
decrease the overestimation bias and achieve better stability.

Dankwa and Zheng (2019) compare this framework to
DDPG, PPO, Trust region policy Optimisation (TRPO),
Actor-Critic using Kronecker-factored Trust Region
(ACKTR) and Soft Actor-Critic (SAC) on the MuJoCo
pybullet continuous control environment. The TD3 model
achieved a higher average reward when compared with the
other state-of-the-art models.

Clipped Double Q-Learning for Actor-Critic In Double
Q-learning (Van Hasselt, Guez, and Silver 2016), two sepa-
rate value estimates are maintained. Each of these is used to
update the other. With independent value estimates, unbiased
estimates of the actions selected using the opposite value
estimate can be made (Fujimoto, Van Hoof, and Meger 2018).
Additionally, in Double DQN, the target network is used as
one of the value estimates, and a policy by greedy maximisa-
tion of the current value network is obtained rather than the
target network (Van Hasselt, Guez, and Silver 2016). Double
Q-learning is found to be more effective than Double DQN
but does not eliminate the overestimation bias (Fujimoto, Van
Hoof, and Meger 2018). The critics are not entirely indepen-
dent, as the learning targets use the opposite critic and the
same replay buffer. This in turn may cause the overestimation
to be significant in certain areas of the state space.

Clipped Double Q-Learning addresses this problem by
taking the minimum of the two estimates:

y1 = r + γ min
i=1,2

Qθ′i(s
′, πφ1

(s′)) (5)

where r is the reward received, s′ is the new state of the
environment, γ is a discount factor, πφ is the policy with
parameters φ, and Qθ′ is the function approximator with
parameters θ updated at each time step also using Polyak aver-
aging for smoother network updates (Fujimoto, Van Hoof,
and Meger 2018). This way, the value target cannot introduce
any additional overestimation over the standard Q-learning
target. This can still introduce an element of underestimation
bias due to underestimated action values not explicitly propa-
gated through the policy update, but this is generally more
preferable to overestimation.

Target Networks and Delayed Policy Updates The work
done by Fujimoto, Van Hoof, and Meger (2018) shows how
error accumulation can be reduced by maintaining a stable
target. The learning behaviour with and without the target
networks were examined on both the critic and the actor, and

8

results suggest that failure may occur in the interplay of the
updates done by the actor and critic. A value estimate would
deviate because of overestimation with a poor policy, and
in turn, the policy would become poor because of inaccu-
rate value estimates (Fujimoto, Van Hoof, and Meger 2018).
Due to this, they suggest that the policy network should be
updated at a lower frequency than that of the value network to
minimise the error before introducing a policy update. This is
done by updating the policy and target networks after a fixed
number of updates, d, to the critic, while still updating the
target networks slowly θ′ ← τθ + (1− τ)θ′, with τ ∈ [0, 1].
Delaying the policy updates also avoids repeated updates
when the critic has not changed.

Target Policy Smoothing Regularisation TD3 also
makes use of Target Policy Smoothing, which mimics the
learning updates of SARSA (Sutton and Barto 1999). This
is used to reduce the target variance induced by the approxi-
mation error. This approach is based on the assumption that
similar actions should have a similar value (Fujimoto, Van
Hoof, and Meger 2018). Function approximation should do
this implicitly, but the relationship between similar actions
can be forced explicitly by modifying the training procedure.

Fujimoto, Van Hoof, and Meger (2018) state that fitting
the value of a small area around the target action should help
smooth the value estimate with similar state-action value
estimates. This is done by adding clipped noise to keep the
target within a small range and averaging over mini-batches,
as shown in Equation 6:

y = r + γQθ′(s
′, πφ′(s′) + ε) (6)

where ε ∼ clip(N (0, σ),−c, c) is sampled from a Gaus-
sian distribution with standard deviation σ clipped at ±c.

Ensemble Deep Reinforcement Learning Strategy
The study done by Yang et al. (2020) employed an ensemble
strategy for automated stock trading with three different
trading agents. Each of these trading agents consisted of a
distinct actor-critic based algorithm. These are PPO, Advan-
tage Actor-Critic (A2C), and DDPG. The ensemble strategy
aimed to inherit and integrate the best features of the three
algorithms, thereby robustly adjusting to different market
situations (Yang et al. 2020). The proposed ensemble strategy
first trains the three agents, then validates all agents via
Sharpe Ratio (Sharpe 1994) to find the best model, which
is then used for trading. The results obtained show that the
ensemble strategy outperformed the three individual RL algo-
rithms (Yang et al. 2020).

Experiments
Throughout our experiments, we evaluate and compare
models with the DDPG and TD3 DRL frameworks against
the baselines described in Table 2. Additionally we evaluate
the performance of our models with an enhancement in the
state representation, making use of financial indicators based
on the RMR OLPS algorithm. Finally we evaluate the perfor-
mance of an ensemble strategy, making use of our models.

Datasets
Throughout our experiments we make use of two datasets
consisting of real stock trading data. These are:
• NYSE(N) Part of an OLPS benchmark dataset 2 consisting

of actual daily closing prices of a variety of stocks from
the New York Stock Exchange.

• SP500 Dataset gathered from yahoo finance 3. The assets
chosen for the SP500 dataset were selected according to
market capitalisation and their liquidity.
Since the OLPS benchmark dataset only has daily close

prices, and most benchmarks also use close prices, we also
make use of daily close prices and process them into loga-
rithmic returns.

Environment
A portfolio consists of a number of assets. Our models are
allowed to change portfolio weights after each time step
t denoting a market open day. The close prices for day t
are stored into a price vector vt = {vt,0, vt,1, ..., vt,n}. The
price relative vector, yt, is then calculated from the price
movements of two consecutive days, vt−1 and vt as follows:

yt =

(
1,

vt,1
vt−1,1

,
vt,2
vt−1,2

, ...,
vt,n
vt−1,n

)
(7)

where vt,1 is the closing price of the first asset in the vector
for day t, and n is the number of assets. The first element
in the price vector, vt,0, and the price relative vector yt,0 are
always equal to 1, in order to provide an option to keep some
capital liquid without being held in any asset position (Jiang,
Xu, and Liang 2017). The initial portfolio weight vector
w0 is set to (1, 0, ..., 0), and the sum of all the elements in
the portfolio weight vector wt at any step t, is always 1:
∀t∑n

i=0 wt,i = 1.
A state, st for a time step, t, consists of an m× n matrix

where m is the window length and n is the number of assets.
The window length is a configurable parameter that denotes
the number of past time steps considered relevant for each
state. We experiment using the window sizes 3, 7, 11 and
14. Each value in the state corresponds to the normalised log
return, Rt,i of an asset, i, on a specific day, t is defined as:

Rt,i = log

(
ct,i
ct−1,i

)
(8)

where ct,i is the asset’s close price for day t, and ct−1,i is
its close price of the previous day, t− 1. The log return data
within the state is normalised using z-score normalisation
value−µ

σ across all assets, where value is the log return of an
asset on day t. µ and σ are the mean and standard deviation
of the log return of all assets on day t, respectively.

An action, αt, is the weight vector wt = (wt,0, ..., wt,n)
that distributes the allocation of capital across n assets at
time step t (Hegde, Kumar, and Singh 2018; Zhang et al.
2020). Adjusting the portfolio’s asset allocation is usually
not free, but incurs transaction fees. These are either a

2http://www.mysmu.edu.sg/faculty/chhoi/olps/datasets.html
3https://finance.yahoo.com/

9

fixed percentage, or hidden inside the spread (the differ-
ence between the selling and buying price of an asset), and
are incurred whenever the weights allocated to the assets
change. The portfolio vector at the beginning of day t is
wt−1. At the end of the day, the portfolio weight vector
needs to be adjusted in relation to any price movements to:
w′t =

yt�wt−1

yt·wt−1
, where � is the Hadamard product (element-

wise multiplication). Before the next period starts, w′t is then
adjusted into wt by reallocating the portfolio weights. The
transaction remainder factor, µt ∈ (0, 1], is the factor by
which the portfolio value shrinks due to this reallocation
procedure. In our case, µt = c

∑m
i=1 |w′t,i − wt,i|, where

c is the transaction cost rate (Jiang, Xu, and Liang 2017).
Throughout all our experiments, c is set as 0.25%.

The goal of the agent is to maximise the final portfolio
value pf at the end of the tf + 1 period. Due to the agent not
having control over the choice of the initial portfolio weights
p0, and the number of total time steps, tf , this is equivalent
to maximising the average logarithmic accumulated return
R, from immediate rewards rt as shown in Equation 9 (Jiang
and Liang 2017):

R :=
1

tf
ln
pf
p0

=
1

tf

tf+1∑

t=1

ln(µtyt ·wt−1) =
1

tf

tf+1∑

t=1

rt (9)

In order to extract patterns from a portfolio series, we use
the same approach used in prior works, based on a Long Sort-
Term Memory (LSTM) predictor (Hegde, Kumar, and Singh
2018; Zhang et al. 2020; Patel 2018). Both the actor and critic
networks, for both our DDPG and TD3 frameworks, utilise
the same configuration.

Training
The datasets were split in a 6:1 ratio for training and testing,
respectively. Training was done over 400 episodes, each
consisting of 1000 steps. At the start of each episode, the
agent is placed at a random point within the training subset.
This starting step is to allow for the training steps to be
completed. When the networks are to be trained, the training
is done with a mini-batch of 64, sampled uniformly from a
replay buffer consisting of the agents’ history.

In order to avoid over-fitting, we include a value func-
tion threshold parameter which terminates the training phase
when a reward value threshold is exceeded for a number of
consecutive episodes. For example, if the rewards exceed the
threshold value in 10 successive episodes, training will stop
before reaching the defined 400 episodes. The reward value
limit is selected for each dataset based on the best possible
baseline performance.

Table 1 shows the training configuration and hyperparame-
ters used in our experiments.

Evaluation Criteria
We evaluate our portfolio optimisation models with the
following criteria:

• Average Daily Yield: The mean of all the returns obtained.
A higher value is better.

• Sharpe Ratio: Measures the return of an investment when
compared to a risk-free asset while adjusting for its risk
(Sharpe 1966; 1994); Rp−rf

α , where Rp is the portfolio
return, rf is the risk free rate, and α is the standard devia-
tion. A higher value is better.

• Sortino Ratio: Very similar to the Sharpe ratio, but instead
penalises only the downside deviation αd, the risk of losing
value (Sortino and Price 1994). A higher value is better;
Rp−rf
αd

• Maximum Drawdown (MDD): The maximum loss from
a peak to a trough, before a new peak is attained. In this
case a lower value is better; ThroughValue−PeakValue

PeakValue

• Final Portfolio Value: The total wealth an agent has after
the last step has been completed. Expressed as a ratio to
the initial portfolio value of 1.

The baselines to which we compare the performance of
our DRL models are shown in Table 2.

Experiment 1: Comparison of TD3 with DDPG
DDPG and TD3 were trained on the NYSE(N) and SP500
datasets using different window lengths (3, 7, 11, 14). The
results of the best performing DRL models with their respec-
tive time windows are shown in Tables 3 and 4. We observed
that individually, TD3 with a window length of 14 performed
best overall on most criteria on the NYSE(N) dataset. Simi-
larly, TD3 with a window length of 11 performed best overall
on the SP500 dataset.

Experiment 2: Inclusion of stock movement
prediction functions within state format
One of the best performing OLPS models that include a
prediction phase is RMR, which is classified as a ’Follow
the Loser’ algorithm. The Mean Reversion strategy used in
RMR makes use of a windowed moving average prediction
function based on OLMAR, with reduced estimation errors
caused by noise and outliers in the data (Huang et al. 2016).

To assess whether RMR can help our models, we included
the RMR prediction function inside the state of our TD3
model, using the same four window sizes. For each model,
the RMR function was executed with the window parameter,
w, set to the window length of the corresponding model. The
best performing model in-sample was then evaluated out-of
sample along with the baselines and the previous models. For
both the datasets, the inclusion of the RMR was found to lead
to better portfolio value results on most window lengths as
shown in Table 3 and 4, except for TD3 with window length
11, where it was found to have an adverse effect.

Experiment 3: Ensemble DRL model
The objective of this experiment is to determine whether we
can benefit from the features of the four best models found in
the previous experiments, which may have non-correlating
periods during testing due to differences in the state represen-
tation and RL framework. This lack of correlation suggests
that the models behave differently in different market situa-
tions. The main intuition behind this approach is to evaluate

10

Hyperparameter Value Description
Dataset ”nyse n” or ”SP500” The dataset selected to perform training on
Episodes 400 Maximum number of training episodes
Window length 3, 7, 11, and 14 Window or observation size
Value function threshold 3 for NYSE(N), 2 for SP500 Reward threshold used to stop training
Max Step 1000 Number of steps completed in episode
Buffer size 105 Size of replay buffer
Batch size 64 Mini-batch size during training
τ (tau) 0.001 Target network update ratio
γ (gamma) 0.99 Reward discounting factor
Actor learning rate (α) 1x10−4 Actor learning rate
Critic learning rate (β) 1x10−3 Critic learning rate
Seed 1338 Random seed number
(DDPG parameters)
σ (sigma) 0.2 Ornstein-Uhlenbeck parameter
θ (theta) 0.15 Ornstein-Uhlenbeck parameter
dt 0.002 Ornstein-Uhlenbeck parameter
(TD3 parameters)
Policy noise 0.2 Exploration noise
Noise clip 0.5 Maximum value of the Gaussian noise
Policy frequency 2 Number of iterations to wait before

the policy network updates
(Ensemble parameters)
Window length 21 Window or observation size
Action length 1 Steps taken with action

Table 1: Training Hyperparameters

Classification Strategy References
Benchmark Constant Rebalanced Portfolios (CRP/UCRP) (Kelly 1956)
Benchmark Best Constant Rebalanced Portfolios (BCRP) (Cover 1996)
Follow-the-Winner Exponential Gradient (EG) (Helmbold et al. 1996; 1998)
Follow the Winner Universal Portfolios (UP) (Cover 1996)
Follow-the-Loser Passive Aggressive Mean Reversion (PAMR) (Li et al. 2012)
Follow-the-Loser Online Moving Average Reversion (OLMAR) (Li and Hoi 2012)
Follow-the-Loser Weighted Moving Average Mean Reversion (WMAMR) (Gao and Zhang 2013)
Follow-the-Loser Robust Median Reversion (RMR) (Huang et al. 2016)
Meta-Learning Online Newton Step (ONS) (Agarwal et al. 2006)

Table 2: Baselines along with references

Figure 1: Ensemble TD3 Strategy.

the performance of each model over the most recent time
window, and identify which model is exhibiting the most
profitable behaviour, as shown in Figure 1.

The actions chosen by each agent are all passed to the
environment, and the corresponding returns are recorded.
Our ensemble model requires two additional parameters: the
window length, w, and the number of actions, a. The models
are evaluated using a window, w, of recorded returns at each
step, and the best agent is selected according to the best
average return. After the best agent is picked, it is used to
trade for the next a steps. We set w to 21, approximately a
month of trading days, and a is set to 1. This means that the
ensemble model can switch agent at every step. To create our
optimised portfolio, we make use of the four agents trained in
our previous experiment (TD3-3-ltsm-rmr, TD3-7-ltsm-rmr,
TD3-11-ltsm-rmr, TD3-14-ltsm-rmr). For the first w days
in the test dataset, the model with the greatest performance

11

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

Ensemble 0.276 7.387 12.703 47.108 6.810
TD3-3-lstm-rmr 0.195 6.877 11.145 33.125 4.174
TD3-7-lstm-rmr 0.103 3.233 4.448 62.606 1.670

TD3-11-lstm-rmr -0.066 -1.611 -2.035 92.460 0.250
TD3-14-lstm-rmr 0.151 3.584 5.264 79.801 1.838

TD3-14-lstm 0.059 2.382 3.301 52.122 1.305
DDPG-7-lstm 0.071 2.062 2.760 69.351 1.151

Market Value (UCRP) 0.015 0.768 0.982 63.279 0.970
BCRP 0.114 3.737 5.803 73.208 1.876

OLMAR 0.220 3.414 4.678 91.443 1.206
PAMR 0.182 3.666 5.072 79.034 1.797
RMR 0.210 3.260 4.527 91.612 1.104

WMAMR 0.024 0.377 0.478 94.642 0.206
EG 0.013 0.711 0.907 63.122 0.962

ONS 0.006 0.076 0.085 96.181 0.072
UP 0.013 0.696 0.892 63.490 0.958

Table 3: Results or the NYSE(N) test dataset. (The best value for each criteria is in boldface.)

Average Daily Sharpe Sortino Maximum Final Portfolio
Model Yield (%) Ratio (%) Ratio (%) Drawdown (%) Value

Ensemble 0.268 19.775 29.750 15.724 10.917
TD3-3-lstm-rmr 0.379 30.306 49.204 10.848 30.843
TD3-7-lstm-rmr 0.346 22.460 35.208 18.581 21.913

TD3-11-lstm-rmr 0.211 16.246 25.876 18.537 6.513
TD3-14-lstm-rmr 0.069 6.401 8.730 25.494 1.785

TD3-11-lstm 0.331 24.852 43.255 12.265 19.412
DDPG-11-lstm 0.31 21.21 35 21.945 15.985

Market Value (UCRP) 0.017 2.312 2.815 17.072 1.140
BCRP 0.070 4.211 5.625 33.206 1.671

OLMAR 0.145 9.702 13.834 32.493 3.481
PAMR 0.146 10.508 15.173 24.744 3.506
RMR 0.144 9.725 14.117 24.196 3.451

WMAMR 0.086 5.803 8.109 26.658 2.023
EG 0.017 2.346 2.852 17.111 1.143

ONS -0.044 -4.256 -5.281 41.920 0.633
UP 0.018 2.506 3.046 16.63 1.154

Table 4: Results for the SP500 dataset. (The best value for each criteria is boldface.)

throughout the in-sample dataset is automatically selected.
After day w is reached, the agents are re-evaluated and one is
selected accordingly for each day. Therefore, when applied
to a real world scenario, the portfolio weights for the next
trading day are selected by firstly evaluating the performance
of the trained models on the past w trading days and then
selecting the next action suggested by the model with the
greatest performance.

Despite the ensemble model being the most successful one
on the NYSE(N) dataset, as seen in Table 3 and Figure 2, this
behaviour was not entirely replicated on the SP500 dataset.
On the SP500 test dataset, the ensemble model achieves
greater portfolio results than all the baselines but fails to
excel over models created in previous experiments, namely
TD3-11-lstm and TD3-3-lstm-rmr, as shown in Table 4.

Conclusions and Future work

In this work, we have presented portfolio optimisation models
implemented using the TD3 DRL framework. The perfor-
mance of these models was compared with its predecessor,
DDPG, using different time window parameters, on the
NYSE(N) and SP500 datasets. These agents made use of
a state representation that included normalised logarithmic
returns for the specified time window. This state represen-
tation was subsequently enhanced further, by including the
RMR prediction function within the state. These models were
also compared to baseline OLPS algorithms found in liter-
ature, and TD3 was found to perform best over all, with
the RMR variant outperforming all the others on almost all
metrics, on both datasets.

We also implemented an ensemble strategy for portfolio

12

Figure 2: Portfolio values for our best DRL models along with baselines on the NYSE(N) dataset.

optimisation, using a combination of DRL agents. This
strategy was found to enhance performance significantly in
terms of Average Daily Yield, Sharpe Ratio and Sortino Ratio
on the NYSE(N) dataset, but fell short on the SP500 dataset,
whilst still beating all the baseline OLPS algorithms.

We have shown that even with a simple state representation
consisting of normalised log returns, a DRL framework such
as TD3 can converge to a good policy that performs well
on financial metrics. This approach can be enhanced further
by including additional features in the state representation,
such as making use of other financial indicators that capture
risk and momentum. One could also explore the possibility
of using Evolutionary Reinforcement Learning algorithms,
where a population of actors are evaluated after each episode
and the best performing ones survive to the next episode,
after which the population is perturbed to create a new popu-
lation. Such further research has the potential to improve the
performance and robustness of the resultant policies.

References
Agarwal, A.; Hazan, E.; Kale, S.; and Schapire, R. E. 2006.
Algorithms for portfolio management based on the Newton
method. ACM International Conference Proceeding Series
148(January 2006):9–16.
Bellman, R. 1954. The theory of dynamic programming.
Technical report, Rand corp santa monica ca.
Cover, T. M. 1996. Universal Portfolios. Department of
Statistics and Electrical Engineering, Stanford University.
Cumming, J. 2015. An Investigation into the Use of
Reinforcement Learning Techniques within the Algorithmic
Trading Domain. Imperial College London: London, UK.
Dankwa, S., and Zheng, W. 2019. Modeling a Continuous
Locomotion Behavior of an Intelligent Agent Using Deep
Reinforcement Technique. 2019 IEEE 2nd International
Conference on Computer and Communication Engineering
Technology, CCET 2019 172–175.
Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; and Dai, Q. 2017. Deep
direct reinforcement learning for financial signal representa-

tion and trading. IEEE Transactions on Neural Networks and
Learning Systems.
Fagiuoli, E.; Stella, F.; and Ventura, A. 2007. Constant
rebalanced portfolios and side-information. Quantitative
Finance 7(2):161–173.
Fujimoto, S.; Van Hoof, H.; and Meger, D. 2018. Addressing
Function Approximation Error in Actor-Critic Methods.
Proceedings of the 35th International Conference on Machine
Learning (ICML 2018) 4:2587–2601.
Gao, L., and Zhang, W. 2013. Weighted Moving Average
Passive Aggressive Algorithm for Online Portfolio Selection.
5th International Conference on Intelligent Human-Machine
Systems and Cybernetics 327–330.
Gran, P. K.; Holm, A. J. K.; and Søgård, S. G. 2019. A deep
reinforcement learning approach to stock trading. Master’s
thesis, NTNU.
Hegde, S.; Kumar, V.; and Singh, A. 2018. Risk aware
portfolio construction using deep deterministic policy gradi-
ents. In 2018 IEEE Symposium Series on Computational
Intelligence (SSCI), 1861–1867. IEEE.
Helmbold, D. P.; Schapire, R. E.; Singer, Y.; and Warmuth,
M. K. 1996. On-line portfolio selection using multiplicative
updates. In Proceedings of the International Conference on
Machine Learning 243–251.
Helmbold, D. P.; Schapire, R. E.; Singer, Y.; and Warmuth,
M. K. 1998. On-line portfolio selection using multiplicative
updates. Mathematical Finance 8 4:325–347.
Huang, D. J.; Zhou, J.; Li, B.; Hoi, S. C.; and Zhou, S.
2016. Robust Median Reversion Strategy for Online Port-
folio Selection. IEEE Transactions on Knowledge and Data
Engineering 28(9):2480–2493.
Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.;
and Wierstra, D. 2016. Continuous learning control with
deep reinforcement. In International Conference on Learning
Representations (ICLR).
Islam, R.; Henderson, P.; Gomrokchi, M.; and Precup, D.
2017. Reproducibility of Benchmarked Deep Reinforce-

13

ment Learning Tasks for Continuous Control. Transportation
Quarterly.
Jiang, Z., and Liang, J. 2017. Cryptocurrency portfolio
management with deep reinforcement learning. In 2017
Intelligent Systems Conference (IntelliSys), 905–913. IEEE.
Jiang, Z.; Xu, D.; and Liang, J. 2017. A deep reinforcement
learning framework for the financial portfolio management
problem. arXiv preprint arXiv:1706.10059.
Kanwar, N. 2019. Deep Reinforcement Learning-Based
Portfolio Management. Ph.D. Dissertation, UTA.
Kelly, J. L. 1956. A new interpretation of information rate.
Bell Systems Technical Journal 35:917–926.
Khadka, S.; Majumdar, S.; Nassar, T.; Dwiel, Z.; Tumer, E.;
Miret, S.; Liu, Y.; and Tumer, K. 2019. Collaborative evolu-
tionary reinforcement learning. In International Conference
on Machine Learning, 3341–3350. PMLR.
Li, B., and Hoi, S. C. 2012. On-line portfolio selection
with moving average reversion. Proceedings of the 29th
International Conference on Machine Learning, ICML 2012
1:273–280.
Li, B., and Hoi, S. C. 2014. Online portfolio selection: A
survey. ACM Computing Surveys 46(3).
Li, J., and Yu, T. 2020. Deep Reinforcement Learning based
Multi-Objective Integrated Automatic Generation Control for
Multiple Continuous Power Disturbances. National Natural
Science Foundation of China.
Li, B.; Zhao, P.; Hoi, S. C.; and Gopalkrishnan, V. 2012.
PAMR: Passive aggressive mean reversion strategy for port-
folio selection. Machine Learning 87(2):221–258.
Liang, Z.; Chen, H.; Zhu, J.; Jiang, K.; and Li, Y. 2018.
Adversarial deep reinforcement learning in portfolio manage-
ment. arXiv preprint arXiv:1808.09940.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.;
and Pietikäinen, M. 2020. Deep Learning for Generic Object
Detection: A Survey. International Journal of Computer
Vision 128(2):261–318.
MacHalek, D.; Quah, T.; and Powell, K. M. 2020. Dynamic
Economic Optimization of a Continuously Stirred Tank
Reactor Using Reinforcement Learning. Proceedings of the
American Control Conference 2020-July:2955–2960.
Markowitz, H. 1952. Portfolio Selection. The Journal of
Finance 7(1).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H. G.; and
Ogata, T. 2015. Audio-visual speech recognition using deep
learning. Applied Intelligence 42(4):722–737.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The
complexity of markov decision processes. Mathematics of
operations research 12(3):441–450.
Patel, S. S. 2018. A Deep Reinforcement Learning Approach
to the Portfolio Management Problem [m]. ProQuest Disser-
tations and Theses 141.
Pogue, G. A. 1970. An extension of the markowitz portfolio
selection model to include variable transactions’ costs, short
sales, leverage policies and taxes. The Journal of Finance
25(5):1005–1027.
Polyak, B. T., and Juditsky, A. 1992. Acceleration of
Stochastic Approximation by Averaging. SIAM Journal on
Control and Optimization 30(4):838–855.
Rubinstein, M. 2002. Markowitz’s” portfolio selection”: A
fifty-year retrospective. The Journal of finance 57(3):1041–
1045.
Sharpe, W. F. 1966. Mutual fund performance. The Journal
of business 39(1):119–138.
Sharpe, W. F. 1994. The sharpe ratio. The Journal of Portfolio
Management 21(1):49–58.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; and
Riedmiller, M. 2014. Deterministic policy gradient algo-
rithms. 31st International Conference on Machine Learning,
ICML 2014 1:605–619.
Sortino, F. A., and Price, L. N. 1994. Performance Measure-
ment in a Downside Risk Framework. The Journal of
Investing 3(3):59–64.
Sutton, R. S., and Barto, A. G. 1999. Reinforcement
Learning: An Introduction. Trends in Cognitive Sciences
3(9):360.
Uhlenbeck, G. E., and Ornstein, L. S. 1930. On the theory
of the brownian motion. Physical review 36(5):823.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI-16), 2094–2100.
Van Hasselt, H. 2010. Double Q-learning. Advances in
Neural Information Processing Systems 2613–2621.
Yang, H.; Liu, X.-Y.; Zhong, S.; and Walid, A. 2020. Deep
Reinforcement Learning for Automated Stock Trading: An
Ensemble Strategy. SSRN Electronic Journal.
Zhang, Y.; Zhao, P.; Li, B.; Wu, Q.; Huang, J.; and Tan, M.
2020. Cost-Sensitive Portfolio Selection via Deep Reinforce-
ment Learning. IEEE Transactions on Knowledge and Data
Engineering 4347(c):1–1.
Zhang, S.; Boehmer, W.; and Whiteson, S. 2020. Deep
residual reinforcement learning. In Proceedings of the 19th
International Conference on Autonomous Agents and Multi-
Agent Systems, 1611–1619.
Zhou, X. Y., and Yin, G. 2003. Markowitz’s mean-variance
portfolio selection with regime switching: A continuous-
time model. SIAM Journal on Control and Optimization
42(4):1466–1482.

14

Scenario Planning In The Wild: A Neuro-Symbolic Approach

Michael Katz†, Kavitha Srinivas†, Shirin Sohrabi†,
Mark Feblowitz†, Octavian Udrea ?∗, Oktie Hassanzadeh†

† IBM Research, ? Dataminr
michael.katz1@ibm.com, kavitha.srinivas@ibm.com, ssohrab@us.ibm.com,

mfeb@us.ibm.com, oudrea@dataminr.com, hassanzadeh@us.ibm.com

Abstract
Scenario Planning is a commonly used technique to better
prepare organizations for the future. Its key idea is to generate
a variety of alternative futures to help strategic decision mak-
ers with developing long-term plans. While most prior work
deals with manual scenario creation and exploration, some
suggested modeling scenario planning problem for enterprise
risk management using Mind Maps, allowing automated ex-
ploration of scenarios with AI Planning tools. Mind Map cre-
ation, however, remains a manual process, requiring an exten-
sive effort of multiple experts. In this work, we suggest fur-
ther automating the entire process, eliminating the need for
Mind Map creation, assuming instead, access to a collection
of documents. We employ neural causal extraction techniques
to derive hidden causal relations from these documents. Re-
placing Mind Maps with these causal models allows to revisit
the definition of scenario planning. We suggest an alterna-
tive planning model, to capture the general scenario planning
problem, showing that scenarios can be derived from sets of
plans for the corresponding planning problem. To evaluate
our approach, we apply these neural techniques to existing
collections of documents and produce a planning domain and
problems collection. We then compare existing top-k plan-
ners on this collection, to discover the more suitable tools to
be used for scenario planning in the real world.

1 Introduction
Scenario Planning is a commonly used by many organiza-
tions technique to be better prepared for the future (Schoe-
maker 1995; Oliver and Parrett 2017). Its key idea is to gen-
erate a variety of alternative futures called “scenarios” for
strategic decision makers to help them develop their long-
term plans. Scenario planning can be used in many applica-
tion settings such as oil and gas, military, healthcare, and ed-
ucation (Peterson, Cumming, and Carpenter 2003; Cardoso
and Emes 2014; Edgar, Abouzeedan, and Hedner 2011).
Scenario planning involves uncovering a set of forces and
their influence, trends, and effects amongst them as well
as selecting a small subset of the forces (often two), called
“critical uncertainties”, using their value range as the axes
of the scenario space. Major categories of forces include
social, economics, technology, politics, healthcare, and en-
vironment. Scenarios are results of analyzing the relation-
ship between the forces together with the interaction of the

∗Work done while at IBM Research

selected critical uncertainties (Garvin and Levesque 2006).
Most existing approaches or methodologies are manual, of-
ten carried out in a workshop with group of experts in a po-
tential domain of interest. While scenario planning involves
subjective analysis and creative thinking, given that most ap-
proaches are manual they fail to generate large number of
scenarios, consider large number of selected forces or “criti-
cal uncertainties”, and may include bias. To exemplify, pre-
vious work considers 2 critical uncertainties, which results
in 4 scenarios(Garvin and Levesque 2006).

The closest and, to the best of our knowledge, the only
related work that introduces automation to address the sce-
nario planning problem is by Sohrabi et. al., 2018; 2019,
where AI Planning is used to address the scenario planning
problem for enterprise risk management. While this helps
create many scenarios quickly, it heavily relies on capturing
the domain knowledge through so called Mind Maps. In fact,
Mind Maps are integral to the very definition of the scenario
planning problem tackled by Sohrabi et al. (2018). Thus, the
domain experts still have to go through the manual process
of creating Mind Maps that describe the causal relation be-
tween all the forces. Additionally, information on the impact
or likelihood of the pairs are to be captured manually.

In this paper, we present a general definition of the sce-
nario planning problem. Our definition generalizes the pre-
vious one, eliminating the need for Mind Maps, assuming
instead access to a collection of documents, and thus al-
lowing to further automate scenario planning. Our neuro-
symbolic approach consists of employing neural causal ex-
traction techniques to derive causal relations between the
forces from the input documents and a proposed alternative
symbolic AI Planning model, derived from the causal rela-
tions, to capture the solutions to the general scenario plan-
ning problem. We show that scenarios can be derived from
sets of plans for the corresponding planning problem. To that
end, we employ neural techniques to existing collections of
documents to produce a planning domain and problems col-
lection. We then employ planning techniques that produce
multiple plans of top quality to the planning problem (Katz
et al. 2018; Speck, Geißer, and Mattmüller 2018) and com-
pare the performance of various top-k planners in order to
discover the more suitable among the existing tools to be
used for scenario planning in the real world.

15

2 Background
We present here the necessary background on scenario plan-
ning, classical planning, and planning with soft goals.

2.1 Scenario Planning
As a basis for our work, we consider the Scenario Planning
problem (Sohrabi et al. 2018). In this work, we adapt the
notation and concept names to better fit an existing litera-
ture (Garvin and Levesque 2006). A scenario planning task
SP = 〈MF , IF , OF 〉 is a tuple of Forces ModelMF , Forces
Impact IF , and a set of forces OF called Key Forces or Se-
lected Forces, describing the current situation. The Forces
Model is often implemented as a set of structured Mind
MapsM (Definition 1 in (Sohrabi et al. 2018)), while forces
impact is a mapping from a pair of forces that appear to-
gether in some structured Mind Map M ∈M to a vector of
values that represent the impact and likelihood of the pair.
Further, each Mind Map is associated with a number rep-
resenting its importance. Solutions to scenario planning are
sets of trajectories through the structured Mind Maps. These
sets are partitioned into scenarios (sets of similar trajecto-
ries), often using clustering techniques (Sohrabi et al. 2018).

2.2 Classical Planning
We consider STRIPS planning tasks Π = 〈P,A, I,G, cost〉,
extended with action costs and negative preconditions. P is
a set of Boolean propositions. Each subset s ⊆ P is a state,
and S = 2P is the state space of Π. The state I is the initial
state of Π and the goal G ⊆ P is a set of propositions,
where a state s is a goal state if G ⊆ s. The set A is a finite
set of actions. Each action a ∈ A has an associated set of
preconditions pre(a) ⊆ P ∪ {¬f | f ∈ P}, add effects
add(a) ⊆ P and delete effects del(a) ⊆ P , and cost : A→
R0+ is a non-negative action cost function.

The semantics of STRIPS planning is as follows. An ac-
tion a is applicable in the state s if pre(a) ∩ P ⊆ s and for
all f ∈s, we have ¬f 6∈ pre(a). Applying a in s results in the
state sJaK := (s \ del(a)) ∪ add(a). A sequence of actions
π = 〈a1, . . . , an〉 is applicable in s if there exists a sequence
of states s = s1 . . . sn+1 such that ai is applicable in si and
si+1 = siJaiK. We denote its end state by sJπK. An appli-
cable action sequence is a plan for s if sJπK is a goal state.
Its cost is the cumulative cost of actions in the sequence:
cost(π) =

∑k
i=1 cost(ai). A plan for s with minimal cost is

called optimal. The objective of (optimal) planning is to find
an (optimal) plan for I , and the objective of top-k planning
is to find k plans of top quality (Katz et al. 2018).

2.3 Planning with Soft Goals
We further consider the extension of STRIPS to soft
goals (Keyder and Geffner 2009). The task Πsg =
〈P,A, I,G, cost, u〉 is a STRIPS planning task with soft
goals if Π = 〈P,A, I,G, cost〉 is a STRIPS planning task
and u : P 7→ R0+ is a mapping from propositions P to
non-negative reals, with the propositions that are mapped
to strictly positive values being called soft goals. A se-
quence of actions π is a plan for Πsg if it is a plan for
Π, and the utility of a plan is the difference between the

Economic
downturn

Pandemics
Rapid geographic spread
of an unclassified disease

Uncertainty

Widespread increase in
morbidity and mortality

Negative health and
economic externalities

1

10

1

1
1

100

100

Figure 1: A running example of forces, their causal connec-
tions, costs and penalties.

summed utility of the end state and the cost of the plan:
u(π) =

∑
f∈IJπK u(f)− cost(π).

While dedicated solvers for STRIPS with soft goals exist,
the prevailing method of solving such tasks is by compiling
soft goals away (Keyder and Geffner 2009). The compilation
adds two types of actions, collect and forgo. These actions
are applied after all original actions, and either collect the
achieved soft goals or pay a penalty equivalent to the utility
of the not achieved soft goal.

3 General Scenario Planning
We start by defining the Forces Causal Model, which en-
codes the causal relation between forces.

Definition 1 (Forces Causal Model) A Forces Causal
Model (FCM) is a pair of 〈F, I〉, where F is a set of
possible forces and I : F ×F 7→ (R0+)n is a mapping from
a pair of forces to a vector of values I(a, b) that describe
the properties of a causing b.

Some example properties are likelihood of a causing b, an
impact of a causing b, or a confidence provided by a partic-
ular tool that a is causing b.

Throughout the paper we are referring to a running exam-
ple, extracted from a significantly larger model.1 The exam-
ple is depicted in Figure 1, with the forces being the nodes of
the graph. While we refer to the edges later on, the example
includes 6 forces, referred in text by their first letter:

• Pandemics,

• Widespread increases in morbidity and mortality,

• Economic downturn,

• Uncertainty,

• Rapid geographic spread of an unclassified disease, and

• Negative health and economic externalities.

Note that while the likelihood of R → P (Rapid ge-
ographic spread of an unclassified disease causing Pan-
demics) is somewhat lower than of E → U, the impact of
R→ P is certainly higher than of E→ U.

Given Definition 1, we can now define the General Sce-
nario Planning (GSP) problem.

Definition 2 (General Scenario Planning) A General Sce-
nario Planning (GSP) problem is a tuple G =
〈M,F0, F∗;Fo, Fs〉, where M is a Forces Causal Model,
F0 ⊆ F is a set of Initial Forces, F∗ ⊆ F is a set of Im-
plications, Fo ⊆ F is a set of Selected Forces, and Fs ⊆ F0

is a set of Indicators.

1Model’s semi-automated generation is explained in Section 4.

16

Semantically, F0 are the forces to start an exploration
from, F∗ are the implications, the forces the exploration
leads to. The forces in Fo describe the current situation and
Fs describe the forces of possible initial interest. Looking at
our running example, the node marked with a green back-
ground is an indicator, and the nodes marked with yellow
and blue backgrounds are implications and selected forces,
respectively. Note that given Forces Model and Forces Im-
pact, one can define a corresponding FCM. Therefore, our
definition of General Scenario Planning generalizes the pre-
vious definition of Scenario Planning over structured Mind
Maps (Sohrabi et al. 2018).

We can now define a solution for General Scenario Plan-
ning, similar in spirit to the way it was defined for Sce-
nario Planning by Sohrabi et al. (2018), aiming at automat-
ing the manual process of generating scenarios (Garvin and
Levesque 2006).

Definition 3 A solution Φ to a GSP over forces F is a set of
valid trajectories φ. We call a trajectory valid if it starts in
F0 and ends in F∗. By solution size we refer to the number of
trajectories |Φ|. Each trajectory φ ∈ Φ traverses a (possibly
empty) subset of selected forces, denoted by Fφo , as well as
a (possibly empty) subset of indicators, denoted by Fφs .

The solution is often partitioned into one or more scenar-
ios. One possibility of defining such a partitioning is based
on the traversed indicators (Oliver and Parrett 2017), an-
other possibility is based on the sets of all forces traversed
(Sohrabi et al. 2018). The actual partitioning of the solution
into scenarios is outside of the scope of this work.

We sometimes slightly abuse the notation and refer to φ
as a sequence of pairs of forces. Additionally, we assume
a mapping po : Fo 7→ R+ of penalties for not traversing
a selected force and c0 : F0 7→ R+ of costs of starting a
traversal in a particular initial force, and for a valid trajectory
φ, we denote that cost by c0(φ).

While any such collection of trajectories is a solution, we
are particularly interested in solutions of bounded size that
minimize

∑
o∈Fo\φ(Fo)

po(o) for each trajectory. Addition-
ally, I can be extended from pairs to trajectories (sequences
of pairs) and to sets of trajectories, and GSP can be viewed
as a multi-objective optimization.

In this work, we restrict our attention to finding trajecto-
ries under a single objective function. We assume a map-
ping c : F × F 7→ R0+ ∪ {∞} that represents a cost
of traversing an edge and define the cost of a traversal by
c(φ) =

∑
(a,b)∈φ c(a, b) + c0(φ). We define traversal net-

cost as the sum of (i) the penalty for not traversing selected
forces, and (ii) the cost of a traversal, and aim at minimizing
traversal net-cost.

Looking at our running example, there are 5 pairs of
forces for which the cost of traversing the edge is finite,
depicted with edges in Figure 1. The costs are shown on
these edges. Further, for each selected force (blue), a num-
ber above the corresponding node depicts the penalty for not
traversing it. A valid trajectory corresponds to a path from
the initial force (green) to some implication (yellow). The
cost of starting a traversal in the initial force is 0. The fol-
lowing are example trajectories.

• R→ P→ E→ U with cost 3 and net-cost 3,

• R→ P→W, with cost 2 and net-cost 102, and

• R→ N, with cost 10 and net-cost 210, which includes the
penalty costs of not traversing the forces P,E.

4 Forces Causal Model
As mentioned earlier, most existing approaches to creating
the causal models (mostly modeled as Mind Maps with the
help of visual tools) are manual, and often created by es-
tablishing consensus with a group of experts, which in turn
is quite tedious and expensive. There has been a great deal
of progress made recently in natural language understand-
ing that can be leveraged to largely automate the process of
causal model extraction. Automating the process also allows
to switch from visual oriented Mind Maps to Forces Causal
Models (FCMs).2 Here we outline one mechanism that we
use to derive neural FCMs. There are numerous other nat-
ural language processing techniques that can be applied to
the problem of automating FCM generation, but we focus
on one to demonstrate feasibility of adopting neural meth-
ods to derive FCMs. We mention some of the other methods
in Section 4.2.

4.1 Seeded FCM extraction based on QA
One semi-automated technique to generate FCMs is to ex-
tract causal relations from a user-provided seed set of forces
Fseed ⊂ F , and a domain specific corpus C of a set of docu-
ments D. The rationale behind this approach is the observa-
tion that users can often provide some key factors important
to their domain for scenario planning, and they have access
to the source documents relevant to those factors, specifying
causal risk connectivity in natural language. As an exam-
ple, a user interested in corporate risk may have a starting
set of SEC 10-K filings3 where risks are usually outlined
explicitly, often indicated in bold as subheadings, and a set
of seed forces that they already know will affect their busi-
ness, Fseed ⊂ F , such as Sudden drop in oil prices, or hur-
ricanes. Note that there is no requirement to outline every
single force, only the seed set. Hence, we expect very mini-
mal effort required from humans both in terms of identifying
the initial set of forces, as well as the identification of the
specific corpus (i.e., the set of documents).

FCMs can then be generated by distilling the problem into
causal relation extraction over that corpus C, using the seed
forces Fseed as starting points. We use neural question an-
swering models to extract causal relations by automatically
generating questions of a corpus as follows. First, we parti-
tion the corpus C of D documents into a set of paragraphs
P . For each f ∈ Fseed, we determine the subset of para-
graphs p ⊂ P that contain concepts similar to f . This phase
of paragraph selection is implemented as a semantic search
task, with a set of search results for each Fseed. Text search
is inadequate for this step because it suffers from both poor
recall and poor precision due to the query length of typi-
cal forces. To perform the semantic search, we embed each

2We further discuss the two modeling approaches in Section 7.
3https://en.wikipedia.org/wiki/Form 10-K

17

paragraph p in each document in the corpus using two neu-
ral models for sentence embeddings to improve recall. We
use sentence embeddings from the Google USE (Cer et al.
2018) and the best BERT based model for encoding sentence
similarity (e.g., (Reimers and Gurevych 2019)), which was
BERT trained on the GLUE tasks (Wang et al. 2018) of natu-
ral language inference (NLI) and sentence similarity (STS).
We computed the vector embeddings of all paragraphs p, and
inserted them into the FAISS approximate nearest neighbors
index, which can scale to a billion vectors (Johnson, Douze,
and Jégou 2017). Each force f was used as a query against
the index, and we took the top k paragraphs (where k was
set to 3 in our experiments) for each model as the relevant
set. The final relevant set of paragraphs was the union of the
results from BERT and USE.

For each force f ∈ Fseed, we processed the following two
questions over relevant paragraphs in the corpus, using a
neural model:
• what does each force f ∈ Fseed cause?
• what causes each force f ∈ Fseed?
We used ALBERT-xlarge trained on SQUAD 2.0 as our
model because it achieves state of the art performance in
question answering over the SQUAD 2.0 benchmark (Lan
et al. 2019).

Processing of these two questions for each force f ∈ Fseed

against each paragraph P results in a (possibly empty) set
of answers Fa(f). The subset of forces f ∈ Fseed for which
Fa(f) = ∅ is referred to as Fu. Because this approach asks
open-ended questions, it provides the benefit of discovering
new forces Fnew =

⋃
f∈Fseed

Fa(f) \ Fseed, that can be incor-
porated into the seed set for the next iteration. The final set
Ffinal of an iteration is (Fseed \ Fu) ∪ Fnew. Ffinal is in turn pro-
vided as the seed set for the next iteration, until a fixed point
is reached. This iterative approach helps us find many new
forces, as well as causal chains of length greater than 1. Note
that, the generated FCM can contain loops as there is noth-
ing to prevent a bi-directional cause-effect relation.

As an example of the types of causal pairs that can be
extracted, the relation depicted in Figure 1 between “Eco-
nomic downturn” and “Pandemics” is automatically deter-
mined by our model with a confidence score of 84%, based
on the following context: “Economists estimate that, in the
coming decades, pandemics will cause average annual eco-
nomic losses of 0.7% of global GDP...”. “Economic down-
turn” was provided as a seed force but “Pandemics” is a new
force identified by this approach. Also note that “economic
losses” in the paragraph are a semantic match to “Eco-
nomic downturn”, the designated force. We show how one
might use the approach outlined here to provide two auto-
generated FCMs for two domains in Section 8.

4.2 Issues with auto-generation of FCMs
There are two primary issues related to the auto-generation
of FCMs. Auto-generation of forces means that there must
be a step to perhaps curate the FCM that has been gener-
ated. We do rely on high quality neural models for question
answering; the performance of neural models built on AL-
BERT have reached accuracies of 92.77% (Lan et al. 2019)

for question answering benchmarks. However, there is no
guarantee that the technique works well in all cases (e.g.,
across new domains), so human curation of the generated
FCM is still an important optional step. Often this is best ac-
complished after scenario generation when a domain expert
can look at a scenario that has been generated and poten-
tially alter causal relations in the FCM4. Alternatively, other
causal extraction techniques such as using neural models for
relation extraction (Lin et al. 2016; dos Santos, Xiang, and
Zhou 2015; Zeng et al. 2014; Dunietz, Carbonell, and Levin
2018; Li and Mao 2019) or pattern based causal extraction
(Li et al. 2020; Hassanzadeh et al. 2020, 2019; Bhandari
et al. 2021) can also be applied to vet the extracted causal re-
lations. We leave this line of research of vetting causal rela-
tions using multiple natural language processing techniques
for future work.

Candidates for inclusion in Fnew might be semantically
equivalent to some force in Fseed. We automatically apply se-
mantic equivalence matching between Fnew and Fseed using
neural embeddings at the phrase or sentence level. Specif-
ically, if two forces f1 and f2 have an embedding distance
that is above some high threshold in terms of vector distance,
we could assume/recommend equivalence, and regenerate
the FCM. In the current experiments, we used neural sen-
tence models from BERT (Reimers and Gurevych 2019) to
determine force equivalence5. These equivalent forces can
be merged automatically or optionally vetted for merging by
domain experts.

5 From Forces Causal Model to General
Scenario Planning

Once an FCM M = 〈F, I〉 is obtained, we need to specify
the following sets and functions to construct a GSP.

Initial forces and implications. The set of Initial Forces
F0 and the set of Implications F∗ are the forces that start
and end valid trajectories. In most practical situations we
only need user input in specifying one of these sets and auto-
matically compute the other. For example, in most scenario
planning applications, the implications F∗ are forces of spe-
cial relevance to the end users, and as such should be spec-
ified by them to the extent possible. However, if end users
do not select enough forces out of F , this may leave forces
that cannot belong to any valid trajectory. In such cases, we
can either: (i) warn that such nodes exist or (ii) suggest ad-
ditional nodes to add to F∗ such that every force can belong
to at least one valid trajectory. Note that the latter option, at
its extreme, can compute and suggest the entire set F∗.

The Initial Forces F0 are useful in diagnosis oriented ap-
plications, when the trajectories leading to the set of selected
forces Fo is of more interest than anticipating what may hap-
pen after the forces in Fo. In such cases, they can be spec-
ified at least partially by a user. However, in scenario plan-
ning applications, F0 can be automatically computed as a

4Alternatively, domain experts can directly curate the FCM it-
self. However, it is much more tedious for a human to do, since that
tends to be a large model, but this curation can be crowd-sourced.

5Additionally, the Google universal sentence encoder (Cer et al.
2018) can augment equivalence detection.

18

set of forces such that every force in F is reachable from
at least one force in F0. If minimality of F0 is not desired,
such a set can be computed by a greedy algorithm where
we sort forces by their outdegree in descending order, iter-
atively add them to F0, eliminating from consideration all
forces reachable from the current partial set. We can further
prioritize forces in F0 by assigning smaller penalties via c0
for preferred Initial Forces.

Selected forces and indicators. The Indicators Fs are
a way of giving priority to trajectories, and therefore sce-
narios containing forces the user wants to emphasize. We
can also safely leave Fs = ∅. The Selected Forces Fo typi-
cally indicate a current situation of interest to the user, and
therefore should be specified by them either directly, or after
being suggested by analysis of news or social media. Such
an awareness piece can be built using state of the art tex-
tual search methods combined with neural search techniques
such as Mitra and Craswell (2017) to find the forces in Fo.
Additionally, the function po can assign penalties for tra-
jectories that do not include a particular force, with higher
penalties for preferred forces in Fo. In most cases, each ob-
servation can have an equal penalty, its magnitude dependant
on which trajectories we would like to prioritize. For exam-
ple, if we would always like to see trajectories that contain
as many forces in Fo as possible before any trajectory that
skips a force from Fo, we would set po to be greater than
maxφ(c(φ)). If instead we would like to see shorter trajec-
tories first, prioritizing those that contain more forces from
Fo, we would set po to a multiple of maxx,y∈F (c(x, y)).

Cost function. Generation of the cost function c can be
problematic for large FCMs. One way to create it is to sim-
ply crowdsource filling its values among users, with a de-
fault value for those x, y ∈ F that cannot be specified. A
better approach is to base the c function values in this pro-
cess on something the users can select from a discrete scale,
such as the likelihood or impact of x causing y. The func-
tion c : F ×F can also be automatically generated for auto-
generated FCMs, based on the number of support statements
that were used to derive the specific edge. We observe that
support distributions tend to be highly skewed, with a pre-
dominance of small numbers of supporting statements for a
given causal assertion. Our proposal is to use a function such
as sigmoid (possibly with rounding) to map the frequency
distribution into c.

6 Planning Model
Previous work has shown the NP-hardness of the Scenario
Planning problem and suggested a planning-based approach
to solving Scenario Planning (Sohrabi et al. 2018). The idea
was to treat the problem of generating multiple trajecto-
ries as plan recognition, treating Mind Maps traversal as
the planning problem and selected forces traversed as possi-
ble goals. The plan recognition problem was then compiled
into a planning problem, and a top-k planner was applied to
the compiled problem (Sohrabi, Riabov, and Udrea 2016).
Here, the hardness result still stands. To solve General Sce-
nario Planning, we follow a similar approach, adapting the
planning model to traverse graphs that are defined by forces

causal models instead of Mind Maps. As a result, the plan-
ning model becomes significantly simpler6 and can be also
viewed as a variant of the soft goals compilation (Keyder
and Geffner 2009). In what follows, we present the revised
planning model and show that it can be used to solve the
general scenario planning problem.

Definition 4 Given a General Scenario Planning problem
G = 〈M,F0, F∗;Fo, Fs〉, the corresponding planning task
ΠG = 〈P,A, I,G, cost〉 is defined as follows:

• the set of fluents P = {(not-started), (goalachieved)} ∪
{(at x), (considered y) | x ∈ F, y ∈ Fo},

• A is the set of actions, union of the following sets:
– {(enter x) |x∈F0} with precondition {(not-started)},

delete effect {(not-started)}, add effect {(at x)}, and
cost c0(x),

– {(traverse x y) |x, y∈F, c(x, y) <∞} with precondi-
tion {(at x)}, delete effect {(at x)}, add effect {(at y)},
and cost c(x, y),

– {(achievegoal x) | x∈F∗} with precondition {(at x)},
delete effect {(at x)}, add effect {(goalachieved)}, and
cost 0,

– {(explain x) | x ∈ Fo} with precondition
{¬(considered x), (at x)}, add effect
{(considered x)}, and cost 1, and

– {(discard x) | x ∈ Fo} with precondition
{¬(considered x), (goalachieved)}, add effect
{(considered x)}, and cost po(x).

• I is the initial state, consisting only of (not-started), and

• the goalG={(goalachieved)}∪{(considered x) |x∈Fo}.
Note that while explain actions are applied during traver-

sal, discard actions are applied only after achievegoal. These
discard actions can be applied in any order. It is possible
therefore to perform a simple modification of the planning
task to impose one chosen order. For simplicity of presenta-
tion, we do not show the modification here but we assume
that the discard actions can be applied only in a particular or-
der. While our definition describes a STRIPS task with neg-
ative preconditions, we have created a corresponding lifted
PDDL model, exemplified in Figure 2.

Also note that the indicators Fs ⊆ F0 are not directly re-
flected in the planning model, except for being part of initial
forces F0, and are sometimes used for partitioning of the
solution to GSP into scenarios, as mentioned in Section 3.

We now show the correspondence between solutions for
Π and solutions for the General Scenario Planning.

Theorem 1 Given a General Scenario Planning problem
G = 〈M,F0, F∗;Fo, Fs〉 and its corresponding planning
problem ΠG , for each valid trajectory φ of G with net-cost
c, there exists a plan of ΠG that traverses that trajectory,
with the cost c. Further, each plan π of ΠG induces a valid
trajectory in G.

6We discuss the differences between the previous and the new
planning model in Section 7.

19

(:action enter
:parameters (?x)
:precondition (and (source ?x) (not (started)))
:effect (and (started) (at ?x)
(increase (total-cost) (starting-cost ?x))))

(:action traverse
:parameters (?f ?t)
:precondition (and (connected ?f ?t) (at ?f))
:effect (and (at ?t) (not (at ?f))
(increase (total-cost) (connect-cost ?f ?t))))

(:action explain
:parameters (?x)
:precondition (and (selected-force ?x)
(at ?x) (not (considered ?x)))

:effect (and (considered ?x)
(increase (total-cost) 1)))

Figure 2: Partial corresponding lifted PDDL domain.

Proof: Let φ = s0, s1, . . . , sn be a valid trajectory of net-
cost c. Then, we have s0 ∈ F0 and sn ∈ F∗. Further,
we have c =

∑n
i=1 cost(si−1, si) +

∑
o∈Fo\φ(Fo)

po(o) +

c0(s0). Let π be a sequence of actions that traverses that
trajectory, as follows. (enter s0) is the first action, then
the sequence (traverse s0 s1), . . . , (traverse sn−1 sn) is in-
terchanged with actions (explain si) for si ∈ o. Next, there
is an (achievegoal sn) action, followed by (discard si) ac-
tions for si ∈ Fo \ φ(Fo). Note that π is applicable in I and
IJπK includes (goalachieved), as well as (considered o) for
all o ∈ φ(Fo), and therefore is a plan. Note also that the cost
of the plan is exactly c.

Let π be a plan for ΠG . Let s0, s1, . . . , sn be the sequence
of forces for which (at si) appear in the add effects of the
actions of π, in the order of appearance of these actions in
the plan π. Since π is a plan, it must hold that:

• π has to have (enter s0) as a first action, and therefore we
have s0 ∈ F0, and

• π must include (achievegoal s) for some s ∈ F∗ and can
only have discard after it. Thus, we must have s=sn.

Since s0 ∈ F0 and sn ∈ F∗, we have s0, s1, . . . , sn being a
valid trajectory in G. �

Note that each plan π for ΠG must include exactly one of
(explain o) and (discard o) actions for each o ∈ Fo. When
costs are not taken into account, nothing prevents (discard o)
to be used for achieving the goal fact (considered o), even
when (explain o) could be used for that, that is, when the
plan traverses the force o. However, the cheapest among
the plans that traverse a particular trajectory will have
(discard o) actions only for o ∈ Fo that are not traversed
by the plan. Therefore, when using planning tools for valid
trajectory generation, plan cost must be taken into account.

7 Comparison to Prior Work
As mentioned earlier, the closest and, to the best of our
knowledge, the only related work that introduces automa-
tion to address the scenario planning problem is by Sohrabi

et al. (2018) and Sohrabi et al. (2019). It is worth noting that
their approach relies heavily on the use of Mind Maps. These
Mind Maps are created by human experts and require a sig-
nificant manual effort. Each such Mind Map often captures a
single force and its related ones, with each Mind Map being
small enough to allow human experts to handle. Together,
a collection of many Mind Maps capture the expert belief
about causal connections between various forces.

If instead the causal relations are captured by an algo-
rithm, there is no need for Mind Maps. While in principle
it is possible to automatically translate an FCM to a collec-
tion of Mind Maps, such a translation has limited practical
value – existing editing visual tools can focus on particular
regions of a large FCM (Feblowitz et al. 2021). Note also
that there are many ways to automatically build Mind Maps
from an FCM. One approach is to create a Mind Map per
force, capturing incoming and outgoing causal connections.
Such Mind Maps are known as bow ties. Another approach
is to think of Mind Maps as a spanning forest over the FCM
structure. In all those cases, most causal pairs will be cap-
tured multiple times across various Mind Maps.

Comparing now the planning model based on Mind Maps
that was suggested in the previous work (Sohrabi et al. 2018)
to ours, there are several differences. First, the new model is
fully lifted, while the previous one was partially grounded.
Second, the actions that start the traversal in the previous
model were dependent on the Mind Map, and therefore the
number of (ground) instances of such actions is now sig-
nificantly smaller. Third, the previous model separated the
plan recognition part, while the new model has integrated
the discard/explain actions. That integration allows us to sig-
nificantly reduce the number of discard actions, restricting
applicability to trajectory ends. We note that it is possible to
perform a similar integration on the previous model as well.

8 Experiments
To evaluate the feasibility of our approach, we conducted an
empirical evaluation in two steps. As a first step, we explore
neural techniques to derive FCMs. Then, we create multi-
ple GSPs from each FCM and the corresponding planning
tasks, according to Definition 4. As a second step, we com-
pare existing top-k planners on the derived planning tasks,
to investigate which of them performs better on these tasks.

8.1 FCM generation
Here we report experiments on the use of seeded FCM ex-
traction based on question answering to demonstrate the fea-
sibility of the approach for semi-automated FCM genera-
tion. Table 1 shows the results of our experiments. We built
models for the COVID and energy (power and utilities) do-
mains, each with a corpus of authoritative documents D and
seed forces Fseed, derived from experts7. Column |Fseed| rep-
resents the size of the seed set for each iteration, starting
with 279 forces for covid-large and producing an FCM with
916 forces and 1936 edges in 4.55 hours. A seed set for
the next iteration is constructed from the union of the seed

7Fseed are often accumulated over time by risk practitioners.

20

I |D| |Fseed| |F | |E| Time |Fseed∪F | Inc
co

vi
d-

sm
al

l

0 2825 33 60 49 0.30 93 182%
1 2825 93 144 246 0.47 177 90%
2 2825 177 243 558 0.68 276 56%
3 2825 276 309 857 0.93 342 24%
4 2825 342 360 1107 1.08 393 15%
5 2825 393 399 1238 1.22 432 10%
6 2825 432 412 1312 1.33 445 3%
7 2825 445 419 1339 1.35 452 2%

co
vi

d-
la

rg
e 0 12618 279 916 1936 4.55 964 246%

1 12618 964 1714 7566 13.22 1762 83%
2 12618 1762 2192 12661 23.32 2240 27%
3 12618 2240 2434 15422 29.38 2482 11%
4 12618 2482 2552 16819 32.38 2600 5%

en
er

gy
-s

m
al

l 0 364 168 167 221 0.52 276 64%
1 364 276 261 739 0.75 370 34%
2 364 370 293 1188 0.95 402 9%
3 364 402 301 1283 1.00 410 2%

en
er

gy
-l

ar
ge

0 5087 488 1145 2560 2.85 1633 235%
1 5087 1633 1837 9843 7.82 2325 42%
2 5087 2325 2207 15164 11.33 2695 16%
3 5087 2695 2324 17574 13.20 2812 4%
4 5087 2812 2362 18493 13.78 2850 1%

Table 1: Seeded FCM extraction across iterations (I) with
number of paragraphs in the documents |D|, seed forces
Fseed, new extracted forces F and edges E, time per itera-
tion (in hours), the seed set for the next iteration Fseed ∪F
and its size increase.

set and the produced forces and includes 964 forces, an in-
crease of 246%. We iterate until convergence, that is until
the increase in seed set size is smaller than 2%. For prag-
matic purposes, we put an additional time constraint of 2
days, some datasets (covid-large 5) went above that. Both
the seed forces and the corpus documents were provided by
authoritative sources knowledgeable in the domain. The ta-
ble depicts small and large datasets, where the large datasets
depict realistically sized Fseed and sets of corpus documents,
and the small datasets are constructed by arbitrarily choos-
ing a subset of documents and seed forces. We provide statis-
tics in the table reflecting the number of initial seed forces,
and the size of the FCMs. Because both forces and edges
are automatically derived, the quality of the causal pair in-
ference can vary, with NLP models providing a score on how
well the text matches the question at hand. We used a thresh-
old of 0.55 as a minimal score to cut off causal pairs be-
low that threshold.8 We then used sentence embedding based
similarity to de-duplicate forces using neural sentence mod-
els from Reimers and Gurevych (2019) and Cer et al. (2018).
This filtering step on edges eliminates forces when the force
is not part of any causal pair, as well as duplicate edges.
As shown in the table, the approach does derive fairly large
models, even after aggressive filtering.

8The threshold was determined from past experience and was
applied across domains without change.

8.2 Planning for GSP
In order to investigate how well the existing tools for de-
riving multiple quality-aware solutions to classical planning
tasks handle real world size scenario planning problems, we
have created 16 collections of planning tasks, corresponding
to the last four iterations for each of the models described
in Section 8.1 and presented in Table 1. Each of the col-
lections consists of 100 tasks of varying number of indica-
tors and selected forces. The indicators are selected based
on force in-degree in the model, using the edges determined
for that model (see Section 8.1). Then, 2, 3, 5, or 10 indica-
tors are chosen uniformly, giving preference to forces with
0 in-degree. The selected forces are randomly chosen out
of the set of all forces, choosing 3, 5, 10, 25, or 50 forces
uniformly out of all forces. The process is repeated 5 times
for each combination of number of indicators and number of
selected forces, which results in 100 instances generated for
each of the 16 models. The resulting 16 PDDL domains with
100 tasks each will be available upon acceptance. We test the
performance of three existing top-k planners on the bench-
mark set, ForbidIterative (FI) and K∗ (Katz et al. 2018),
as well as SYMK (Speck, Mattmüller, and Nebel 2020).
We choose top-k planners over top-quality planners (Katz,
Sohrabi, and Udrea 2020) for two reasons. The first one is
historical, since previous work focused on solutions of cer-
tain size (Sohrabi et al. 2018). The second one is pragmatic,
as our domain was carefully crafted to remove ambiguity in
unimportant ordering between actions, the only difference
between unordered top-quality planning and top-k planning
comes down to a stopping criteria: whether the predefined
number of plans was found or a plan with the cost higher
that the quality bound was generated. The experiments were
performed on Intel(R) Xeon(R) Intel(R) Xeon(R) Platinum
8260 CPU @ 2.40GHz machines, with the time and memory
limit of 30min and 2GB, respectively.

Figure 3 (a) plots the number of tasks solved by each of
the approaches for each value of k ∈ [1, 1000], under the
entire time bound of 30 minutes. While FI has a small ad-
vantage over K∗ for small values of k, it quickly disappears,
and for k ≥ 4, K∗ is the dominating approach. For k ≥ 6,
SYMK takes the second place, with the difference in cover-
age between K∗ and SYMK growing from 51 task for k = 6
to 382 tasks for k = 1000.

When solving scenario planning tasks in an interactive
users mode, 30 minutes can be an infeasible time bound.
Therefore, we compare the approaches in terms of the over-
all time until a top-k solution for k = 1000 was obtained.
Figure 3 (b) shows an anytime performance of the three
approaches. It shows the number of tasks solved (1000 or
all existing plans found) by a given time bound, for each
value t ∈ [1, 1800]. Clearly, K∗ performs best among the
three approaches. For 752 out of the 1600 tasks, it was able
to produce a solution in under 2 seconds. Further, 1158 of
the tasks are solved in under 60 seconds, and it reaches its
maximal obtained coverage of 1195 in 257 seconds. Other
approaches perform significantly worse under small time
bounds. For FI, it is understandable, as each iteration re-
quires some startup time, and therefore the approach is not
well suited for small time bounds. For SYMK, to the best of

21

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000

n
u
m

b
e
r

o
f
ta

s
k
s

number of plans

K*
SymK

FI
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000

n
u
m

b
e
r

o
f
ta

s
k
s

time

K*
SymK

FI

co
vi

d-
l1

co
vi

d-
l2

co
vi

d-
l3

co
vi

d-
l4

co
vi

d-
s4

co
vi

d-
s5

co
vi

d-
s6

co
vi

d-
s7

en
er

gy
-l1

en
er

gy
-l2

en
er

gy
-l3

en
er

gy
-l4

en
er

gy
-s

0

en
er

gy
-s

1

en
er

gy
-s

2

en
er

gy
-s

3

0

50

100

150

200

(a) (b) (c)

Figure 3: (a) Any-k and (b) any-time plots of the number of tasks solved; (c) traversal length data per domain for K∗.

our knowledge, its default parameters are tuned for the 30
minutes time bound, and there might be a way to improve
its performance for shorter time bounds. This, however, is
not the focus of current work.

Finally, in cases when solution quality can be somewhat
sacrificed for the sake of speed, diverse planners might be
used to derive a set of plans even faster. Unfortunately,
for problems with the soft-goals compilation like structure,
where there exist actions that can easily achieve sub-goals
with paying a penalty, diverse planners tend to prefer such
plans. It is an open problem how to obtain a diverse set of
plan in such a setting.

8.3 Causal Chains in FCMs
In order to evaluate the richness of the causal relations ob-
tained by the causal extraction part, for each plan produced
by a planner, we measure the traversal length, the number
of forces traversed by the plan. In addition, we compute the
number of unique forces traversed by a plan. Figure 3 (c)
shows the traversal lengths for the plans found by K∗. The
data is aggregated per domain, and the figure shows mean
(green triangle), median (red line), the range from the lower
quartile to the upper quartile (the box), as well as the vari-
ability in the points that lie outside the upper and lower quar-
tiles (the whiskers). As shown in the figure, the mean traver-
sal length across multiple domains is quite high (e.g., 14.6
for covid-small-7, 26.2 for covid-large-4, 34.1 for energy-
small-3, and 27.1 for energy-large-4). Note that these traver-
sals are not necessarily simple and may traverse the same
force multiple times. Looking at the number of unique forces
traversed by each plan (e.g., 10.4 for covid-small-7, 24.4 for
covid-large-4, 17.2 for energy-small-3, and 24.6 for energy-
large-4) we see, however, that this is mostly not the case,
giving some evidence for the richness of the created models.

9 User Feedback
Previous work has demonstrated a working system, built
based on the theory presented in this work. Feblowitz et al.
(2021) outlines the tool (UI, etc), as well as additional de-
tails of the actual deployment of the system by an organi-
zation with large risk practice. This organization has inde-
pendently verified the significant reduction in both time and

money by using the system, validating the practical useful-
ness of our proposed approach. Below we outline their key
findings. Users have reported that the generated scenarios
are of comparable quality to those created by human experts.
In particular, a large percentage (90%) of generated informa-
tion was considered acceptable or correct by a practitioner,
giving a practical evidence for the quality of our generated
FCM. Further, the users have reported that the system is “30x
faster in time to generate a dynamic risk model and the first
scenario” and is “3,000x faster in time to generate the sec-
ond scenario and each subsequent scenario” compared to
human experts. Note that the key advantage of our approach
is the ability to generate and explore orders of magnitude
more scenarios than is humanly possible without it.

10 Discussion and Future Work

We formalize the general scenario planning problem and de-
scribe a novel combination of neural techniques for gener-
ating forces causal models, and symbolic techniques that
can solve the derived general scenario planning problems
in practice. We propose multiple ways for semi-automated
derivation of general scenario planning problems and auto-
mated exploration of the solution space of these problems
with symbolic planning techniques. Further, we generate
real-world sized general scenario planning instances, as well
as the corresponding PDDL tasks and empirically compare
the existing tools for top-k planning to identify the best tool
for this planning domain. Our work constitutes an important
step towards fully automating Scenario Planning.

Automating derivation of forces seed sets as well as au-
tomation of choice of indicators and implications is the fo-
cus of our future work. In particular, we have hinted at an
automated awareness component that could be used to con-
tinuously monitor news and other document sources to ex-
tract the initial forces. We have already started experiment-
ing with such a component based on the BERT fine-tuned
with STSB to find public news articles relevant to the ex-
isting forces in a forces causal model. We envision multiple
ways in which it can be used to drive further automation for
the general scenario planning problem.

22

References
Bhandari, M.; Feblowitz, M.; Hassanzadeh, O.; Srinivas, K.; and
Sohrabi, S. 2021. Unsupervised Causal Knowledge Extraction
from Text using Natural Language Inference (Student Abstract).
In Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2021), 15759–15760. AAAI Press.

Cardoso, J. F.; and Emes, M. R. 2014. The Use and Value of Sce-
nario Planning. Modern Management Science and Engineering
2(1).

Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; St. John, R.;
Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; Strope, B.;
and Kurzweil, R. 2018. Universal Sentence Encoder for English.
In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, 169–174.

dos Santos, C. N.; Xiang, B.; and Zhou, B. 2015. Classifying Re-
lations by Ranking with Convolutional Neural Networks. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on
Natural Language Processing of the Asian Federation of Natural
Language Processing, ACL 2015, 626–634.

Dunietz, J.; Carbonell, J.; and Levin, L. 2018. DeepCx: A
transition-based approach for shallow semantic parsing with com-
plex constructional triggers. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing,
1691–1701. Association for Computational Linguistics.

Edgar, B.; Abouzeedan, A.; and Hedner, T. 2011. Scenario Plan-
ning as a Tool to Promote Innovation in Regional Development
Context. Technical report, European Regional Science Associa-
tion.

Feblowitz, M.; Hassanzadeh, O.; Katz, M.; Sohrabi, S.; Srinivas,
K.; and Udrea, O. 2021. IBM Scenario Planning Advisor: A Neuro-
Symbolic ERM Solution. In Proceedings of the Demonstration
Track at the 35th Conference on Artificial Intelligence (AAAI-21).

Garvin, D. A.; and Levesque, L. C. 2006. A Note on Scenario
Planning. Harvard Business School Background Note 306–003.

Hassanzadeh, O.; Bhattacharjya, D.; Feblowitz, M.; Srinivas, K.;
Perrone, M.; Sohrabi, S.; and Katz, M. 2019. Answering Binary
Causal Questions Through Large-Scale Text Mining: An Evalua-
tion Using Cause-Effect Pairs from Human Experts. In Kraus, S.,
ed., Proceedings of the 28th International Joint Conference on Ar-
tificial Intelligence (IJCAI 2019), 5003–5009. IJCAI.

Hassanzadeh, O.; Bhattacharjya, D.; Feblowitz, M.; Srinivas, K.;
Perrone, M.; Sohrabi, S.; and Katz, M. 2020. Causal Knowledge
Extraction through Large-Scale Text Mining. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI
2020), 13610–13611. AAAI Press.

Johnson, J.; Douze, M.; and Jégou, H. 2017. Billion-scale similar-
ity search with GPUs. arXiv preprint arXiv:1702.08734 .

Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality Planning:
Finding Practically Useful Sets of Best Plans. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI
2020). AAAI Press.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
Novel Iterative Approach to Top-k Planning. In Proceedings of
the Twenty-Eighth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2018). AAAI Press.

Keyder, E.; and Geffner, H. 2009. Soft Goals Can Be Compiled
Away. Journal of Artificial Intelligence Research 36: 547–556.

Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; and Sori-
cut, R. 2019. ALBERT: A Lite BERT for Self-supervised Learning
of Language Representations.
Li, P.; and Mao, K. 2019. Knowledge-oriented convolutional neural
network for causal relation extraction from natural language texts.
Expert Systems with Applications 115: 512 – 523. ISSN 0957-
4174.
Li, Z.; Ding, X.; Liu, T.; Hu, J. E.; and Durme, B. V. 2020. Guided
Generation of Cause and Effect. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2020),
3629–3636. IJCAI.
Lin, Y.; Shen, S.; Liu, Z.; Luan, H.; and Sun, M. 2016. Neural Re-
lation Extraction with Selective Attention over Instances. In Pro-
ceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics, ACL.
Mitra, B.; and Craswell, N. 2017. Neural Text Embeddings for
Information Retrieval. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining, WSDM
’17, 813–814. Association for Computing Machinery. ISBN
9781450346757.
Oliver, J.; and Parrett, E. 2017. Managing future uncertainty: Re-
evaluating the role of scenario planning. Business Horizons 61:
339–352. doi:10.1016/j.bushor.2017.11.013.
Peterson, G. D.; Cumming, G. S.; and Carpenter, S. R. 2003. Sce-
nario planning: a tool for conservation in an uncertain world. Con-
servation biology 17(2): 358–366.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.
Schoemaker, P. J. 1995. Scenario planning: a tool for strategic
thinking. Sloan management review 36(2): 25.
Sohrabi, S.; Katz, M.; Hassanzadeh, O.; Udrea, O.; Feblowitz,
M. D.; and Riabov, A. 2019. IBM Scenario Planning Advisor: Plan
recognition as AI planning in practice. AI Communications 32(1):
1–13.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018. An AI
Planning Solution to Scenario Generation for Enterprise Risk Man-
agement. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI 2018), 160–167. AAAI Press.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recognition
as Planning Revisited. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016), 3258–
3264. AAAI Press.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. Symbolic Planning
with Edge-Valued Multi-Valued Decision Diagrams. In Proceed-
ings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), 250–258. AAAI Press.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic Top-k
Planning. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI 2020). AAAI Press.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and Bowman,
S. R. 2018. GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. CoRR abs/1804.07461.
URL http://arxiv.org/abs/1804.07461.
Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; and Zhao, J. 2014. Rela-
tion Classification via Convolutional Deep Neural Network. In
Hajic, J.; and Tsujii, J., eds., COLING 2014, 25th International
Conference on Computational Linguistics, Proceedings of the Con-
ference: Technical Papers, 2335–2344. ACL.

23

GPT3-to-plan: Extracting plans from text using GPT-3

Alberto Olmo, Sarath Sreedharan, Subbarao Kambhampati
Arizona State University

{aolmoher, ssreedh3, rao}@asu.edu

Abstract

Operations in many essential industries including finance and
banking are often characterized by the need to perform repet-
itive sequential tasks. Despite their criticality to the business,
workflows are rarely fully automated or even formally spec-
ified, though there may exist a number of natural language
documents describing these procedures for the employees of
the company. Plan extraction methods provide us with the
possibility of extracting structure plans from such natural lan-
guage descriptions of the plans/workflows, which could then
be leveraged by an automated system. In this paper, we in-
vestigate the utility of generalized language models in per-
forming such extractions directly from such texts. Such mod-
els have already been shown to be quite effective in multiple
translation tasks, and our initial results seem to point to their
effectiveness also in the context of plan extractions. Particu-
larly, we show that GPT-3 is able to generate plan extraction
results that are comparable to many of the current state of the
art plan extraction methods.

Introduction
Following sequential procedures and plans undergird many
aspects of our everyday lives. As we look at many vital and
consequential industries, including finance and banking, the
ability to identify the correct procedures and adhere to them
perfectly, becomes essential. So it is of no surprise that many
enterprises invest heavily in accurately documenting these
workflows in forms that are easy for their employees to fol-
low. As we start automating many of these day-to-day activ-
ities, it becomes important that our automated systems are
also able to pick up and execute them. Unfortunately, hav-
ing these procedures documented is not the same as them
being easy and readily available for an AI system to use.
Additionally, in many of these high-risk domains, the agent
cannot just try to figure out these procedures on their own
through trial and error. Instead, we would want to develop
ways wherein we can convert these procedures designed for
human consumption to easier forms for agents to use. Within
the planning community, there has been a lot of recent in-
terest in developing plan extraction methods that are able
to take natural language text describing a sequential plan.

Copyright © 2021, International Conference on Automated Plan-
ning and Scheduling — Workshop on Planning for Financial Ser-
vices

Some of the more recent works in this direction include,
works like Feng, Zhuo, and Kambhampati (2018); Daniele,
Bansal, and Walter (2017), which have proposed specialized
frameworks for performing sequence-to-sequence transla-
tion that maps natural language sentences into structured
plans.

On the other hand, the mainstream Natural Language
Processing (NLP) has started shifting its focus from more
specialized translation methodologies to developing general
purpose models such as transformer networks (Radford et al.
2019; Brown, Mann, and et al. 2020). These networks have
already shown very encouraging results in many tasks and
proven their ability to generalize to unseen ones. These are
task-agnostic language models trained on large general web
corpora and have shown to be comparable (and in some
cases better than) their state-of-art task-specific counter-
parts. Examples of some tasks these models have been tested
on includes, question-answering, translation, on-the-fly rea-
soning and even generation of news articles that are arguably
indistinguishable from human-written ones. In light of these
advancements, we try to answer the following question: to
what extent can the current state-of-art in general natu-
ral language models compete against task-specific action
sequences extractors? These papers have generally looked
at employing learning based methods that expect access to
large amounts of pre-processed/task-specific data, including
annotations that allow mapping of text to the required struc-
tured output. These characteristics make the methods fragile
to changes in input and output format. Combining this with
the need for extensive training data, we expect these systems
to require heavy time and resource investment and expert
oversight to set up.

In this paper, we want to investigate how GPT-3 (Brown,
Mann, and et al. 2020), one of the most recent transformer-
based language models, can be used to extract structured ac-
tions from natural language texts. We find that these models
achieve comparable, and in some cases better scores than
previous state-of-the-art task specific methods. We make use
of natural language text from three domains and measure the
performance of the model in terms of its F1 score, a com-
monly used quantitative measure for the task. We then com-
pare it to previously published results for task-specific ac-
tion extractors which use a varied range of solutions, includ-
ing, reinforcement learning, (Feng, Zhuo, and Kambhampati

24

2018), sequence-to-sequence models (Daniele, Bansal, and
Walter 2017), Bi-directional LSTMs (Ma and Hovy 2016)
or clustering of action templates (Lindsay et al. 2017).

The proliferation and effectiveness of such general lan-
guage models even in specific tasks, open up new opportuni-
ties for planning researchers and practitioners. In particular,
it empowers us to deploy planning techniques in real-world
applications without worrying about the natural-language
interaction aspects of the problem. Also, note that all re-
sults reported here are directly calculated from the best GPT-
3 raw predictions, with no additional filtering or reasoning
employed atop of it. We expect most of the results reported
here to improve should we additionally exploit domain-level
or task-level insights to filter the results from these models.

Background and Related Works
The Generative Pre-trained Transformer 3 (GPT-3) (Brown,
Mann, and et al. 2020) is the latest version of the GPT
models developed by OpenAI1. A 175 billion parameter
autoregressive language model with 96 layers trained on
a 560GB+ web corpora (Common Crawl2 and WebText2
(Gokaslan and Cohen 2019)), internet-based book corpora
and Wikipedia datasets each with different weightings in
the training mix and billions of tokens or words. Tested on
several unrelated natural language tasks, GPT-3 has proven
successful in generalizing to them with just a few examples
(zero in some cases). GPT-3 comes in 4 versions, Davinci,
Curie, Babbage and Ada which differ in the amount of
trainable parameters – 175, 13, 6.7 and 2.7 billion respec-
tively (Brown, Mann, and et al. 2020). Previous work on
action sequence extraction from descriptions has revolved
around specific models for action extraction, some of them
trained on largely task-specific preprocessed data. (Mei,
Bansal, and Walter 2016; Daniele, Bansal, and Walter 2017)
use sequence-to-sequence models and inverse reinforcement
learning to generate instructions from natural language cor-
pora. Similarly, Feng, Zhuo, and Kambhampati (2018) uses
a reinforcement learning model to extract word actions di-
rectly from free text (i.e. the set of possible actions is not
provided in advance) where, within the RL framework, ac-
tions select or eliminate words in the text and states represent
the text associated with them. This allows them to learn the
policy of extracting actions and plans from labeled text. In
a same fashion, Branavan et al. (2009) also use Reinforce-
ment Learning, a policy gradient algorithm and a log-linear
model to predict, construct and ultimately learn the sequence
of actions from text. Other works like Addis and Borrajo
(2010) define a system of tools through which they crawl,
extract and denoise data from plan-rich websites and parse
their actions and respective arguments with statistical corre-
lation tools to acquire domain knowledge.

However, to the best of our knowledge this paper is the
first work to assess the performance of a general purpose
NLP language model on action sequence extraction tasks
compared to its current state-of-art task-specific counterpart.

1https://openai.com/
2https://commoncrawl.org/

WHS CT WHG

Labeled texts 154 116 150
Input-output pairs 1.5K 134K 34M
Action name rate (%) 19.47 10.37 7.61
Action argument rate (%) 15.45 7.44 6.30
Unlabeled texts 0 0 80

Table 1: Characteristics of the datasets used.

Length Temp. Top P Freq. Pres. Best of

100 0.0 1 0.0 0.0 1

Table 2: GPT-3 parameters used for all our experiments.

Experiments
Datasets and GPT-3 API We use the three most common
datasets for action sequence extraction tasks used in eval-
uating many of the previous task-specific approaches, in-
cluding Feng, Zhuo, and Kambhampati (2018) or Miglani
and Yorke-Smith (2020). Namely, the ”Microsoft Windows
Help and Support” (WHS), the ”WikiHow Home and Gar-
den” (WHG) and the ”CookingTutorial” (CT) datasets. The
characteristics of these datasets are provided in Table 1.

The GPT-3 model is currently hosted online3 and can be
accessed via paid user queries with either their API or web-
site in real time. Some example use cases of their service
include keyword extraction from natural text, mood extrac-
tion from reviews, open-ended chat conversations and even
text to SQL and JavaScript to Python converters amongst
many others. In general, the service takes free natural lan-
guage as input and the user is expected to encode the type
of interaction/output desired in the input query. The system
then generates output as a completion of the provided query.
The API also allows the user to further tweak the output by
manipulating the following parameters: Max Tokens sets
the maximum number of words that the model will generate
as a response, Temperature (between 0 and 1) allows the
user to control the randomness (with 0 forcing the system to
generate output with the highest probability consistently and
rendering it effectively deterministic for a given input). Top
P also controls diversity; closer to 1 ensures more determin-
ism, Frequency Penalty and Presence Penalty
penalize newly generated words based on their existing fre-
quency so far, and Best of is the number of multiple com-
pletions to compute in parallel. It outputs only the best ac-
cording to the model. In Table 2 we show the values that we
used for all our experiments to ensure the most consistency
in the model’s responses.

Query generation Each query consists of a few shot train-
ing in natural language text and the corresponding struc-
tured representation of the plan. For each example, we an-
notate the beginning of the natural language text portion
with the tag TEXT followed by the plan (annotated with
the tag ACTIONS). In the structure representation, each

3More information at https://beta.openai.com/

25

action is represented in a functional notation of the form
aj0(arg

0
0 , arg

0
1 . . . arg

0
k) . . . a

j
n(arg

n
0 , arg

n
1 . . . arg

n
k) where

aji represents action i in sentence j and argnk is the kth argu-
ment from action an in the text. After the training pairs, we
include the test sample in natural language text after another
tag TEXT and then we add a final tag ACTIONS, with the
expectation that GPT3 will generate the corresponding plan
representation after that.

Evaluation and Metrics In order to directly compare the
performance of GPT-3 to Miglani and Yorke-Smith (2020),
the current state-of-art, we followed a translation scheme
with three types of actions, namely, essential (essential ac-
tion and its corresponding arguments should be included in
the plan) exclusive (the plan must only contain one of the
exclusive actions) and optional actions (the action may or
may not be part of the plan). We use this scheme to generate
both the example data points provided to the system and to
calculate the final metrics.

In particular, we will use precision, recall and F1, simi-
lar to Feng, Zhuo, and Kambhampati (2018); Miglani and
Yorke-Smith (2020) to measure the effectiveness of the
method.

Precision =
#TotalRight

#TotalTagged
, Recall =

#TotalRight

#TotalTruth

F1 =
2× precision× recall
precision+ recall

(1)

Note that the ground truth number and the number of
true extracted actions depend on the type that each action in
the text corresponds to. For example, a set of exclusive ac-
tions only contribute one action to #TotalTruth and we only
count an extracted exclusive action in #TotalRight, if and
only if, one of the exclusive actions is extracted. Both essen-
tial and optional actions only contribute once to #TotalTruth
and #TotalRight.

Baselines In Table 3 we compare GPT-3 to several action
sequence extractor models:

• EAD: Mei, Bansal, and Walter (2016) design an Encoder-
Aligner-Decoder method that uses a neural sequence-to-
sequence model to translate natural language instructions
into action sequences.

• BLCC: The Bi-directional LSTM-CNN-CRF model from
Ma and Hovy (2016) benefits from both word and
character-level semantics and implement an end-to-end
system that can be applied to action sequence extraction
tasks with pre-trained word embeddings.

• Stanford CoreNLP: in Lindsay et al. (2017) they reduce
Natural Language texts to action templates and based on
their functional similarity, cluster them and induce their
PDDL domain using a model acquisition tool.

• EASDRL and cEASDRL: Feng, Zhuo, and Kambhampati
(2018) and Miglani and Yorke-Smith (2020) use similar
reinforcement learning approaches; they define two Deep

Action names Action arguments
Model WHS CT WHG WHS CT WHG

EAD 86.25 64.74 53.49 57.71 51.77 37.70
CMLP 83.15 83.00 67.36 47.29 34.14 32.54
BLCC 90.16 80.50 69.46 93.30 76.33 70.32
STFC 62.66 67.39 62.75 38.79 43.31 42.75
EASDRL 93.46 84.18 75.40 95.07 74.80 75.02
cEASDRL 97.32 89.18 82.59 92.78 75.81 76.99
GPT-3

Davinci 86.32 58.14 43.36 22.90 29.63 22.25
Curie 75.80 35.57 22.41 31.75 22.16 13.79
Babbage 62.59 20.62 14.95 22.91 12.59 7.33
Ada 60.68 14.68 8.90 17.91 4.13 2.27

Table 3: F1 scores for all actions and their arguments ac-
cross the WHS, CT and WHG datasets for the state-of-art
sequence extraction models and GPT-3. State-of-art task-
specific model F1 scores are extracted from Miglani and
Yorke-Smith (2020); Feng, Zhuo, and Kambhampati (2018)
and represent their best possible recorded performance.

Q-Networks which perform the actions of selecting or re-
jecting a word. The first DQN handles the extraction of
Essential, Exclusive and Optional actions while the sec-
ond uses them to select and extract relevant arguments.

The corresponding precision, recall and F1 scores for each
method were picked directly from their respective papers.

Results Given that GPT-3 is a few-shot learner we want
to know how it performs given different amounts of train-
ing samples. To measure this, we query the language model
with increasing numbers of examples (with a maximum of
four examples) for all domains and report their F1 scores.
We stop at the four-shot mark as the total amount of to-
kens or words that the request can contain is 2048. Addi-
tionally for the CookingTutorial and Wikihow Garden and
Home datasets, 4-shot training examples already exceed this
threshold, so we limit the length of input text to 10 sentences
per training example. Specifically, we select the training ex-
amples as 1-shot (one datapoint is selected at random from
the dataset), 2-shot (the two datapoints with the largest pro-
portion of optional and exclusive actions from the dataset
are selected), 3-shot (the three datapoints with the largest
proportion of optional, exclusive and essential actions) and
4-shot (an additional random datapoint is added to 3-shot).

In Figure 1 we show how the F1 score changes given 1,
2, 3 and 4-shot training samples when tested on the whole
Windows Help and Support dataset and actions alone. Or-
der and action arguments are not considered. Unsurprisingly,
Davinci, the model with the most amount of trainable param-
eters, performs best with over 80% F1 score for each cate-
gory. Both Davinci and Curie show the tendency to perform
better the more examples they are given peaking at 3 and
4-shots respectively. Similarly, Babbage and Ada show their
peaks given 2 and 4 examples while underperforming at one-
shot training. This is unsurprising, given the fact that these
models are simplified versions of GPT-3 which have also
been trained on a smaller corpus of data for higher speed.
Hence, they need more than one example to grasp the task.

26

Figure 1: F1 action scores of the model on the Windows
Help and Support dataset for 1 to 4 few-shot training.

In table 3 we compare the F1 scores for action name and
their argument extractions as reported by previous and cur-
rent state of the art task-specific action sequence extrac-
tors against all GPT-3 engines: Davinci, Curie, Babbage
and Ada, ordered from most to least powerful The scores
are calculated based on 1 and account for essential, exclu-
sive and optional actions and their respective arguments. All
GPT-3 models are trained with two-shot examples. As ex-
pected, Davinci overall performs the best compared to the
rest of engines. We can see that Davinci also outperforms
the EAD, CMLP and STFC task-specific models for the
Windows Help and Support domain on extracting actions.
Even though it underperforms on the argument extraction
task compared to the state of art, it’s worth nothing that still
obtains better than random extraction scoring.

Ordering We want to assess whether GPT-3 is capable
of inferring plan order from text. This is a feature which
is mostly missing in previous task-specific state of the art
like Feng, Zhuo, and Kambhampati (2018) or Miglani and
Yorke-Smith (2020). As a preliminary evaluation, we cre-
ate three examples (one for each dataset, shown in Figure
2), where order of the plans does not match how actions are
listed in the text. In the WHS domain, we state on the sec-
ond and third sentences that action click(advanced) must be
performed eventually but only after click(internet, options),
and, even though the corresponding sentences appear in the
opposite order, GPT-3 places them as expected. Similarly, in
the CT example, we state that first we need to measure the
quantity of oats and cook them only later and once again,
it generates the actions in correct ordering. For the last ex-
ample, GPT-3 shows to understand that action paint(walls)
has to be done before remove(furniture) and, interestingly,
even though decorate(floor) is stated on the first sentence,
the model seems to understand that it can be performed any-
time and places the action last. Note that these are just anec-
dotal evidences and we would need to perform studies over
larger test sets to further evaluate GPT-3’s ability to iden-
tify the ordering of plans. Our current evaluation along this
dimension is limited by the lack of ordering annotation and
one of our future works would be to create/identify such or-
dered and annotated text-to-plan datasets.

Figure 2: Query examples on WHS, CT and WHG. Each
query was input to Davinci along with two preceding train-
ing instances containing the largest proportion of optional
and exclusive actions. The output is shown in regular text
while the input is displayed in bold.

Discussion and Conclusion
In this paper we have shown that GPT-3, the state-of-art gen-
eral purpose Natural Language model, can compete against
task-specific approaches in the action sequence extraction
domain, getting closer than ever to surpassing their perfor-
mance. From the user’s perspective, these transformer mod-
els pose the advantage of needing almost negligible compu-
tational resources from the user side by being readily avail-
able at just one query away and seem like a possible so-
lution in the future to many natural language tasks should
they keep up with their rate of improvement. However, some
limitations are still prevalent on GPT-3. It is still far from be-
ing accurate for the more action-diverse natural text datasets.
This becomes all the more apparent during argument extrac-
tion where, as shown, it generally fails to obtain competitive
scores even on its most powerful Davinci version. Thus, this
hinders the possibility of using GPT-3 directly for general
extraction tasks other than the most simple. For less diverse
plans, it does show competing performance and we posit that
it could be used as an intermediate step in a hybrid system.

On the other hand, GPT-3 seems to show some ability to
identify the underlying sequentiality of the plan by recog-
nizing words like before, after, first, anytime or eventually
and rearranging the plans accordingly. This is a capability
generally missing from most state of the art plan extractors
as they assume the ordering of the plan to be same as that
of the sentences corresponding to each action in the text.
Hence, ordering speaks for yet another potential advantage
of using general models, as in they are usually not limited
by specific assumptions made by system designers. Finally,
note that the aforementioned strengths of the model could be
further augmented should OpenAI allow for more finetuning
in the future.

27

Acknowledgements
Dr. Kambhampati’s research is supported by the J.P. Morgan
Faculty Research Award, ONR grants N00014-16-1-2892,
N00014-18-1-2442, N00014-18-1-2840, N00014-9-1-2119,
AFOSR grant FA9550-18-1-0067 and DARPA SAIL-ON
grant W911NF19-2-0006. We also want to thank OpenAI
and Miles Brundage for letting us get research access to the
GPT-3 API.

References
Addis, A.; and Borrajo, D. 2010. From unstructured web
knowledge to plan descriptions. In Information Retrieval
and Mining in Distributed Environments, 41–59. Springer.

Branavan, S.; Chen, H.; Zettlemoyer, L.; and Barzilay, R.
2009. Reinforcement Learning for Mapping Instructions to
Actions. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP,
82–90. Suntec, Singapore: Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P09-
1010.

Brown, T.; Mann, B.; and et al., R. 2020. Lan-
guage Models are Few-Shot Learners. In Larochelle,
H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; and
Lin, H., eds., Advances in Neural Information Process-
ing Systems, volume 33, 1877–1901. Curran Associates,
Inc. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Daniele, A. F.; Bansal, M.; and Walter, M. R. 2017. Nav-
igational instruction generation as inverse reinforcement
learning with neural machine translation. In 2017 12th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI, 109–118. IEEE.

Feng, W.; Zhuo, H. H.; and Kambhampati, S. 2018. Extract-
ing action sequences from texts based on deep reinforcement
learning. arXiv preprint arXiv:1803.02632 .

Gokaslan, A.; and Cohen, V. 2019. OpenWebText Corpus.
http://Skylion007.github.io/OpenWebTextCorpus.

Lindsay, A.; Read, J.; Ferreira, J.; Hayton, T.; Porteous, J.;
and Gregory, P. 2017. Framer: Planning models from natural
language action descriptions. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 27.

Ma, X.; and Hovy, E. H. 2016. End-to-end Sequence La-
beling via Bi-directional LSTM-CNNs-CRF. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Association
for Computer Linguistics. doi:10.18653/v1/p16-1101. URL
https://doi.org/10.18653/v1/p16-1101.

Mei, H.; Bansal, M.; and Walter, M. 2016. Listen, attend,
and walk: Neural mapping of navigational instructions to ac-
tion sequences. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.

Miglani, S.; and Yorke-Smith, N. 2020. NLtoPDDL: One-
Shot Learning of PDDL Models from Natural Language
Process Manuals. In ICAPS’20 Workshop on Knowledge En-
gineering for Planning and Scheduling (KEPS’20). ICAPS.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. OpenAI blog 1(8): 9.

28

Similarity Metrics for Transfer Learning in Financial Markets

Diego Pino1, Javier Garcı́a1, Fernando Fernández1, Svitlana S Vyetrenko2

1Departamento de Informática, Universidad Carlos III de Madrid
Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain

2J. P. Morgan AI Research, New York, NY, USA
{dpino,fjgpolo,ffernand}@inf.uc3m.es, svitlana.s.vyetrenko@jpmchase.com

Abstract

Markov Decision Processes (MDPs) are an effective way to
formally describe many Machine Learning problems. In fact,
recently MDPs have also emerged as a powerful framework
to model financial trading tasks. For example, financial MDPs
can model different market scenarios. However, the learning
of a (near-)optimal policy for each of these financial MDPs
can be a very time-consuming process, especially when noth-
ing is known about the policy to begin with. An alternative
approach is to find a similar financial MDP for which we
have already learned its policy, and then reuse such policy
in the learning of a new policy for a new financial MDP. Such
a knowledge transfer between market scenarios raises several
issues. On the one hand, how to measure the similarity be-
tween financial MDPs. On the other hand, how to use this
similarity measurement to effectively transfer the knowledge
between financial MDPs. This paper addresses both of these
issues. Regarding the first one, this paper analyzes the use
of three similarity metrics based on conceptual, structural
and performance aspects of the financial MDPs. Regarding
the second one, this paper uses Probabilistic Policy Reuse to
balance the exploitation/exploration in the learning of a new
financial MDP according to the similarity of the previous fi-
nancial MDPs whose knowledge is reused.

Introduction
Markov decision processes (MDPs) are a common way
of formulating decision making problems in reinforcement
learning (RL) tasks (Sutton and Barto 2018). An MDP pro-
vides a standard formalism for multi-stage decision pro-
cesses, whilst at the same time being able to capture the
stochastic nature of realistic situations. This is the reason
why MDPs have also emerged as a powerful framework
for modeling real financial trading problems (Chakraborty
2019; Huang 2018; Bäuerle and Rieder 2011). In these fi-
nancial MDPs, the objective is to learn a trading strategy or
policy able to maximize some measure of performance over
time, typically the profit. Interestingly, these financial MDPs
can be configured to model different market scenarios, so
that different trading policies can be tested and analyzed.
However, finding these policies from scratch is often a hard
task. On the one hand, the learning process is based on a

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

computationally intensive trial-and-error process guided by
reward signals from the environment. On the other hand,
such a trial-and-error process is unfeasible in a real trad-
ing scenario where a single bad decision can lead to large
losses. Therefore, when it is possible to obtain these trading
policies, it would be good to take advantage of them as much
as possible. Specifically, rather than learning a new trading
policy for every financial MDP, a policy could be learned
on one financial MDP, then transferred to another, similar
financial MDP, and either used as is, or treated as a starting
point from which to learn a new trading policy.

Such a knowledge transfer is particularly interesting in a
Sim-to-Real scenario (Tan et al. 2018). Due to the reality
gap, trading strategies learned in simulation usually do not
perform well in real environments. Since the reality gap is
caused by model discrepancies between the simulation and
the real dynamics, similarity metrics can be used to effec-
tively quantify that gap, and as a direct way to measure sim-
ulation fidelity. In this way, the hedge funds, investors, or
banks can test their trading strategies in simulation before
risking their funds in a real trading problem (Vyetrenko et al.
2020). In this context, similarity metrics can be used to select
the best simulated financial MDP to transfer from, avoiding
real losses.

Therefore, it is a critical step to decide when two MDPs
are similar. This paper investigates three different strategies
to compute the similarity between MDPs in a financial con-
text. These strategies allows to measure the similarity from
three different perspectives considering conceptual, struc-
tural and performance aspects of the MDPs. The concep-
tual similarity is based on comparing the statistical proper-
ties (also known as stylized facts (Vyetrenko et al. 2020))
of the asset returns, order volumes, order arrival times, or-
der cancellations, etc. Typically, such stylized facts are used
by human experts to analyze the similarities and differences
between simulated and real financial data (Fabretti 2013).
In contrast, the structural similarity is based on the com-
parison of the experience tuples generated by two differ-
ent MDPs: two MDPs are considered to be similar when-
ever the experience tuples they generate are similar as well.
In this paper, such a structural comparison is performed
by using restricted Bolztmann machines (RBMs) (Ammar
et al. 2014). Finally, this paper uses the well-known exploita-
tion/exploitation strategy, π-reuse, to measure the perfor-

29

mance similarity between MDPs. In particular, it measures
the reuse gain (i.e., the “advantage”) of using one task to
aid the learning of another (Fernández and Veloso 2013).
The higher the reuse gain, the greater the similarity between
the MDPs. Finally, such a reuse gains are used by a Policy
Reuse algorithm to bias the learning process of a new MDP
in a transfer learning context.

This paper is organized as follows. Section Related Work
describes some previous related work. Section Background
presents key concept on RL, transfer learning and similar-
ity metrics required to better understand the rest of the pa-
per. Section Abides introduces the abides simulator used to
recreate different financial markets. Section Similarity Met-
rics presents the similarity metrics based on the conceptual,
structural and performance relationships between the dif-
ferent financial markets. Finally, Section Experimentation
shows the evaluation performed, and Section Conclusions
summarizes the conclusions and some future work.

Related Work
RL has been used in several applications in finance and trad-
ing, including portfolio optimization and optimal trade exe-
cution. Given that actions taken in finance and trading may
have long-term effects not immediately measurable, some fi-
nancial problems can be viewed as sequential decision prob-
lems. Furthermore, the environments in which these areas
work may be very large or continuous, so RL can well-suited
to solving finance problems. RL was first introduced and
implemented in the financial market in 1997 (Moody et al.
1998).

Some examples where RL has been successfully applied
to financial problems include portfolio optimization, opti-
mized trade execution, and market-making. In portfolio op-
timization the goal is to create an optimum portfolio given
the specific factors that should be maximized or minimized
(e.g. expected return, financial risk) and taking into account
any constraints (Kanwar et al. 2019). Instead, the goal of op-
timized trade execution is to sell or buy a specific number of
shares of a stock in a fixed time period, such that the rev-
enue received (in the case of selling) is maximized or the
capital spent (in the case of buying) is minimized (Nevmy-
vaka, Feng, and Kearns 2006). In market-making, the market
maker buys and sells stocks with the goal of maximizing the
profit from buying and selling them and minimizing the in-
ventory risk. In this context, RL has been used successfully
to come up with price setting strategies to maximize profit
and minimize inventory risk (Ganesh et al. 2019). However,
in contrast to these approaches, this work focuses on a differ-
ent objective: to measure the similarity of financial markets,
modeled in the multi-agent simulator Abides, in order to de-
termine which scenarios are most similar to the real world
and transfer the knowledge learned to the real world to max-
imize profit. Transfer RL has also been used in a financial
context (Martı́nez, Garcı́a, and Fernández 2020) using PPR
to identify the similarity among different market scenarios
in the context of pricing. Identifying these similarities per-
mit to measure how a market scenario is similar to another,
and thus how the pricing policy learned in a market scenario

is useful to learn a pricing policy in a related, but different,
market scenario.

Background
This section introduces key concepts required to better un-
derstand the rest of the paper. First, some background in RL
is introduced, then the main concepts of transfer RL are vis-
ited, and finally the concepts of similarity and distance are
described.

Reinforcement Learning
RL (Kaelbling, Littman, and Moore 1996) is an area of ma-
chine learning where agents learn what actions to take in
an environment to maximize an accumulated reward. The
learning process is based on trial and error guided by rein-
forcement signals from the environment that reward agents
for performing actions that bring them closer to solving
the problem. A combination of exploration (trying the un-
known) and exploitation (using knowledge the agent already
has) can be used to make improvements in the performance
of RL algorithms.

In particular, RL tasks are described as Markov Deci-
sion Processes (MDPs) represented by tuples in the form
M = 〈S,A, T,R〉, where S is the state space, A is the ac-
tion space, T : S×A→ S is the transition function between
states, and R : S × A → R is the reward function. At each
step, the agent is able to observe the current state, and choose
an action according to its policy π : S → A. The goal of the
RL agent is to learn an optimal policy π∗ that maximizes the
return J(π):

J(π) =
K∑

k=0

γkrk (1)

where rk is the immediate reward obtained by the agent on
step k, and γ is the discount factor, which determines how
relevant the future is (with 0 ≤ γ ≤ 1). The interaction be-
tween the agent and the environment tends to be broken into
episodes, that end when reaching a terminal state, or when
a fixed amount of time has passed. With the goal of learn-
ing the policy π, Temporal Differences methods (Sutton
and Barto 2018) estimate the sum of rewards represented in
Equation 1. The function that estimates the sum of rewards,
i.e., the return for each state s given the policy π is called
the value-function V π(s) = E[J(π)|s0 = s]. Similarly, the
action-value function Qπ(s, a) = E[J(π)|s0 = s, a0 = a]
is the estimation of the value of performing a given action
a at a state s being π the policy followed. The Q-learning
algorithm (Watkins 1989) is one of the most widely used for
computing the action-value function.

Transfer Learning
The learning process in RL can sometimes be too costly,
thus the concept of transfer learning was born. In the trans-
fer learning scenario we assume there is an agent who previ-
ously has addressed a set of source tasks represented as a se-
quence of MDPs,M1, . . . ,Mn. If these tasks are somehow
“similar” to a new taskMn+1, then it seems reasonable the
agent uses the acquired knowledge solvingM1, . . . ,Mn to

30

solve the new taskMn+1 faster than it would be able to from
scratch. Transfer learning is the problem of how to obtain,
represent and, ultimately, use the previous knowledge of an
agent (Torrey and Shavlik 2010; Taylor and Stone 2009).

However, transferring knowledge is not an easy endeav-
our. On the one hand, we can distinguish different transfer
settings depending on whether the source and target tasks
share or not the state and action spaces, the transition prob-
abilities and the reward functions. It is common to assume
that the tasks share the state space and the action set, but dif-
fering the transition probabilities and/or reward functions.
However, in case the tasks do not share the state and/or
the action spaces, it is required to build mapping functions,
XS(st) = ss, XA(at) = as, able to map a state st or ac-
tion at in the target task to a state ss or action as in the
source task. Such mapping functions require not only know-
ing if two tasks are related, but how they are related, which
means an added difficulty. On the other hand, it is required
to select what type of information is going to be transferred.
Different types of information have been transferred so far
ranging from instance transfer (a set of samples collected in
the source task) to policy transfer (i.e., the policy π learned
in the source task). Nor is this a simple task, because de-
pending on how much and how the source and target tasks
are related, it could be transferred one type of information
or another. For example, some of them transfer the whole
Q-value function (Mahmud et al. 2013), others transfer the
learned policy (Mehta et al. 2008), or they could transfer
a model of the state transition function and/or the reward
function (Sunmola and Wyatt 2006). But this paper focuses
on reusing the policy by π-reuse.

Finally, the most “similar” task among M1, . . . ,Mn to
solveMn+1 should be selected in the hope that it produces
the most positive transfer. For this purpose, similarity met-
rics could be used, which translate into a measurable quan-
tity of how related two tasks are.

Similarity Metrics
Similarity metrics are a very important part of transfer learn-
ing, as they provide a measure of distance between tasks.
Similarity functions, or their complementary distance func-
tions, are mathematical functions that assign a numerical
value to each pair of concepts or objects in a given do-
main. This value measures how similar these two concepts
or objects are: if they are very similar, it is assigned a very
low distance, and if they are very dissimilar, it is assigned a
larger distance (Ontañón 2020). Therefore, through similar-
ity metrics it is possible to determine how good the transfer
of knowledge will be.

Simulated Environment
Limit Order Books The limit order book represents a
snapshot of the supply and demand for an asset at a given
point in time. It is an electronic record of all the outstand-
ing buy and sell limit orders organized by price levels. A
matching engine, such as first-in-first-out (FIFO), is used to
pair incoming buy and sell order interest (Bouchaud et al.
2018). The limit order book is split into two sides–the ask

and bid sides containing all the sell and buy limit orders, re-
spectively. At time t, let bt be the best bid price, and let at
be the best ask price. We define mid-price as mt = at+bt

2 .
Choose time scale ∆t. Given a time scale ∆t, which can
range from milliseconds to months, the log return (or simply
return) at scale ∆t is defined as rt,∆t = lnmt+∆t − lnmt.

Order types are further distinguished between limit orders
and market orders. A limit order specifies a price that should
not be exceeded in the case of a buy order, or should not
be gone below in the case of a sell order. Hence, a limit or-
der queues a resting order in the order book at the side of the
market participant. A market order indicates that the trader is
willing to accept the best price available immediately. A di-
agram illustrating the limit order book structure is provided
in Figure 1.

Volumes
Pr

ic
es

1000 200 300

$25.08

$25.10

$25.12

$25.14

$25.06

Bid Side

Ask Side

Mid Price Spread
Ask Price

Bid Price

Limit order to sell is added
to the queue

Figure 1: Visualization of the limit order book structure.

ABIDES Simulator ABIDES (Byrd, Hybinette, and
Balch 2019) – which stands for Agent Based Interactive Dis-
crete Event Simulator – was designed from the ground up to
support AI agent research in market applications, and cur-
rently enables the simulation of tens of thousands of trad-
ing agents interacting with an exchange agent to facilitate
transactions. ABIDES supports configurable pairwise net-
work latencies between each individual agent as well as the
exchange. Similar to the real exchange, ABIDES allows to
simulate market activity as a result of interaction of multiple
background agents with diverse objectives.

We use ABIDES to simulate market scenarios which are
distinguished by different number of background agents.
Each scenario has a unique agent configuration making each
learning process a different task. In particular, we use con-
figurations with non-learning exchange, zero intelligence,
momentum and noise traders as well a learning Q-Learner
agent.

The Q-learner agent is a basic agent that will try to learn
to beat the market by using reinforcement learning. To do
this, at each instant of time, it will have to perform one of the
following actions: buy an asset, sell an asset or do nothing.
The agent will not be able to buy another asset if he already
has one, just as he will not be able to sell one if he already
owes one. The agent’s state is represented by the difference
between the buying and selling volume, and the information
whether he currently owes, owns or doesn’t own an asset.

31

A brief description of non-learning background agents is
given below.

Exchange agent: NASDAQ-like agent which lists any
number of securities for trade against a LOB with price-
then-FIFO matching rules, and a simulation kernel which
manages the flow of time and handles all inter-agent com-
munication.

Zero intelligence agents: In our experiment, we use
the implementation of zero intelligence agents described in
(Byrd 2019) to represent institutional investors who follow
mean reverting fundamental price series to provide liquidity
to the market via limit orders.

Momentum agents: The momentum agents base their
trading decision on observed price trends. Our implemen-
tation compares the 20 past mid-price observations with the
50 past observations and places a buy order of random size,
if the former exceeds the latter and a sell order otherwise.

Noise agents: Noise agents are designed to emulate the
actions of consumer agents who trade on demand with-
out any other considerations (e.g., (Kyle 1985)). Each retail
agent trades once a day by placing a market order. The di-
rection and the size of the trade are chosen randomly.

Similarity Metrics
This paper uses three different concept of metrics which
are based on conceptual, structural and performance aspects
of the MDPs to be compared. The first one, called stylized
facts, is based on the features of the financial markets them-
selves. The second one uses Restricted Boltzmann Machines
(RBM) to determine the structural similarity between tasks.
Finally, the last one is based in the reuse gain obtained ap-
plying π-reuse.

Stylized Facts

The conceptual metric is based on the use of what it is known
as stylized facts (Vyetrenko et al. 2020; R.Cont 2001). The
result of more than half a century of empirical studies on
financial time series indicates that although different assets
are not necessarily influenced by the same events or infor-
mation sets, if one examines their properties from a statis-
tical point of view, the seemingly random variations of as-
set prices share some quite nontrivial statistical properties.
Such properties, common across a wide range of instru-
ments, markets and time periods are called stylized empir-
ical facts. The stylized facts are not a metric per se, but are
actually based on an analysis of the graphs by studying the
shape of the graphs. Vyetrenko et al. (2020) describe several
groups of stylized facts, but this paper uses only those styl-
ized facts related to asset return distributions. In particular,
we focus on:

• Mid Price Returns: Statistical similarity of asset mid
price returns rt,∆t for ∆t = 1 and ∆t = 10 minutes.

• Auto-correlation: Statistical similarity of linear auto-
correlations of asset mid price returns corr(rt+τ,∆t, rt,∆t)
over ∆t = 30 minutes.

Restricted Boltzmann Machines
RBMs (Ammar et al. 2014) are energy-based models for
unsupervised learning. They use a generative model of the
distribution of training data for prediction. These models
employ stochastic nodes and layers, making them less vul-
nerable to local minima (Salakhutdinov, Mnih, and Hinton
2007). RBMs are stochastic neural networks with bidirec-
tional connections between the visible and hidden layers.
This allows RBMs to posses the capability of regenerat-
ing visible layer values, given a hidden layer configuration.
The visible layer represents input data, while the hidden
layer discovers more informative spaces to describe input
instances. Therefore, RBMs could also be seen as density
estimators, where the hidden layer approximates a (factored)
density representation of the input units. Formally, an RBM
consists of two binary layers: one visible and one hidden.
The visible layer models the data while the hidden layer en-
larges the class of distributions that can be represented to an
arbitrary complexity.

The main idea is that we can use an RBM to describe dif-
ferent MDPs in a common representation, providing a sim-
ilarity measure. The RBMs are good as similarity metrics
since they can automatically discover the dynamic phases of
MDPs, and predict the transfer performance between source
and target tasks. Moreover, they have been used in many
domains for this purpose with good results (Ammar et al.
2014).

We first train an RBM to model data collected in the
source task, yielding a set of relevant and informative fea-
tures that characterize the source MDP. These features can
then be tested on the target task to assess MDP similarity.
To do this, we collect the tuples from the source task and
pass them as input to the RBM, the expected output being
the input tuples, the weights of the neurons are adjusted by
contrastive divergence. Then, the tuples of the target task are
collected and provided to the RBM, already trained, and we
calculate the mean square error obtained between the input
and the output, so that the lower the error the higher the sim-
ilarity.

π-reuse
The π-reuse strategy is an exploration strategy able to bias
a new learning process with a past policy (Fernández and
Veloso 2013). Let Πpast be the past policy to reuse and Πnew

the new policy to be learned. We assume that we are using
a RL algorithm to learn the action policy, so we are learning
the related Q function. Any RL algorithm can be used to
learn the Q function, with the only requirement that it can
learn off-policy, i.e., it can learn a policy while executing a
different one, as Q-Learning does.

The goal of π-reuse is to balance random exploration, ex-
ploitation of the past policy, and exploitation of the new pol-
icy, as represented in Equation 2.

a =

{
Πpast(s) w.p. ψ
ε− greedy(Πnew(s)) w.p. (1− ψ)

(2)

The π-reuse strategy follows the past policy with proba-
bility ψ, and it exploits the new policy with probability of

32

1−ψ. As random exploration is always required, it exploits
the new policy with a ε-greedy strategy.

Given a policy Πpast that solves a task Ωpast, and a new
task Ω, the reuse Gain of the policy Πpast on the task Ω, the
Reuse Gain of the policy Πpast on the task Ω, is the gain ob-
tained when applying the π-reuse exploration strategy with
the policy Πpast to learn the policy Πnew. The Reuse Gain
is used in this work to measure the distance between the sce-
narios, taking into account that the higher the reuse gain, the
lower the distance.

PRQ-Learning
PRQ-Learning is an algorithm based on π-reuse and its goal
is to solve a new task reusing the knowledge in a library of
pasts tasks (Fernández and Veloso 2013). Therefore, PRQ-
Learning is equipped with a policy library composed of n
past optimal policies that solve n different tasks, respec-
tively, plus the ongoing learned policy. PRQ-Learning is
able to select which policy should be reused and what ex-
ploration/exploitation strategy follow.

Let Wi be the Reuse Gain of the policy Πi on the task Ω.
Also, let WΩ be the average reward that is received when
following the policy ΠΩ greedily. The solution we introduce
consists of following a softmax strategy using the valuesWΩ

and Wi, with a temperature parameter τ , as shown in Equa-
tion 3. This value is also computed for Π0, which we assume
to be ΠΩ.

P (Πj) =
eτWj

∑n
p=0 e

τWp
(3)

In the first episode, all the policies have the same proba-
bility to be chosen. Once a policy is chosen, the algorithm
reuse it to solve the task, updating its reuse gain with the
reward obtained in the episode, and therefore, updating the
probability to follow each policy. The policy being learned
can also be chosen, although in the initial steps it behaves as
a random policy, given that the Q values are initialized to 0.
While new updates are performed over theQ-function, it be-
comes more accurate, and receives higher rewards when ex-
ecuted. After executing several episodes, it is expected that
the new on-going policy obtains higher gains than reusing
the past policies, so it will be chosen most of the time.

If the policy being learned is chosen, the algorithm fol-
lows a completely greedy strategy. However, if the policy
chosen is one of the past policies, the π-reuse strategy, is
followed instead. In this way, the reuse gain of each of the
past policies can be estimated online with the learning of the
new policy.

Experimentation
This section evaluates the similarity metrics described in
Section Similarity Metrics. For this purpose, we will use
7 different market scenarios, each one recreating different
market conditions. Finally, PRQ-Learning is used to learn in
a target market scenario, reusing the knowledge learned in
previous source markets. However, the experimental setting
is described first.

Experimental setting
This section first describes each of the 7 market scenarios
used for the experimentation, and then it introduces the pa-
rameter setting used for each of the approaches.

Market Scenarios There are 7 scenarios in this paper. The
scenario 1 is the main scenario, i.e., we consider it as the
target market scenario for the experiments with π-reuse and
PRQ-Learning. Each scenario is composed of several agents
that will determine the behavior of the system. The agents
represents the traders who can place a buy or sell order.
There are several types of agents in Abides, but in this paper
we have used five, explained in the Section Abides.

Furthermore, each of the market scenarios require a fun-
damental value, and at the end, the behaviour of all scenarios
is determined by this value and the different agents that trade
in the environment. Each market scenario is configured as
described in Table 1, where the columns represent the sce-
nario and the rows represent the number of agents of each
type.

1 2 3 4 5 6 7
Zero Intelligent 100 100 100 100 100 100 100

Exchange 1 1 1 1 1 1 1
Q-Learner 1 1 1 1 1 1 1

Noise 0 10 5 10 5 10 0
Momentum 0 5 10 10 0 0 10

Table 1: Agent Configuration

These agent configurations were chosen randomly by
adding noise and momentum agents. The idea is to analyze
which type of agents perturbs more the initial configuration
and whether the similarity metrics determine that scenarios
with less new agents are more similar to the initial configu-
ration.

Parameter Setting The parameter setting for Q-learning
is as follows. The parameter γ is set to 0.98, α to 0.99, and
it is decremented every step as α × 0.999. It uses ε-greedy
for the exploration/exploitation of the state and action space,
where ε is set initially at 0.999, and it is decremented every
step as ε × 0.9995. Regarding π-reuse, ψ is set to 1, and
then it is reduced every step as ψ × 0.99. Finally, in PRQ-
Learning the temperature parameter τ is initially set to 0 and
it increases following a sigmoid function until 0.002.

Evaluation of the Similarity Metrics
This section presents the evaluation of the similarity be-
tween the different market scenarios by using the proposed
styled facts, the RBMs and π-reuse.

Stylized Facts We first compare distributional similarity
between stylized facts. In the below analysis, scenarios that
generate similar stylized fact distributions will be interpreted
as having less distance between them.

Table 2 shows the analysis of the stylized facts considered
in this paper. The first row corresponds to autocorrelation

33

Table 2: Stylized Facts: Comparison between scenarios

and the second row corresponds to the minutely returns. Fur-
thermore, the analysis of the stylized facts of the 7 proposed
scenarios allows us to distinguish between two clusters: the
first is composed of scenarios 1, 5, and 6, and the other of
scenarios 2, 3, 4, and 7. For a better understanding, in Table 2
the scenarios are already grouped according to the similarity
in the shape of the stylized facts considered. Therefore, the
graphs in the first column of Table 2 show the value of the
corresponding stylized fact to the markets 1, 5, and 6, whilst
the graphs in the second column shows the stylized facts for
the markets 2, 3, 4, and 7. The autocorrelation shows that in
the cluster 1 the plot is skewed to the left, however in cluster
2 it is centered. Finally, the minutely returns in both clusters
is similar but in the cluster 1 the graph is more wider.

Restricted Boltzmann Machines The second metric an-
alyzed in this paper is that provided by the RBMs. For this
purpose, a set of transitions has been gathered in each of the
proposed scenarios, and the distance between them has been
computed as described in the section Restrictred Boltzmann
Machines. Figure 2 is a heat map that represents the distance
calculated using RBMs from each pair of scenarios. In par-
ticular, the heat map shows as many rows and columns as
there are market scenarios, and each cell represents the sim-
ilarity of the X-axis market to the Y-axis market scenario.
The distances range from 0 to 1, and a cell will be darker the
greater the distance between the compared scenarios. The
order of the scenarios has been changed to facilitate the read-
ability of the data.

In this case, two clusters are observed again. The first one
indicates that the scenario 1, 5 and 6 are similar to each oth-
ers, the second one indicates that the scenario 2, 3, 4 and 7
are also similar to each others. It is important to note that
these results are the same as with the stylized facts and it is
so interesting because scenario 1, 5 and 6 do not have mo-
mentum agents, and on the other hand, the scenarios 2, 3,
4 and 7 all have momentum agents. Somehow momentum
agents have a critical influence in the functioning of the sce-
narios which allows us to separate the scenarios according
whether they have momentum agents or not.

Figure 2: Heat map with the distance between each pair of
scenarios using Restricted Boltzmann Machines

π-reuse. Finally, we use the π-reuse algorithm to compute
the reuse gain, hence, the performance similarity between
the market scenarios. Figure 3 shows six learning processes,
each one corresponding to the reuse of the policy learned
in a source market (2-7) to learn in the target market 1 by
applying π-reuse. Additionally, the blue line represents the
average accumulated reward obtained by Q-learning.

Figure 3: Reuse Gain to learn market scenario 1 by reusing
the policies learned in the other scenarios by π-reuse

From Figure 3, it can be seen that π-reuse produces a
jump-start at the initial episodes, although the final per-
formance is lower than that obtained by Q-learning given
that π-reuse always maintain active exploration. All policies
achieve a similar reward, although the best seem to be poli-
cies 5 and 6. In Figure 4, the blue line represents the same as
before, but the other lines represent the reuse gain obtained
with the policies learned previously by π-reuse in a fully
greedy setting.

It can be observed that when the policies are followed
fully greedy, the policy 5, 6 and 7, show a performance equal
or superior to Q-learning, precisely because the exploration
has been deactivated. Besides, it can be observed that poli-

34

Figure 4: Reuse Gain of the previously learned policies by
π-reuse in a fully greedy setting.

cies 5 and 6, who are in the same cluster, are the best per-
formers.

Figures 3 and 4 show that there are two policies which
obtain better results than the others. These policies are the
the corresponding to the scenarios 5 and 6. Therefore, if we
consider that more similar means higher final performance,
then policies 5 and 6 are the most similar to scenario 1, the
same conclusion we reached with the previous metrics.

Transfer learning through PRQ-Learning
Finally, the Q-Learner agent has been trained with PRQ-
Learning in the scenario 1 reusing the policies learned in the
scenarios 2-7 as a library. In Figure 5 we compare the ac-
cumulated reward obtained with PRQ-Learning against Q-
Learning.

Figure 5: Accumulated reward obtained by Q-learning vs
PRQ-Learning

Figure 5 shows that PRQ-Learning achieves better results
than Q-Learning in all episodes, also in the Figure 6 we can
see that the two policies most similar to scenario 1 (policy 5
and 6), according the similarity metrics, are the ones which
reach higher reuse gain.

In Figure 7 we can also see the probability of selecting
each policy in each episode. It can be seen how at the be-
ginning of the learning process all policies have the same
probability of being selected. However, around episode 50

Figure 6: Reuse gain evolution

it can be seen how the probability of the current policy, to-
gether with policies 5 and 6 increases with respect to the
others. Therefore, policies 5 and 6 have a higher probability
of being selected because they are more similar with respect
to scenario 1.

Figure 7: Evolution of the probability of selecting each pol-
icy

Conclusions
This paper has analyzed the use of three similarity metrics
from a conceptual, structural and performance perspective
to measure the similarity between market scenarios. Analyz-
ing the similarity between markets from different perspec-
tives allows us to obtain a more complete analysis of what
is similar and what is not. In the particular case of the mar-
ket scenarios considered in this paper, the three similarity
metrics considered have been able to determine which sce-
narios are more similar to each others, reaching the same
conclusion and determining that there are two clusters ac-
cording to whether the scenarios have momentum agents or
not. Furthermore, through PRQ-Learning it is confirmed that
the scenarios of the same cluster as the target scenario are
the most similar to this one, and also the ones that improve
learning the most. Therefore, by using similarity measures to
determine which configurations are most similar to the tar-
get task and by using PRQ-Learning to transfer the knowl-
edge learned in a test environment, learning in the target

35

task could be improved. This is particular relevant in a Sim-
to-Real context: similarity metrics can help to answer how
similar simulations and the actual world are. They could be
used to provide theoretical guaranties that ensure the learned
policies transferred from simulation to the actual world will
perform as required, or to define mechanisms to tune/modify
the simulated environments, so the gap between the simu-
lated world and the actual one decreases. The latter opens
new lines of research that we are currently investigating.

Acknowledgements
This research was funded in part by JPMorgan Chase Co.
Any views or opinions expressed herein are solely those of
the authors listed, and may differ from the views and opin-
ions expressed by JPMorgan Chase Co. or its affiliates. This
material is not a product of the Research Department of J.P.
Morgan Securities LLC. This material should not be con-
strued as an individual recommendation for any particular
client and is not intended as a recommendation of particular
securities, financial instruments or strategies for a particu-
lar client. This material does not constitute a solicitation or
offer in any jurisdiction. This work has also been supported
by the Madrid Government (Comunidad de Madrid-Spain)
under the Multiannual Agreement with UC3M in the line of
Excellence of University Professors (EPUC3M17), and in
the context of the V PRICIT(Regional Programme of Re-
search and Technological Innovation). Finally, Javier Garcı́a
is partially supported by the Comunidad de Madrid funds
under the project 2016-T2/TIC-1712.

References
Ammar, H.; Eaton, E.; Taylor, M.; Decebal, C.; Mocanu, D.;
Driessens, K.; Weiss, G.; and Tuyls, K. 2014. An Automated
Measure of MDP Similarity for Transfer in Reinforcement
Learning.

Bäuerle, N.; and Rieder, U. 2011. Markov decision pro-
cesses with applications to finance. Springer Science &
Business Media.

Bouchaud, J.-P.; Bonart, J.; Donier, J.; and Gould, M. 2018.
Trades, quotes and prices: financial markets under the mi-
croscope. Cambridge: Cambridge University Press.

Byrd, D. 2019. Explaining Agent-Based Financial Market
Simulation. arXiv preprint arXiv:1909.11650 .

Byrd, D.; Hybinette, M.; and Balch, T. H. 2019. ABIDES:
Towards High-Fidelity Market Simulation for AI Research.

Chakraborty, S. 2019. Capturing financial markets
to apply deep reinforcement learning. arXiv preprint
arXiv:1907.04373 .

Fabretti, A. 2013. On the problem of calibrating an agent
based model for financial markets. Journal of Economic In-
teraction and Coordination 8(2): 277–293.

Fernández, F.; and Veloso, M. 2013. Learning domain
structure through probabilistic policy reuse in reinforcement
learning. Progress in Artificial Intelligence 2(1): 13–27.
ISSN 21926360.

Ganesh, S.; Vadori, N.; Xu, M.; Zheng, H.; Reddy, P.; and
Veloso, M. 2019. Reinforcement Learning for Market Mak-
ing in a Multi-agent Dealer Market.
Huang, C. Y. 2018. Financial trading as a game: A
deep reinforcement learning approach. arXiv preprint
arXiv:1807.02787 .
Kaelbling, L.; Littman, M.; and Moore, A. 1996. Reinforce-
ment Learning: A Survey. J. Artif. Intell. Res. 4: 237–285.
Kanwar, N.; et al. 2019. Deep Reinforcement Learning-
Based Portfolio Management. Ph.D. thesis.
Kyle, A. S. 1985. Continuous auctions and insider trading.
Econometrica: Journal of the Econometric Society 1315–
1335.
Mahmud, M. M. H.; Hawasly, M.; Rosman, B.; and Ra-
mamoorthy, S. 2013. Clustering Markov Decision Processes
For Continual Transfer .
Martı́nez, E.; Garcı́a, J.; and Fernández, F. 2020. Probabilis-
tic Policy Reuse for Similarity Computation Among Market
Scenarios. FinPlan 2020 28.
Mehta, N.; Natarajan, S.; Tadepalli, P.; and Fern, A.
2008. Transfer in variable-reward hierarchical reinforce-
ment learning. Machine Learning 73(3): 289–312. ISSN
08856125.
Moody, J.; Wu, L.; Liao, Y.; and Saffell, M. 1998. Perfor-
mance functions and reinforcement learning for trading sys-
tems and portfolios. Journal of Forecasting 17(5-6): 441–
470.
Nevmyvaka, Y.; Feng, Y.; and Kearns, M. 2006. Reinforce-
ment learning for optimized trade execution. In Proceedings
of the 23rd international conference on Machine learning,
673–680.
Ontañón, S. 2020. An overview of distance and similarity
functions for structured data. Artificial Intelligence Review
53(7): 5309–5351.
R.Cont. 2001. Empirical properties of asset returns: stylized
facts and statistical issues. Quantitative Finance 1(2): 223–
236. doi:10.1080/713665670.
Salakhutdinov, R.; Mnih, A.; and Hinton, G. 2007. Re-
stricted Boltzmann Machines for Collaborative Filtering.
In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, 791–798. New York, NY,
USA: Association for Computing Machinery. ISBN
9781595937933. doi:10.1145/1273496.1273596. URL
https://doi.org/10.1145/1273496.1273596.
Sunmola, F. T.; and Wyatt, J. L. 2006. Model transfer for
Markov decision tasks via parameter matching. In Proceed-
ings of the 25th Workshop of the UK Planning and Schedul-
ing Special Interest Group (PlanSIG 2006) .
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner,
D.; Bohez, S.; and Vanhoucke, V. 2018. Sim-to-real: Learn-
ing agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332 .

36

Taylor, M. E.; and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10(7).
Torrey, L.; and Shavlik, J. 2010. Transfer learning. In
Handbook of research on machine learning applications and
trends: algorithms, methods, and techniques, 242–264. IGI
global.
Vyetrenko, S.; Byrd, D.; Petosa, N.; Mahfouz, M.; Dervovic,
D.; Veloso, M.; and Balch, T. H. 2020. Get Real: Realism
Metrics for Robust Limit Order Book Market Simulations.
International Conference on AI in Finance. .
Watkins, C. 1989. Learning from Delayed Rewards. Ph.D.
thesis, King’s College, Cambridge, UK.

37

Proving Security of Cryptographic Protocols using Automated Planning

Alberto Pozanco, Antigoni Polychroniadou, Daniele Magazzeni and Daniel Borrajo*

AI Research
J.P. Morgan

{alberto.pozancolancho,antigoni.poly,daniele.magazzeni,daniel.borrajo}@jpmchase.com

Abstract

Lately, financial institutions have started implementing cryp-
tographic protocols for various privacy-related use cases. One
of the key aspects in applying these protocols consists of
proving that they are secure. This paper presents ongoing
work on using Automated Planning for that task. This anal-
ysis serves two purposes. On one side, it can help crypto-
graphic practitioners to analyze some properties of their pro-
tocols. On the other hand, it can help automated planning
work on unsolvability to enrich the type of domains they test
their systems on.

Introduction
In a general definition, Automated Planning (AP) is the task
of generating a sequence of actions, namely a plan, such
that, when applied to a given initial state, it results in a
state where some given goals are true (Ghallab, Nau, and
Traverso 2004). There exist many real-world applications of
AP including urban traffic control (Pozanco, Fernández, and
Borrajo 2021), network security scanning (Hoffmann 2015),
intermodal transportation (Garcı́a et al. 2013), or robots op-
eration (Cashmore et al. 2015), among others.

In all these cases the aim is to find a plan that solves
the given task, assuming such a plan exists. However, there
are other domains in which one might be interested in the
opposite: proving that the given task does not have a so-
lution, i.e., no plan exists to achieve the goals from the
initial state. Proving planning tasks unsolvability is an ac-
tive research area (Eriksson, Röger, and Helmert 2017;
Sreedharan et al. 2019) as highlighted by the recent Un-
solvability International Planning Competition1. The inter-
est though, has lied mostly on the research side with few
real-world applications needed of this planning capability.
In this paper we propose yet another application of AP in
which we need to demonstrate that a planning task is un-
solvable: proving the security of cryptographic protocols.

Cryptographic protocols are communication protocols de-
fined by a sequence of rules that describe how parties
should communicate to preserve privacy or data integrity.
An early example of a well-known cryptographic proto-
col is the Diffie-Hellman key exchange (Diffie and Hell-

*On leave from Universidad Carlos III de Madrid (consultant)
1https://unsolve-ipc.eng.unimelb.edu.au/#

man 1976). In order to ensure that such protocols are se-
cure, they are designed under the assumption that an at-
tacker might interfere at different stages of the protocol,
for example having access to the secrets of some parties
or altering the messages they exchange. All of this is for-
malized in the concept of secure Multi-Party Computation
(MPC) which allows a set of mutually distrustful parties
to compute a function jointly over their inputs while main-
taining the privacy of the inputs and ensuring the correct-
ness of the outputs. Secure computation is beneficial only in
places where parties cannot trust each other, and cannot trust
some external entity. In particular, in case such incorrupt-
ible trusted party can be found, computing the joint func-
tion can be performed easily: The parties send their inputs to
the trusted party, which compute the function on the inputs
and send the parties the output of the computation. How-
ever, in many realistic scenarios (such as decentralized con-
sensus in block chain (Nakamoto 2008)) the parties cannot
rely or trust such an external entity, and secure computation
comes to eliminate the need for such trusted party. Seminal
results established in the ’80s (Yao 1982; Goldreich, Micali,
and Wigderson 1987; Ben-Or, Goldwasser, and Wigderson
1988; Chaum, Crépeau, and Damgård 1987) show that any
computation can be emulated by a secure protocol.

Cryptographic protocols security is usually verified either
through simulators (computational approach) or using for-
mal methods. In the former case, protocols are proved to
be secure by comparing what an adversary can do in a real
protocol execution to what it can do in an ideal scenario
(simulation), which is secure by definition. A protocol is
secure if any attacker in the real model (where no trusted
party exists) can do more harm than if it was involved in the
ideal model (Goldreich 2001). In this paper we will focus
on proving the security of cryptographic protocols using the
latter approach. To do that, we need to succinctly formalize
both the protocol and the actions that the attacker can ex-
ecute to achieve its goals, i.e., interfere/extract information
from the other parties. A protocol is secure if there is no
plan the attacker can execute to achieve those goals (Dolev
and Yao 1983). The impact in the financial institutions
is clear given the recent approaches that use crytographic
protocols for various applications (Sangers et al. 2019;
Asharov et al. 2020; Cartlidge, Smart, and Alaoui 2020;
Byrd and Polychroniadou 2020; Balch, Diamond, and Poly-

38

chroniadou 2020; Cozzo, Smart, and Alaoui 2021).
The rest of the paper is organized as follows. In the next

section we review some basic notions of AP. Then, we in-
troduce the privacy-preserving aggregation protocol we are
focusing on. After that, we describe how we model crypto-
graphic protocols in PDDL. Next, we show a proof of the
privacy-preserving aggregation protocol for a fixed number
of parties using AP. Finally, we put our contribution in the
context of related work, discuss the results, and outline some
future lines of research.

Background
Formally, a single-agent STRIPS planning task can be de-
fined as a tuple Π = 〈F,A, I,G〉, where F is a set of propo-
sitions, A is a set of instantiated actions, I ⊆ F is an initial
state, and G ⊆ F is a set of propositions that define a goal
we want to reach.

A state consists of a set of propositions s ⊆ F that are true
at a given time. A state is totally specified if it assigns truth
values to all the propositions in F , as the initial state I of a
planning task. A state is partially specified (partial state) if
it assigns truth values to only a subset of the propositions in
F , as the conjunction of propositions G of a planning task.

Each action a ∈ A is composed of a set of preconditions
(pre(a)), which represent the literals that must be true in a
state to execute an action a, and a set of effects (eff(a)),
which represent the literals that become true (add(a) effects)
or false (del(a) effects) in the state after the execution of ac-
tion a. The definition of each action might also include a
cost c(a) (the default cost is one).

The execution of an action a in a state s is defined by a
function γ such that γ(s, a) = (s\del(a))∪add(a) if pre(a)
⊆ s, and s otherwise (a cannot be applied). The output of
a planning task is a sequence of actions, namely plan, π =
(a1, . . . , an). The execution of a plan π in a state s can be
defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π 6= ∅
s if π = ∅

A plan π is valid for solving Π iff G ⊆ Γ(I, π). Thus,
Γ(I, π) is a final state that fulfills the property of all propo-
sitions in the goal being true. The cost of a plan is commonly
defined as c(π) =

∑
ai∈π

c(ai), where c : A → R>0 is a non-

negative action cost function. A plan with minimal cost is
called optimal.

Planning tasks are compactly specified in a domain-
independent fashion using a standard language: the Plan-
ning Domain Definition Language (PDDL) (McDermott et
al. 1998). PDDL separates the definition of the planning task
into two parts: domain and problem. The domain expresses
the set of available actions, as well as the object types, pred-
icates and functions. The problem contains the initial state
and goals of the task.

Cryptographic Protocols
We will focus on the Privacy-preserving aggregation proto-
col as a running example of the use of planning for proving
cryptographic protocols. This protocol is based on Additive
secret-sharing, which we will introduce first.

Additive Secret-Sharing
An n-out-of-n (additive) secret-sharing scheme takes as in-
put a secret s from some input domain and outputs n shares,
with the property that it is possible to efficiently reconstruct
s from n shares, but every subset of at most n − 1 shares
reveals nothing about the secret s.

A secret-sharing scheme consists of two algorithms: the
first algorithm, called the sharing algorithm, Share, takes
as input the secret s and the parameters n, and outputs n
shares. The second algorithm, called the recovery algorithm,
Recover, takes as input n shares and outputs a value s. It is
required that the reconstruction of shares generated from a
value s produces the same value s.

In an additive secret-sharing scheme, n parties hold
shares, the sum of which yields the desired secret. By set-
ting all but a single share to be a random value, we ensure
that any subset of n − 1 parties cannot recover the initial
secret. Formally, consider the following.

Let F be a finite field and let n ∈ N. Consider the secret-
sharing scheme An = (Share,Recover) defined below.

• The algorithm Share on input (s, n) performs the follow-
ing:

1. Generate (s1, . . . , sn−1) uniformly at random from F
and define sn = s−∑n−1

i=1 si.
2. Output (s1, . . . , sn) where si is the share of the i-th

party.

• The recovery algorithm Recover on input (s1, · · · , sn),
outputs

∑n
i=1 si.

The distribution of any n− 1 of the shares is the uniform
one on Fn−1 and hence independent of s.

Privacy-preserving Aggregation Protocol
Secure aggregation is commonly used in Federated Learn-
ing (Konečnỳ et al. 2016; Kairouz et al. 2019), which en-
ables a set of users working with a trusted server, to col-
laboratively learn a shared machine learning model while
keeping each user’s data within its own local systems. In
particular, each user computes a local trained model based
on his/her local data; the updates (e.g., the weights of the
model) are sent to the server in an encrypted way; and the
server aggregates these local updates to construct a global
model. In this work we consider an aggregation protocol
based on the additive secret-sharing property mentioned
above where every subset of n − 1 shares of a secret does
not reveal the secret (tailored to cross-silo federated learn-
ing). Suppose that each of n users Ui has a number xi (such
as the number of shares they own of a given company) and
they all want to compute the addition of all those numbers
without revealing each number to the rest of agents. Pro-
tocol 1 presents a high level description of the protocol. It
is composed of three rounds. In the first one, each user Ui
decomposes its secret number Share(xi, n) in n numbers
xij , j = 1..n such that their sum is equal to Share(xi, n),
Share(xi, n) =

∑n
j=1 x

i
j . Then, each user Ui sends xij to

user Uj .

39

In the second round, each user sends the sum of all re-
ceived numbers from the rest of users, Xi, to the server. Fi-
nally, the server computes the sum of all received numbers
from all users. A scheme of the protocol is shown in Fig-
ure 1.

Protocol 1 Privacy-Preserving Aggregation Protocol

The protocol runs with users U1, . . . , Un and a server S. It
proceeds as follows:
Inputs: For i ∈ [n], user Ui holds input xi.
Round 1: Each user Ui proceeds as follows:

1. Secret shares its input xi using additive secret sharing
such that (xi1, . . . , x

i
n)← Share(xi, n).

2. For all j ∈ [n], user Ui sends xij to user Uj .

Round 2: Each user Ui sends Xi =
∑
j∈[n] x

j
i to S.

Round 3: The server S outputs X =
∑
i∈[n]Xi.

As we can easily see, the actual secret numbers
Share(xi, n) of each user cannot be known by the rest of
users nor by the server. Also, in order to break this protocol,
a malicious agent (attacker) would have to corrupt either all
n users (to leak private inputs xi) or n − 1 users and the
server (to leak the private input xn of the incorruptible user
Un given the private inputs (x1, . . . , xn−1) of the n−1 users
and the final sum X). Note that if the malicious agent cor-
rupts n − 1 users, no private information is revealed about
the private input of the incorruptible user Un based on the
properties of the additive secret sharing. That is, the mali-
cious agent will not have enough shares xni to reconstruct
xn. Same holds for corruption of n − 2 users, n − 3 users
and so on. The goal now is to prove that this protocol is se-
cure. In order to do so, we will model the task as a planning
task and use a planner to construct the proof.

Modeling Cryptographic Protocols in PDDL
In this section we detail how we model Protocol 1 and its
security proof in PDDL. Firstly, we formalize both the pro-
tocol and the actions the attacker can execute to extract infor-
mation about the users in a PDDL domain. Then, we show
how we specify the initial state and the goals in PDDL to
prove the security of the protocol. What follows is intended
to be a high level description of the domain and problems
we are generating. For the sake of clarity, we will assume
n = 4 when modeling the actions and problems. The com-
plete version of the domains and problems we are using is
available upon request.

Domain Model
We define two main types of objects: weight, which map
to each of the xij numbers that users exchange; and party,
which refers to the different agents or parties acting in the
protocol. Parties can be of type malicious if they can corrupt
other parties, or corruptible if they can be corrupted. Finally,
corruptible parties are divided into user and server.

We define the following set of predicates:

• (known ?w - weight ?u - user ?p - party), which represents
that a weight from one of the users is known by a party.
This predicate implicitly model the weights of each user,
xij , adding also the party who has access to that informa-
tion. In this case, j would be the weight parameter of the
predicate, i would be the user parameter of the predicate,
and party would represent which agent in the protocol has
access to the given j weight from user i. At the beginning
of the protocol, each user only knows its weights, i.e., we
have (knownW1 U1 U1) but not (knownW2 U1 U2), since
U1 has not shared its weights yet.

• (will-sum ?u - user ?w - weight), which represents which
user will sum each weight. This implicitly represents the
mapping of users and weights taking place at the second
step of Round 1.

• (shared ?u - user), which represents that a user has shared
all its weights with the rest of users.

• (known-partial-sum ?w - weight ?p - party), which repre-
sents that the partial sum of a weight (Xi) is known by a
party. This represents Round 2, where users are sending
the sum of a given weight to the server.

• (known-total-sum ?p - party), which represents that the
aggregated sum of all the weights is known by a party
(X). This represents Round 3, where the server knows the
sum of all the weights from all the users and outputs it.

• (can-corrupt ?m - malicious ?c - corruptible), which rep-
resents that a malicious agent can corrupt a corruptible
party. This predicate is used in the initial state to define
the set of parties the malicious agent can corrupt. If a party
can be corrupted, the malicious agent will have access to
the same information as the party.

• We also add three predicates that define the current round
of the protocol: (round1), (round2) and (round3). During
planning, the domain definition will force the planner to
create the plans by following the order of these rounds,
i.e., following the protocol.

We can divide the actions of the domain into two main
categories: actions that represent the protocol execution, and
actions that represent the possible steps in the protocol in
which malicious agents could infer information from users.
We define the following actions to represent the protocol ex-
ecution:

• share-weights, which represents the first round of Pro-
tocol 1, where users exchange their weights with other
users. The full action is shown in Figure 2.

• next-round-1-2, which advances the protocol from Round
1 to Round 2 once all users have exchanged their weights.

• send-sum-to-server, which represents the second round of
Protocol 1 where a user sums the weights it is processing
(defined by the will-sum predicate) and sends the results
to the server. Assuming user U1 has to sum all the weights
W1 from each user, (will-sumU1W1), the effect of execut-
ing this action is that now both U1 and the server know the
sum of that weight, i.e., (known-partial-sum W1 U1) and
(known-partial-sum W1 Server) are true.

40

Figure 1: Scheme of the privacy-preserving aggregation protocol.

• next-round-2-3, which advances the protocol from Round
2 to Round 3 once each user has sent the sum of weights
to the server.

• compute-sum-server, which represents the Round 3 of
Protocol 1 where the server aggregates the results of the
per-weight sums. The effect of executing this action is that
(known-total-sum Server) becomes true.

We also define the following actions to represent the pos-
sible attacks; i.e., steps in the protocol in which the mali-
cious agent could infer information from the users:

• malicious-act-users, represents a malicious agent corrupt-
ing one of the users. This can happen if the malicious
agent can corrupt the user. The effect of this action is that
now the malicious agent knows all the information that
user has access to, i.e., its own weights plus the ones it
has to process coming from other users.

• malicious-act-servers, which represents a malicious agent
corrupting the server. This can happen if the malicious
agent can corrupt the server. The effect of this action is
that now the malicious agent knows all the information
the server has access to, i.e., the partial sums of all the
weights, and therefore the total sum.

• malicious-user-weight-from-server, which represents a
malicious agent inferring one weight of a user by sub-
traction when it has corrupted other users and the server.
The full action is shown in Figure 3.

• malicious-server-sum-from-user-weights, which repre-
sents a malicious agent inferring one partial sum of a
weight by subtraction when it has other partial sums and
the total sum.

Problem Description
In the problem file we specify the initial state and the goals.
The initial state specifies: the information known by the par-
ties at the beginning of the protocol; and the parties that the
malicious agent can corrupt. The goals specify that the pro-
tocol must end, i.e., (known-total-sum Server) is true, and
the information we want to preserve secure, i.e., the infor-
mation that the malicious agent should not have access to.

An excerpt of a problem is shown in Figure 4. In this case,
we are at the beginning of the protocol (only (round1) is
true), users only know their own weights, and the malicious
agent can corrupt three of the users plus the server. The goal
state of the problem is that the malicious agent knows all
the weights from every user plus (known-total-sum server1),
meaning that the protocol has finished.

This formulation allows us to easily define different sce-
narios. We can represent different malicious agent behaviors
by modifying the information it has access to, i.e., the parties
that can be corrupted. We can also prove different levels of
security by changing the goals. For example, we could prove
that the malicious agent will not be able to get the informa-
tion of only a particular user, or that the protocol is secure
up to a given round.

Proof Procedure
The idea behind this domain and problem formulation is that
if a solution to such a planning task exists, there is a plan the
malicious agent can follow to infer the information about
all users, and therefore the protocol is not secure under that
configuration. If the problem does not have a solution, the
protocol is proved to be secure under that configuration. To
guarantee this we need to make some assumptions about
the model we are generating and the planner we are using
to solve the tasks. Regarding the model, we assume that it
precisely represents both the protocol and all the possible
attacks a malicious agent can conduct. This assumption is
common in all the techniques that formally verify the secu-
rity of cryptographic protocols (Dolev and Yao 1983). For
the planner, we assume it is complete, meaning that if there
is a plan that solve the planning task, the planner will find
it. In our scenario, the planner will always find a plan that
allows the malicious agent to know all secrets in case such a
plan exists.

This proves that the protocol is secure for a given config-
uration (e.g. number of users, number of corruptible users,
. . .) as specified in the problem. However, we are interested
in proving the security of the protocol under multiple config-
urations. More specifically, proving the security of the pro-
tocol as the number of users that can be corrupted grows.

41

(: a c t i o n s h a r e w e i g h t s
: p a r a m e t e r s (? u1 ? u2 ? u3 ? u4 − u s e r

?w1 ?w2 ?w3 ?w4 − we i gh t)
: p r e c o n d i t i o n (and (round1)

(n o t (= ?w1 ?w2))
(n o t (= ?w1 ?w4))
(n o t (= ?w1 ?w3))
(n o t (= ?w2 ?w3))
(n o t (= ?w2 ?w4))
(n o t (= ?w3 ?w4))
(n o t (= ? u1 ? u2))
(n o t (= ? u1 ? u4))
(n o t (= ? u1 ? u3))
(n o t (= ? u2 ? u3))
(n o t (= ? u2 ? u4))
(n o t (= ? u3 ? u4))
(known ?w1 ? u1 ? u1)
(known ?w2 ? u1 ? u1)
(known ?w3 ? u1 ? u1)
(known ?w4 ? u1 ? u1)
(w i l l s u m ? u1 ?w1)
(w i l l s u m ? u2 ?w2)
(w i l l s u m ? u3 ?w3)
(w i l l s u m ? u4 ?w4))

: e f f e c t (and (known ?w2 ? u1 ? u2)
(known ?w3 ? u1 ? u3)
(known ?w4 ? u1 ? u4)
(s h a r e d ? u1)))

Figure 2: Action that represents the first round of Proto-
col 1, where users exchange their weights. The precondi-
tions check that the users are different, user ?u1 knows its
weights, and the mapping predicates that determine which
user will sum which weight. The effects of the action is that
user ?u1 has shared its weights, allowing other users to know
some of them.

Algorithm 1 details the procedure we use to prove the se-
curity of the protocol up to a certain number of corrupted
users.

Algorithm 1 Procedure to prove the security of Protocol 1.

Require: n, S
Ensure: Users, Plan

1: Corrupted-U← 0
2: Plan← ∅
3: while Corrupted-U ≤ n and Plan = ∅ do
4: Problem← GENERATEPROBLEM(Corrupted-U,S)
5: Plan← PLANNER(Problem)
6: Corrupted-U← Corrupted-U + 1
7: return Corrupted-U, Plan

It receives as inputs the number of users of the protocol,
n, and a boolean variable S that determines if the malicious
agent can corrupt the server or not. The algorithm consists
of a loop that increases the number of corrupted users until n
is reached or a plan is found. For each number of corrupted
users, we generate a different planning problem (line 4) by
adding or removing can-corrupt predicates. Then we call a
planner and try to solve the generated problem. If the prob-

(: a c t i o n m a l i c i o u s u s e r w e i g h t f r o m s e r v e r
: p a r a m e t e r s (? u1 ? u2 ? u3 ? u4 − u s e r

?w1 − we i g h t
?m1 − m a l i c i o u s)

: p r e c o n d i t i o n (and (round2)
(n o t (= ? u1 ? u2))
(n o t (= ? u1 ? u4))
(n o t (= ? u1 ? u3))
(n o t (= ? u2 ? u3))
(n o t (= ? u2 ? u4))
(n o t (= ? u3 ? u4))
(known ?w1 ? u1 ?m1)
(known ?w1 ? u2 ?m1)
(known ?w1 ? u3 ?m1)
(n o t (known ?w1 ? u4 ?m1))
(k n o w n p a r t i a l s u m ?w1 ?m1))

: e f f e c t (and (known ?w1 ? u4 ?m1)))

Figure 3: Action that allows the malicious agent to extract
information from an honest user ?u4.

lem is solvable (Plan 6= ∅), the protocol is not secure for that
number of corrupted users, and the algorithm finishes. In this
case, it returns the number of corrupted users together with
the plan that the malicious agent could follow to extract the
information of the N users. The algorithm will always re-
turn the lowest number of users for which the protocol turns
insecure.

Proof Example
As discussed, the Privacy-Preserving Aggregation Protocol
is meant to be secure up to n corrupted users, or n − 1 if
the malicious agent can also corrupt the server. This section
provides an example of a proof of the security of the protocol
for a fixed numbers of users. We have fixed the number of
users to four (n = 4), with one server (server1) and one
malicious agent (mal1).

We have used two complete planners in our evaluation.
The first one is a version of FastDownward (Helmert 2006)
that runs an A∗ search algorithm using the LMCUT admissi-
ble heuristic (Helmert and Domshlak 2009). The second one
is SymPA (Torralba 2016), a planner that combines symbolic
bidirectional search and perimeter abstraction heuristics to
prove the unsolvability of planning tasks.

For the first proof, we are assuming the malicious agent
does not have access to the server so it cannot corrupt it
(S =False). In this case, Algorithm 1 returns that the pro-
tocol is secure up to 4 users (n) being corrupted. This means
that the only case in which the malicious agent can access
the information of all the users is when it can corrupt all
of them, being secure when 3 or less users are corrupted.
The execution time of both planners is similar. Detecting
the (un)solvability of each task takes less than a second,
and completing the proof takes each planner less than 5 sec-
onds. While SymPA only tells us if the problem is solvable
or not, FastDownward returns a plan in case it exists, i.e., a
sequence of actions that the malicious agent could execute
along the protocol to get the information about the users.

Figure 5 shows the plan produced when 4 users can be

42

(d e f i n e (problem p1) (: domain p r o t o c o l 1)
(: o b j e c t s u1 u2 u3 u4 − u s e r

mal1 − m a l i c i o u s
s e r v e r 1 − s e r v e r
w1 w2 w3 w4 − we ig h t)

(: i n i t (round1)
(w i l l p r o c e s s u1 w1)
(w i l l p r o c e s s u2 w2)
(w i l l p r o c e s s u3 w3)
(w i l l p r o c e s s u4 w4)
; User 1
(known w1 u1 u1)
(known w2 u1 u1)
(known w3 u1 u1)
(known w4 u1 u1)
; User 2
(known w1 u2 u2)
(known w2 u2 u2)
(known w3 u2 u2)
(known w4 u2 u2)
; User 3
(known w1 u3 u3)
(known w2 u3 u3)
(known w3 u3 u3)
(known w4 u3 u3)
; User 4
(known w1 u4 u4)
(known w2 u4 u4)
(known w3 u4 u4)
(known w4 u4 u4)
; M a l i c i o u s a g e n t c a p a b i l i t i e s
(c a n c o r r u p t mal1 u1)
(c a n c o r r u p t mal1 u2)
(c a n c o r r u p t mal1 u3)
(c a n c o r r u p t mal1 s e r v e r 1))

(: g o a l (and (known w1 u4 mal1)
(known w2 u4 mal1)
(known w3 u4 mal1)
(known w4 u4 mal1)
. . .
(k n o w n t o t a l s u m s e r v e r 1)))

Figure 4: Excerpt of a problem used to prove the security of
Protocol 1.

corrupted. As we can see, the plan interleaves protocol ac-
tions with malicious agent actions. In this case, the malicious
agent has access to all the information about the users at time
step 4, since it can corrupt all the users.

The second proof is more interesting, where the malicious
agent can also corrupt the server. Algorithm 1 returns that
the protocol is secure up to 3 users (n− 1) being corrupted.
The execution times are the same for both planners and sim-
ilar to the previous proof. Figure 6 shows the plan produced
when 3 users plus the server can be corrupted.

In this case, the malicious agent can corrupt u1, u2 and
u3, thus inferring all the weights but u4’s w4. The malicious
agent will know the rest of weights from u4 after the end
of Round 1 when the users exchange their weights (steps
4-7 in the plan). However, it can infer u4’s w4 by doing
a subtraction. At step 13, the malicious agent corrupts the
server and therefore it has access to the partial sum of w4,
(known-partial-sum w4 mal1) is true. With this information

1 . m a l i c i o u s a c t u s e r s u1 u2 u3 u4 w1 w2 w3 w4 mal1
2 . m a l i c i o u s a c t u s e r s u2 u1 u3 u4 w2 w1 w3 w4 mal1
3 . m a l i c i o u s a c t u s e r s u4 u1 u3 u2 w1 w2 w3 w4 mal1
4 . m a l i c i o u s a c t u s e r s u3 u1 u2 u4 w3 w1 w2 w4 mal1
5 . s h a r e w e i g h t s u1 u2 u3 u4 w1 w2 w3 w4
6 . s h a r e w e i g h t s u2 u1 u3 u4 w2 w1 w3 w4
7 . s h a r e w e i g h t s u3 u1 u2 u4 w3 w1 w2 w4
8 . s h a r e w e i g h t s u4 u1 u2 u3 w4 w1 w2 w3
9 . n e x t r o u n d 1 2 u1 u2 u3 u4 mal1
1 0 . s e n d s u m t o s e r v e r u4 u1 u2 u3 w4 s e r v e r 1
1 1 . s e n d s u m t o s e r v e r u3 u1 u2 u4 w3 s e r v e r 1
1 2 . s e n d s u m t o s e r v e r u2 u1 u3 u4 w2 s e r v e r 1
1 3 . s e n d s u m t o s e r v e r u1 u2 u3 u4 w1 s e r v e r 1
1 4 . n e x t r o u n d 2 3 u1 u2 u3 u4 mal1
1 5 . c o m p u t e s u m s e r v e r w1 w2 w3 w4 s e r v e r 1

Figure 5: Plan that allows the malicious agent to access the
information of all users when 4 users can be corrupted.

1 . m a l i c i o u s a c t u s e r s u1 u2 u3 u4 w1 w2 w3 w4 mal1
2 . m a l i c i o u s a c t u s e r s u2 u1 u3 u4 w2 w1 w3 w4 mal1
3 . m a l i c i o u s a c t u s e r s u3 u1 u2 u4 w3 w1 w2 w4 mal1
4 . s h a r e w e i g h t s u1 u2 u3 u4 w1 w2 w3 w4
5 . s h a r e w e i g h t s u2 u1 u3 u4 w2 w1 w3 w4
6 . s h a r e w e i g h t s u3 u1 u2 u4 w3 w1 w2 w4
7 . s h a r e w e i g h t s u4 u1 u2 u3 w4 w1 w2 w3
8 . n e x t r o u n d 1 2 u1 u2 u3 u4 mal1
9 . s e n d s u m t o s e r v e r u4 u1 u2 u3 w4 s e r v e r 1
1 0 . s e n d s u m t o s e r v e r u3 u1 u2 u4 w3 s e r v e r 1
1 1 . s e n d s u m t o s e r v e r u2 u1 u3 u4 w2 s e r v e r 1
1 2 . s e n d s u m t o s e r v e r u1 u2 u3 u4 w1 s e r v e r 1
1 3 . m a l i c i o u s a c t s e r v e r w1 w2 w3 w4 s e r v e r 1 mal1
1 4 . m a l i c i o u s u s e r w e i g h t f r o m s e r v e r u1 u2 u3 u4 w4 mal1
1 5 . n e x t r o u n d 2 3 u1 u2 u3 u4 mal1
1 6 . c o m p u t e s u m s e r v e r w1 w2 w3 w4 s e r v e r 1

Figure 6: Plan that allows the malicious agent to access all
users’ weights when 3 users plus the server can be corrupted.

and knowing u4’s w1, w2 and w3, the malicious agent can
infer the value ofw4 by applying the malicious-user-weight-
from-server action (step 14), and therefore the protocol is not
secure when 3 users plus the server are corrupted.

Related Work
There has been extensive research on formal methods to
prove cryptographic protocols security. Formal methods
combine a language which can be used to model a crypto-
graphic protocol and its security properties, together with a
procedure to determine whether a model does indeed satisfy
those properties (Meadows 2003). Note that these methods
have not considered complex cryptographic protocols based
on secure multiparty computation.

Model checking (Clarke, Grumberg, and Peled 1999;
Baier and Katoen 2008) is one of the most employed tech-
niques to solve this problem (Basin, Cremers, and Meadows
2018), with many tools available that can be used to ver-
ify cryptographic protocols (Blanchet 2001; Armando et al.

43

2005). Model checkers employ different techniques to prove
that a given property (often expressed as temporal logic for-
mulas) holds in a system. The model checker either con-
firms that the property holds, or provide a counterexample
of a trace that violates the property. One advantage of an
AP formulation to solve this problem is that, while each
model checker has its own language and requirements to
define a cryptographic protocol and its security properties,
we can leverage on the standard PDDL language to spec-
ify them. Once we have done this, we can use any existing
planner to prove that the given task is unsolvable, and there-
fore the protocol is secure. This is known as Planning-as-
Model-Checking paradigm (Giunchiglia and Traverso 1999;
Pistore and Traverso 2001; Edelkamp 2003; Albarghouthi,
Baier, and McIlraith 2009; Bogomolov et al. 2014).

Conclusions and Future Work
We have presented a new application of automated planning,
that of proving the security of cryptographic protocols. We
presented how to model a specific protocol in PDDL and an
algorithm to generate a proof of whether the protocol is se-
cure or not. The paper also presented an example of the proof
by using the algorithm on the described protocol. The use of
such a tool can be highly beneficial for cryptography experts
in order to logically prove security-related properties.

Currently we are using a classical planning approach in
which we make some assumptions. For example, we are
considering a single-agent view of the process as a meta-
agent that has full observability of the state and all the ac-
tions that each party can execute. A more realistic formula-
tion that would allow us to consider more complex crypto-
graphic protocols would be to move to a multi-agent setting
in which now each party has belief states (Bonet and Geffner
2014) about the state of the world and the information other
parties have. This setting is closely related to epistemic logic
and planning (Kominis and Geffner 2015; Muise et al. 2015;
Li and Wang 2021), and we would like to explore how to
formulate and proof the security of cryptographic protocols
using these approaches. We would also like to compare this
work with related work using model checking.

Regarding the security of multiparty computation crypto-
graphic protocols, we used as an example a secure aggrega-
tion protocol. We plan to explore and consider the security
of other protocols.

Acknowledgements
This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase
& Co. and its affiliates (”JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a

solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

References
Albarghouthi, A.; Baier, J. A.; and McIlraith, S. A. 2009.
On the use of planning technology for verification. In In
VVPS’09. Proceedings of the ICAPS Workshop on Verifica-
tion & Validation of Planning & Scheduling Systems. Cite-
seer.
Armando, A.; Basin, D. A.; Boichut, Y.; Chevalier, Y.;
Compagna, L.; Cuéllar, J.; Drielsma, P. H.; Héam, P.;
Kouchnarenko, O.; Mantovani, J.; Mödersheim, S.; von
Oheimb, D.; Rusinowitch, M.; Santiago, J.; Turuani, M.; Vi-
ganò, L.; and Vigneron, L. 2005. The AVISPA tool for the
automated validation of internet security protocols and ap-
plications. In Proceedings of CAV Edinburgh, Scotland, UK,
July 6-10, 2005, volume 3576 of Lecture Notes in Computer
Science, 281–285. Springer.
Asharov, G.; Balch, T. H.; Polychroniadou, A.; and Veloso,
M. 2020. Privacy-preserving dark pools. In Seghrouchni,
A. E. F.; Sukthankar, G.; An, B.; and Yorke-Smith, N., eds.,
Proceedings of AAMAS ’20, Auckland, New Zealand, May
9-13, 2020, 1747–1749. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Baier, C., and Katoen, J.-P. 2008. Principles of Model
Checking (Representation and Mind Series). The MIT Press.
Balch, T.; Diamond, B.; and Polychroniadou, A. 2020. Se-
cretmatch: Inventory matching from fully homomorphic en-
cryption. In Proceedings of the 2020 ACM International
Conference on AI in Finance, ACM ICAIF ’20. New York,
NY, USA: Association for Computing Machinery.
Basin, D. A.; Cremers, C.; and Meadows, C. A. 2018. Model
checking security protocols. In Clarke, E. M.; Henzinger,
T. A.; Veith, H.; and Bloem, R., eds., Handbook of Model
Checking. Springer. 727–762.
Ben-Or, M.; Goldwasser, S.; and Wigderson, A. 1988. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation (extended abstract). In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, 1–10.
Blanchet, B. 2001. An efficient cryptographic protocol ver-
ifier based on prolog rules. In 14th IEEE Computer Security
Foundations Workshop (CSFW-14 2001), 11-13 June 2001,
Cape Breton, Nova Scotia, Canada, 82–96. IEEE.
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as model checking in hybrid domains. In
Brodley, C. E., and Stone, P., eds., Proceedings of AAAI’14,
July 27 -31, 2014, Québec City, Québec, Canada, 2228–
2234. AAAI Press.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
J. Artif. Intell. Res. 50:923–970.
Byrd, D., and Polychroniadou, A. 2020. Differentially pri-
vate secure multi-party computation for federated learning
in financial applications. In Proceedings of the 2020 ACM
International Conference on AI in Finance, ICAIF ’20.

44

Cartlidge, J.; Smart, N. P.; and Alaoui, Y. T. 2020. Multi-
party computation mechanism for anonymous equity block
trading: A secure implementation of turquoise plato uncross.
IACR Cryptol. ePrint Arch. 2020:662.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings of ICAPS 2015, Jerusalem, Israel, June 7-11,
2015, 333–341. AAAI Press.
Chaum, D.; Crépeau, C.; and Damgård, I. 1987. Multiparty
unconditionally secure protocols (abstract). In Advances in
Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara,
California, USA, August 16-20, 1987, Proceedings, 462.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model
checking. London, Cambridge: MIT Press.
Cozzo, D.; Smart, N. P.; and Alaoui, Y. T. 2021. Secure
fast evaluation of iterative methods: With an application to
secure pagerank. In Topics in Cryptology - CT-RSA 2021
- Cryptographers’ Track at the RSA Conference 2021, Vir-
tual Event, May 17-20, 2021, Proceedings, volume 12704
of Lecture Notes in Computer Science, 1–25. Springer.
Diffie, W., and Hellman, M. E. 1976. New directions in
cryptography. IEEE Trans. Information Theory 22(6):644–
654.
Dolev, D., and Yao, A. C. 1983. On the security of public
key protocols. IEEE Trans. Inf. Theory 29(2):198–207.
Edelkamp, S. 2003. Limits and possibilities of pddl
for model checking software. Edelkamp, & Hoffmann
(Edelkamp & Hoffmann, 2003).
Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolv-
ability certificates for classical planning. In Proceedings
of ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23,
2017, 88–97. AAAI Press.
Garcı́a, J.; Flórez, J. E.; de Reyna, Á. T. A.; Borrajo, D.;
López, C. L.; Olaya, A. G.; and Sáenz, J. 2013. Combin-
ing linear programming and automated planning to solve
intermodal transportation problems. Eur. J. Oper. Res.
227(1):216–226.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In Biundo, S., and Fox, M., eds., Recent Ad-
vances in AI Planning, 5th European Conference on Plan-
ning, ECP’99, Durham, UK, September 8-10, 1999, Pro-
ceedings, volume 1809 of Lecture Notes in Computer Sci-
ence, 1–20. Springer.
Goldreich, O.; Micali, S.; and Wigderson, A. 1987. How to
play any mental game or A completeness theorem for proto-
cols with honest majority. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, 1987, New York,
New York, USA, 218–229.
Goldreich, O. 2001. The Foundations of Cryptography -
Volume 1: Basic Techniques. Cambridge University Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In

Proceedings of ICAPS 2009, Thessaloniki, Greece, Septem-
ber 19-23, 2009. AAAI.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Hoffmann, J. 2015. Simulated penetration testing: From
”dijkstra” to ”turing test++”. In Proceedings of ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015, 364–372. AAAI Press.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977.
Kominis, F., and Geffner, H. 2015. Beliefs in multiagent
planning: From one agent to many. In Brafman, R. I.;
Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Pro-
ceedings of ICAPS 2015, Jerusalem, Israel, June 7-11, 2015,
147–155. AAAI Press.
Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492.
Li, Y., and Wang, Y. 2021. Planning-based knowing how: A
unified approach. Artificial Intelligence 296:103487.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language.
Meadows, C. A. 2003. Formal methods for cryptographic
protocol analysis: emerging issues and trends. IEEE J. Sel.
Areas Commun. 21(1):44–54.
Muise, C. J.; Belle, V.; Felli, P.; McIlraith, S. A.; Miller,
T.; Pearce, A. R.; and Sonenberg, L. 2015. Planning
over multi-agent epistemic states: A classical planning ap-
proach. In Bonet, B., and Koenig, S., eds., Proceedings of
AAAI’15, January 25-30, 2015, Austin, Texas, USA, 3327–
3334. AAAI Press.
Nakamoto, S. 2008. Bitcoin: A peer-to-peer electronic cash
system.
Pistore, M., and Traverso, P. 2001. Planning as model check-
ing for extended goals in non-deterministic domains. In Pro-
ceedings of IJCAI 2001, Seattle, Washington, USA, August
4-10, 2001, 479–486. Morgan Kaufmann.
Pozanco, A.; Fernández, S.; and Borrajo, D. 2021. On-
line modelling and planning for urban traffic control. Expert
Systems e12693.
Sangers, A.; van Heesch, M.; Attema, T.; Veugen, T.; Wig-
german, M.; Veldsink, J.; Bloemen, O.; and Worm, D.
2019. Secure multiparty pagerank algorithm for collabora-
tive fraud detection. In Goldberg, I., and Moore, T., eds.,
Financial Cryptography and Data Security - 23rd Inter-
national Conference, FC 2019, Frigate Bay, St. Kitts and
Nevis, February 18-22, 2019, Revised Selected Papers, vol-
ume 11598 of Lecture Notes in Computer Science, 605–623.
Springer.
Sreedharan, S.; Srivastava, S.; Smith, D. E.; and Kambham-
pati, S. 2019. Why can’t you do that hal? explaining un-
solvability of planning tasks. In Kraus, S., ed., Proceedings

45

of IJCAI 2019, Macao, China, August 10-16, 2019, 1422–
1430. ijcai.org.
Torralba, A. 2016. Sympa: Symbolic perimeter abstractions
for proving unsolvability. UIPC 2016 abstracts 8–11.
Yao, A. C. 1982. Protocols for secure computations (ex-
tended abstract). In 23rd Annual Symposium on Foundations
of Computer Science, Chicago, Illinois, USA, 3-5 November
1982, 160–164.

46

