
A Natural Language Model for Generating PDDL

Nisha Simon, Christian Muise
20nis@queensu.ca, christian.muise@queensu.ca

Queen’s University

Abstract

Language generation in various domains has drawn a large
amount of interest in recent years. This paper studies lan-
guage generation in the context of generating planning spec-
ifications in the syntax typically used for this task: the Plan-
ning Domain Definition Language (PDDL). The goal of this
preliminary work is to predict the next completion in PDDL
code, based on previous and surrounding text. Generating
valid PDDL code is a key component in creating robust plan-
ners. Thus, the ability to generate PDDL code will be ex-
tremely useful to PDDL practitioners for the purpose of solv-
ing planning problems. It further opens the door to provid-
ing a source of inspiration for the modeller. The main contri-
bution of our approach is a language model built using Re-
current Neural Networks (RNNs) that is trained on existing
PDDL domains, which can be used to generate PDDL-like
code. We train our model on a corpus of publicly available
PDDL files from api.planning.domains, and evaluate our ap-
proach in the setting of PDDL auto-prediction for some of the
more common domains. We found that code-like generation
is possible, although fluency can be improved.

1 Introduction
Planning problems include a start state, an end (goal) state
and a set of allowable actions. Solving a planning problem
involves selecting the sequence of actions that are required
in order to move from the start state to the goal state. Plan-
ning Domain Definition Language (PDDL) is used to define
planning problems. We focus on the task of PDDL Language
generation, which means that given some preliminary text,
we predict the next completion using PDDL syntax. We cre-
ate text (PDDL code) that flows coherently from previously
seen text in the domain of the planning model. It is to be
noted that the goal is not the creation of a well defined plan,
but rather that of the planning problem specification. The
main contribution of this paper is a language model capable
of generating PDDL text given the context. Moving towards
auto-completion serves to ease the strain on the planning de-
signer since being able to generate PDDL code removes the
burden of coding from the planning designer, who can now
focus on creating the actual content of the plan and not on
the creation of the relevant PDDL code.

The data source that was used for training the language
model is api.planning.domains (Muise 2016). The models

that were used for training were ‘bartender’, which sim-
ulates a bartender taking and serving drink orders, ‘ferry’
which simulates a passenger ferry, and ‘movie’ which simu-
lates a movie watching experience complete with snacks. A
network of Recurrent Neural Networks (RNNs) was used to
build the model. The software for the project was based on
the open source deep learning library, PyTorch.

The layout of the paper is as follows: We briefly describe
the background of our research area in section 2. The sys-
tem architecture and implementation details are described in
section 3. Section 5 places the project in the context of other
research in this area. Finally, our contributions and evalua-
tion of the results are then laid out in section 4, followed by
the conclusion and ideas for future work in section 6.

2 Background
Recurrent Neural Networks (RNNs) have been used in deep
learning applications for several language tasks, and have
proven successful for generating variable length sequences.
(Pascanu et al. 2014). RNNs are neural networks that consist
of multiple levels of nodes which form input layers, output
layers, and hidden layers. If the inputs are represented as xt

then the outputs can be shown as yt and hidden states are ht

where t represents time (Pascanu et al. 2014). The layers are
trained on given inputs in training mode, and then they are
run in testing mode in order to produce the desired outputs.

Given a certain starting symbol or character, the RNN can
be used to predict the next most likely character. In other
words, we model the distribution over a sequence (Pascanu
et al. 2014) based on the highest probable output value and
on the hidden states as shown in algorithm 1. We obtain the
next letter based on the highest probable output value and the
next hidden state, and then add it to the output. This process
is repeated until either an end of sentence (EOS) token is
obtained or until the maximum allowed line length (that can
be set to a particular suitable value) has been reached.

3 Approach
The premise of the project is based on auto-regressive lan-
guage generation, which is to say that we assume that the
probability of a word or character depends on the conditional
probability of the previous words or characters. Our input
that was used in this project comes from the PDDL mod-
els at api.planning.domains (Muise 2016). We use an RNN



Figure 1: Network Structure1

character-level language model to generate PDDL-code-like
output lines. The various stages of the model are data ex-
traction, data cleaning (removing unwanted characters, such
as punctuation, as required), data preprocessing for RNNs,
training, optimization and prediction. Once the training is
completed the predictor can then be run multiple times us-
ing different starting characters for the output string.

The particular type of PDDL problem domain acted as the
‘category’. for example ‘ferry’, ‘bartender’, or ‘movie’. The
input lines data was read in from the appropriate PDDL code
(which had been first transformed into plain text files) and
then a dictionary of category-lines, which is a list of lines
per category, was built. The RNN model was then created
with neural network layers as depicted in Figure 1 and which
was adapted from (Robertson 2017).1 The category and in-
put lines were then converted into one-hot vectors. The out-
put was calculated as the probability of the next letter. For
those familiar with general deep learning configurations, a
drop-out layer randomly set part of the input to 0, in order
to prevent overfitting. The system was trained over a large
number of iterations and the Adam optimizer was used to
adjust parameters as needed. The objective was to minimize
the loss value, which was calculated as the difference be-
tween the actual ‘correct’ output and the generated output.

To perform the prediction, we gave the network a start-
ing letter and then asked it to predict what the next letter
was likely to be. We repeated this process by feeding in that
prediction as the next letter, and continued until the End of
Sentence (EOS) token was reached. This was accomplished
as shown in algorithm 1.

1Figure reproduced from (Robertson 2017)

Algorithm 1: Building an output string
Input: The selected starting letter
Result: Return the final output line
Create an output string that begins with the given
starting letter;

while current line length < the maximum allowed
output length do

Feed the current letter to the network;
if next letter is not EOS, then

Get the next most likely letter ;
Add this next letter to the output and then
continue;

else
stop;

end
end

Listing 1 shows the partial process of how an output line
is generated character by character according to algorithm
1 as described above. From the selected starting symbol (or
letter) of ‘(’ which in this case is a left parenthesis, the output
line is built up character by character to form the final line
‘(cheese z14)’. The partial snippet shown here demonstrates
that the system has so far predicted the output line of ‘(chee’
and it then predicts that the next most probable letter is likely
to be ‘s’, followed by ‘e’. The process continues until the
final output line of ‘(cheese z14)’ which is found to be a
valid PDDL-code line, is generated.

1 ...
2 new output is (chee
3

4 The next top 5 target tensors in decreasing
order are tensor([[-5.3006e-03, -7.0581e
+00, -7.0581e+00, -7.0581e+00, -7.0581e
+00]])

5 The selected (most probable) letter is s
6 new output is (chees
7

8 The next top 5 target tensors in decreasing
order are tensor([[-5.8618e-03, -7.0867e
+00, -7.0867e+00, -7.0867e+00, -7.0867e
+00]])

9 The selected (most probable) letter is e
10 new output is (cheese
11 ...
12 #Final Output line
13 (cheese z14)

Listing 1: Building an output line

The system parameters and hyper-parameters are shown
in Table 1. Initially the SGD optimizer was used. How-
ever, the Adam optimizer provided superior results over the
SGD optimizer. The number of iterations that were used was
slowly increased, starting from a smaller value and then in-
creasing to larger values, in order to improve the accuracy
of the produced output lines. 100,000 iterations were suffi-
cient to produce PDDL-code-like lines for this dataset. The
Learning Rate was set at 0.0005, as higher values proved to



be unsuitable for producing accurate output, and lower val-
ues resulted in a loss curve that did not decreases as rapidly
as desired. The layers of the Neural Network, which used
a hidden size of 128, can be seen in graphical form in Fig-
ure 1. The loss function used was NLLLoss since behind the
scenes, this was partially a classification task that was based
on the category that was provided.

Name Value or Type

Optimizer Adam
Iterations 100,000
Learning Rate 0.0005
Hidden Size 128
Batch Size 1
Layers 2 + 2
Loss NLLLoss
Maximum output line length 70

Table 1: System Parameters and Hyperparameters

4 Evaluation
The system successfully produces PDDL-like statements ac-
cording to the domain on which it was trained. For example:
(contains shot2), where it can be noted that the system has
learned the fact that brackets should be matched, and also
that items can be listed as numeric lists such as shot2 etc.
The system was trained on a large number of iterations, and
as expected, the loss function decreased as the number of it-
erations increased and the system learnt the required output,
which is shown in Figure 2.

Figure 2: Loss Function

As can be seen from Figure 2, increasing the number of
iterations improves the loss value. We used log likelihood
loss as our loss function. The smaller the loss value, the
smaller the difference between the correct output and the
generated output, and the greater the accuracy in the mate-
rial that the system has been able to learn. Due to the the
large size of the model and limited GPU memory, a batch
size of one was used in our experiments. It is to be expected

that the availability of a larger dataset would result in more
accurate predictions and output. Nevertheless it can be seen
that the system learns successfully, being able to identify
key terms from each domain such as ‘cocktail’, ‘shot’, ‘dis-
penser’, ‘chips’, ‘pop’, ‘cheese’, ‘crackers’, ‘dip’, ‘car’ and
‘level’. In addition, as can be seen from Table 2 and Table
3, the system can generate suitable output lines based on
the given input. Table 2 shows actual lines of PDDL code
and Table 3 shows that the system is able to generate not
just the appropriate required keywords, but partial syntax as
well, although the level of fluency could be improved in or-
der to bring the generated text even closer to replicating ac-
tual PDDL code.

shaker1 - shaker
left right - hand
shot1 shot2 shot3 shot4 - shot
ingredient1 ingredient2 ingredient3 - ingredient
cocktail1 cocktail2 cocktail3 - cocktail
dispenser1 dispenser2 dispenser3 - dispenser
(dip d3)
(dip d2)
(dip d1)
(pop p5)
(pop p4)
(pop p3)
(pop p2)
(pop p1)
(cheese z5)
(cheese z4)
(location l8)
(location l9)
(car c0)
(car c1)
(car c2)
(car c3)
(car c4)

Table 2: Sample PDDL Input Code lines

5 Related Work
RNNs are networks that take an input xt and produce an out-
put yt via hidden states ht where the subscript t represents
time (Pascanu et al. 2014). The use of RNNS to create deep
networks is described in (Pascanu et al. 2014). The authors
demonstrate that deep RNNs are considered to be more ef-
fective in language modelling, as opposed to conventional
shallow RNNs.

In their paper ‘A Survey of the Usages of Deep Learning
for Natural Language Processing’ the authors describe the
use of deep learning methods for language generation (Ot-
ter, Medina, and Kalita July 2019). Only small amounts of
input data are needed in order to serve as a guide for the
system to produce poetry, for example. They affirm that a
challenge to be overcome in computer generated language
is that while the output may be difficult to distinguish from
human-generated text, it is still likely to be of lower quality



Category Line

Bartender PDDL shot1 cocktail1 ingredient2)
cocktail-part2 cocktail1 ingredient2)
contabns shot1)
shaker1)
(clean s9 k1)
cocktail-part1 cocktail1 ingredient3)
shot1 shot2 shot3 shot2 shot2
shot2 shot2 shot2
shot2 shot2 shot2 shot2
dispenses dispenser1 ingredient1)
(contains6)
shaker1 - shaker
(contains shot2)

Movie PDDL chips c11)
chips c11)
pop p14)
(chips c11))
(cheese z1)
(crackers k10)
(dip d17)
(cheese z5)

Ferry PDDL (not-eq l10 l1)
cl0 l1 l2 - level
:init
(car c6)
(not-eq l6 l11)

Table 3: Generated Output Lines

than that produced by human authors. A lack of coherence
and creativity may also be an issue. Some possible methods
for text generation that are suggested in the paper include a
tiered network of Convolutional Neural Networks (CNNs),
Generative Adversarial Networks (GANs), and variational
autoencoders (VAEs).

Katz et al. describe the need for automating the work of
the human expert in machine learning (2020), especially in
the area of optimizing hyper-parameters and selecting the
best configurations. The aspect of learning that is studied in
their paper is Context Free Grammars (CFGs), since gram-
mars are keys to language generation, and sentence gener-
ation can be viewed as a planning problem, as described in
(Koller and Hoffmann 2010). The goal of (Katz et al. 2020)
was to produce plans that better reflect user preferences.

In (Young et al. 2018) the authors describe the use of
Recurrent Neural Networks (RNNs) for text generation.
The strength of RNNs lies in their ability to process se-
quences of text of arbitrary length. More complex variations
of RNNS, such as Long Short-Term Memory (LSTM) (Gr-
eff et al. 2016) and Gated Recurrent Units (GRUs) (Bansal,
Belanger, and McCallum 2016), are even more powerful.
LSTM encoder-decoder models can be used for language
generation by mapping one sequence onto another. Atten-
tion based models such as the Transformer, which consists of
stacked layers of encoder and decoder components, further

improve the system’s performance (Vaswani et al. 2017).
The use of ‘narrative generation as a novel application of

planning techniques’ is studied in (Polceanu et al. 2020). A
sequence to sequence encoder-decoder architecture is used.
The authors stress that ‘model performance on the task of
generating novel narrative plots relies not only on the per-
centage of well-formed plans, but on a balance between the
accuracy, the capability to generate a reasonable number of
novel sequences with desirable narrative properties and the
ability to capture longterm dependencies.’ (Polceanu et al.
2020). Well-formedness was imposed as a constraint in their
paper, and it should be noted that this is less of a concern for
story-telling, where artistic licence may be taken, than it is
for the current project, which is code generation and which
therefore relies more heavily on syntactic accuracy.

Andrej Karpathy provides a summary of the uses of RNN
for text generation in his highly cited online article, “The
Unreasonable Effectiveness of Recurrent Neural Networks”
(Karpathy 2015). Data can be processed sequentially, with
the current outputs being dependent not just on the current
inputs, but on the previous inputs as well. The RNNs’ hidden
state is updated at each step. The RNN is given a chunk of
text and then it is asked to predict the next character that is
likely to appear in the sequence. Karpathy demonstrates that
this technique can be used to create a wide variety of text,
including a facsimile of dialogue from a Shakespearean play
as well as program-like code.

6 Conclusion
We have demonstrated a preliminary step in language gen-
eration in the context of generating planning specifications
in the PDDL syntax. The goal of this initial work, which
was to predict the next completion in PDDL code based on
previous text, was achieved through the novel use of multi-
layered RNNS in the PDDL generation setting. Since gener-
ating valid PDDL is a key step in the life-cycle of automated
planning research, this ability to generate PDDL code may
provide valuable assistance to planning practitioners. After
training our model on a corpus of publicly available PDDL
files, we evaluated our approach in the setting of PDDL auto-
prediction for some of the more common domains.

The current project focused on three main domains, ‘bar-
tender’, ‘ferry’ and ‘movie’. We found that code-like gen-
eration is possible, although fluency can be improved. It is
our hope that the results of this project will be useful for
knowledge engineering systems and will serve as the foun-
dation for intelligent auto-completion on the freely available
PDDL editors used by the planning community.

Future work will include the addition of a greater num-
ber of domains and also the use of larger datasets in order to
improve the fluency of the generated output. A further exten-
sion of the system will be to provide suggestions for the next
step as an overall model is being generated. At a later stage,
the goal will be to generate new models of the same class as
the training model, but using different objects, for example
the ‘bartender’ model could be extended to ‘food server’. A
visualization component which can be used to demonstrate
the probability of the next item being calculated will also be
added to the system to provide improved functionality.



References
Bansal, T.; Belanger, D.; and McCallum, A. 2016. Ask the
gru: Multi-task learning for deep text recommendations. In
proceedings of the 10th ACM Conference on Recommender
Systems, 107–114.
Greff, K.; Srivastava, R. K.; Koutnı́k, J.; Steunebrink, B. R.;
and Schmidhuber, J. 2016. LSTM: A search space odyssey.
IEEE transactions on neural networks and learning systems
28(10): 2222–2232.
Karpathy, A. 2015. The Unreasonable Effectiveness of Re-
current Neural Networks. URL https://karpathy.github.io/
2015/05/21/rnn-effectiveness/.
Katz, M.; Ram, P.; Sohrabi, S.; and Udrea, O. 2020. Ex-
ploring Context-Free Languages via Planning: The Case for
Automating Machine Learning. Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
30(1): 403–411.
Koller, A.; and Hoffmann, J. 2010. Waking up a sleeping
rabbit: On natural-language sentence generation with FF. In
Proceedings of the International Conference on Automated
Planning and Scheduling.
Muise, C. 2016. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations.
Otter, D. W.; Medina, J. R.; and Kalita, J. K. July 2019. A
Survey of the Usages of Deep Learning for Natural Lan-
guage Processing. IEEE Transactions On Neural Networks
And Learning Systems 20(10).
Pascanu, R.; Gülçehre, Ç.; Cho, K.; and Bengio, Y. 2014.
How to Construct Deep Recurrent Neural Networks. In
Bengio, Y.; and LeCun, Y., eds., 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings.
Polceanu, M.; Porteous, J.; Lindsay, A.; and Cavazza, M.
2020. Narrative Plan Generation with Self-Supervised
Learning. In Thirty-Fifth AAAI Conference on Artificial In-
telligence.
Robertson, S. 2017. NLP From Scratch: Generating Names
with a Character-Level RNN. URL https://pytorch.org/
tutorials/intermediate/char rnn generation tutorial.html.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Sys-
tems, 6000–6010.
Young, T.; Hazarika, D.; Poria, S.; and Cambria, E. 2018.
Recent trends in deep learning based natural language pro-
cessing. IEEE Computational Intelligence magazine 13(3):
55–75.


