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Abstract

There is an ongoing interest for the performance assessment
of generalized systems, these systems are known for having
enough plasticity to perform well on different never-before-
seen specialized tasks. The trend, is all the more apparent in
Natural Language Processing tasks. In light of the advance-
ments in generalized systems, in this paper we show the appli-
cability of the state of the art language model for plan extrac-
tion tasks. We want to investigate how well GPT-3 a state-of-
the-art language model compares to the the some of the latest
plan extraction techniques with just a few-shot training ex-
amples. To the best of our knowledge, this paper is the first to
empirically evaluate GPT-3 (Brown, Mann, and et al. 2020)
on its performance on plan extraction tasks.

Introduction
Following sequential procedures and plans undergird many
aspects of our everyday lives. As we look at many vital and
consequential industries, including finance and banking, the
ability to identify the correct procedures and adhere to them
perfectly, becomes essential. So it is of no surprise that many
enterprises invest heavily in accurately documenting these
workflows in forms that are easy for their employees to fol-
low. As we start automating many of these day-to-day activ-
ities, it becomes important that our automated systems are
also able to pick up and execute them. Unfortunately, hav-
ing these procedures documented is not the same as them
being easy and readily available for an AI system to use.
Additionally, in many of these high-risk domains, the agent
cannot just try to figure out these procedures on their own
through trial and error. Instead, we would want to develop
ways wherein we can convert these procedures designed for
human consumption to easier forms for agents to use. Within
the planning community, there has been a lot of recent in-
terest in developing plan extraction methods that are able
to take natural language text describing a sequential plan.
Some of the more recent works in this direction include,
works like Feng, Zhuo, and Kambhampati (2018); Daniele,
Bansal, and Walter (2017), which have proposed specialized
frameworks for performing sequence-to-sequence transla-
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tion that maps natural language sentences into structured
plans.

On the other hand, the mainstream Natural Language
Processing (NLP) has started shifting its focus from more
specialized translation methodologies to developing general
purpose models such as transformer networks (Radford et al.
2019; Brown, Mann, and et al. 2020). These networks have
already shown very encouraging results in many tasks and
proven their ability to generalize to unseen ones. These are
task-agnostic language models trained on large general web
corpora and have shown to be comparable (and in some
cases better than) their state-of-art task-specific counter-
parts. Examples of some tasks these models have been tested
on includes, question-answering, translation, on-the-fly rea-
soning and even generation of news articles that are arguably
indistinguishable from human-written ones. In light of these
advancements, we try to answer the following question: to
what extent can the current state-of-art in general natural
language models compete against task-specific action se-
quences extractors? These papers have generally looked at
employing task-specific learning based methods that expect
access to pre-processed/task-specific data, including anno-
tations that allow mapping of text to the required structured
output.

In this paper, we want to investigate how GPT-3 (Brown,
Mann, and et al. 2020), one of the most recent transformer-
based language models, can be used to extract structured ac-
tions from natural language texts. We find that these models
achieve comparable, and in some cases better scores than
previous state-of-the-art task specific methods. We make use
of natural language text from three domains and measure the
performance of the model in terms of its F1 score, a com-
monly used quantitative measure for the task. We then com-
pare it to previously published results for task-specific ac-
tion extractors which use a varied range of solutions, includ-
ing, reinforcement learning, (Feng, Zhuo, and Kambhampati
2018), sequence-to-sequence models (Daniele, Bansal, and
Walter 2017), Bi-directional LSTMs (Ma and Hovy 2016)
or clustering of action templates (Lindsay et al. 2017). Up
front it is not obvious whether a general purpose LLM such
as GPT3 will be able to compete with special purpose trans-
lators. We thought that the few shot learning ability of GPT3
might help in this regard, and decided to investigate. As we
shall see, our suspicion wound up being valid–GPT3 does



indeed compete quite well with special purpose translators.
Also, note that all results reported here are directly calcu-
lated from the best GPT-3 raw predictions, with no addi-
tional filtering or reasoning employed atop of it. We expect
most of the results reported here to improve should we ad-
ditionally exploit domain-level or task-level insights to filter
the results from these models.

Background and Related Works
The Generative Pre-trained Transformer 3 (GPT-3) (Brown,
Mann, and et al. 2020) is the latest version of the GPT
models developed by OpenAI1. A 175 billion parameter
autoregressive language model with 96 layers trained on
a 560GB+ web corpora (Common Crawl2 and WebText2
(Gokaslan and Cohen 2019)), internet-based book corpora
and Wikipedia datasets each with different weightings in
the training mix and billions of tokens or words. Tested on
several unrelated natural language tasks, GPT-3 has proven
successful in generalizing to them with just a few examples
(zero in some cases). GPT-3 comes in 4 versions, Davinci,
Curie, Babbage and Ada which differ in the amount of
trainable parameters – 175, 13, 6.7 and 2.7 billion respec-
tively (Brown, Mann, and et al. 2020). Previous work on
action sequence extraction from descriptions has revolved
around specific models for action extraction, some of them
trained on largely task-specific preprocessed data. (Mei,
Bansal, and Walter 2016; Daniele, Bansal, and Walter 2017)
use sequence-to-sequence models and inverse reinforcement
learning to generate instructions from natural language cor-
pora. Similarly, Feng, Zhuo, and Kambhampati (2018) uses
a reinforcement learning model to extract word actions di-
rectly from free text (i.e. the set of possible actions is not
provided in advance) where, within the RL framework, ac-
tions select or eliminate words in the text and states represent
the text associated with them. This allows them to learn the
policy of extracting actions and plans from labeled text. In
a same fashion, Branavan et al. (2009) also use Reinforce-
ment Learning, a policy gradient algorithm and a log-linear
model to predict, construct and ultimately learn the sequence
of actions from text. Other works like Addis and Borrajo
(2010) define a system of tools through which they crawl,
extract and denoise data from plan-rich websites and parse
their actions and respective arguments with statistical corre-
lation tools to acquire domain knowledge.

However, to the best of our knowledge this paper is the
first work to assess the performance of a general purpose
NLP language model on action sequence extraction tasks
compared to its current state-of-art task-specific counterpart.

Experiments
Datasets and GPT-3 API We use the three most common
datasets for action sequence extraction tasks used in eval-
uating many of the previous task-specific approaches, in-
cluding Feng, Zhuo, and Kambhampati (2018) or Miglani
and Yorke-Smith (2020). Namely, the ”Microsoft Windows

1https://openai.com/
2https://commoncrawl.org/

WHS CT WHG

Labeled texts 154 116 150
Input-output pairs 1.5K 134K 34M
Action name rate (%) 19.47 10.37 7.61
Action argument rate (%) 15.45 7.44 6.30
Unlabeled texts 0 0 80

Table 1: Characteristics of the datasets used.

Length Temp. Top P Freq. Pres. Best of

100 0.0 1 0.0 0.0 1

Table 2: GPT-3 parameters used for all our experiments.

Help and Support” (WHS), the ”WikiHow Home and Gar-
den” (WHG) and the ”CookingTutorial” (CT) datasets. The
characteristics of these datasets are provided in Table 1.

The GPT-3 model is currently hosted online3 and can be
accessed via paid user queries with either their API or web-
site in real time. Some example use cases of their service
include keyword extraction from natural text, mood extrac-
tion from reviews, open-ended chat conversations and even
text to SQL and JavaScript to Python converters amongst
many others. In general, the service takes free natural lan-
guage as input and the user is expected to encode the type
of interaction/output desired in the input query. The system
then generates output as a completion of the provided query.
The API also allows the user to further tweak the output by
manipulating the following parameters: Max Tokens sets
the maximum number of words that the model will generate
as a response, Temperature (between 0 and 1) allows the
user to control the randomness (with 0 forcing the system to
generate output with the highest probability consistently and
rendering it effectively deterministic for a given input). Top
P also controls diversity; closer to 1 ensures more determin-
ism, Frequency Penalty and Presence Penalty
penalize newly generated words based on their existing fre-
quency so far, and Best of is the number of multiple com-
pletions to compute in parallel. It outputs only the best ac-
cording to the model. In Table 2 we show the values that we
used for all our experiments to ensure the most consistency
in the model’s responses.

Query generation Each query consists of a few shot train-
ing in natural language text and the corresponding struc-
tured representation of the plan. For each example, we an-
notate the beginning of the natural language text portion
with the tag TEXT followed by the plan (annotated with
the tag ACTIONS). In the structure representation, each
action is represented in a functional notation of the form
aj0(arg
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aji represents action i in sentence j and argnk is the kth argu-
ment from action an in the text. After the training pairs, we
include the test sample in natural language text after another
tag TEXT and then we add a final tag ACTIONS, with the

3More information at https://beta.openai.com/



expectation that GPT3 will generate the corresponding plan
representation after that.

Evaluation and Metrics In order to directly compare the
performance of GPT-3 to Miglani and Yorke-Smith (2020),
the current state-of-art, we followed a translation scheme
with three types of actions, namely, essential (essential ac-
tion and its corresponding arguments should be included in
the plan) exclusive (the plan must only contain one of the
exclusive actions) and optional actions (the action may or
may not be part of the plan). We use this scheme to generate
both the example data points provided to the system and to
calculate the final metrics.

In particular, we will use precision, recall and F1, simi-
lar to Feng, Zhuo, and Kambhampati (2018); Miglani and
Yorke-Smith (2020) to measure the effectiveness of the
method.

Precision =
#TotalRight

#TotalTagged
, Recall =

#TotalRight

#TotalTruth

F1 =
2× precision× recall

precision+ recall
(1)

Note that the ground truth number and the number of
true extracted actions depend on the type that each action in
the text corresponds to. For example, a set of exclusive ac-
tions only contribute one action to #TotalTruth and we only
count an extracted exclusive action in #TotalRight, if and
only if, one of the exclusive actions is extracted. Both essen-
tial and optional actions only contribute once to #TotalTruth
and #TotalRight.

Baselines In Table 3 we compare GPT-3 to several action
sequence extractor models:

• EAD: Mei, Bansal, and Walter (2016) design an Encoder-
Aligner-Decoder method that uses a neural sequence-to-
sequence model to translate natural language instructions
into action sequences.

• BLCC: The Bi-directional LSTM-CNN-CRF model from
Ma and Hovy (2016) benefits from both word and
character-level semantics and implement an end-to-end
system that can be applied to action sequence extraction
tasks with pre-trained word embeddings.

• Stanford CoreNLP: in Lindsay et al. (2017) they reduce
Natural Language texts to action templates and based on
their functional similarity, cluster them and induce their
PDDL domain using a model acquisition tool.

• EASDRL and cEASDRL: Feng, Zhuo, and Kambhampati
(2018) and Miglani and Yorke-Smith (2020) use similar
reinforcement learning approaches; they define two Deep
Q-Networks which perform the actions of selecting or re-
jecting a word. The first DQN handles the extraction of
Essential, Exclusive and Optional actions while the sec-
ond uses them to select and extract relevant arguments.

The corresponding precision, recall and F1 scores for each
method were picked directly from their respective papers.

Action names Action arguments
Model WHS CT WHG WHS CT WHG

EAD 86.25 64.74 53.49 57.71 51.77 37.70
CMLP 83.15 83.00 67.36 47.29 34.14 32.54
BLCC 90.16 80.50 69.46 93.30 76.33 70.32
STFC 62.66 67.39 62.75 38.79 43.31 42.75
EASDRL 93.46 84.18 75.40 95.07 74.80 75.02
cEASDRL 97.32 89.18 82.59 92.78 75.81 76.99
GPT-3

Davinci 86.32 58.14 43.36 22.90 29.63 22.25
Curie 75.80 35.57 22.41 31.75 22.16 13.79
Babbage 62.59 20.62 14.95 22.91 12.59 7.33
Ada 60.68 14.68 8.90 17.91 4.13 2.27

Table 3: F1 scores for all actions and their arguments ac-
cross the WHS, CT and WHG datasets for the state-of-art
sequence extraction models and GPT-3. State-of-art task-
specific model F1 scores are extracted from Miglani and
Yorke-Smith (2020); Feng, Zhuo, and Kambhampati (2018)
and represent their best possible recorded performance.

Figure 1: F1 scores of the model on the Windows Help and
Support dataset for 1 to 4 few-shot training

Results Given that GPT-3 is a few-shot learner we want
to know how it performs given different amounts of train-
ing samples. To measure this, we query the language model
with increasing numbers of examples (with a maximum of
four examples) for all domains and report their F1 scores.
We stop at the four-shot mark as the total amount of to-
kens or words that the request can contain is 2048. Addi-
tionally for the CookingTutorial and Wikihow Garden and
Home datasets, 4-shot training examples already exceed this
threshold, so we limit the length of input text to 10 sentences
per training example. Specifically, we select the training ex-
amples as 1-shot (one datapoint is selected at random from
the dataset), 2-shot (the two datapoints with the largest pro-
portion of optional and exclusive actions from the dataset
are selected), 3-shot (the three datapoints with the largest
proportion of optional, exclusive and essential actions) and
4-shot (an additional random datapoint is added to 3-shot).



In Figure 1 we show how the F1 score changes given 1, 2,
3 and 4-shot training samples when tested on the whole Win-
dows Help and Support dataset. Unsurprisingly, Davinci, the
model with the most amount of trainable parameters, per-
forms best with over 80% F1 score for each category. Both
Davinci and Curie show the tendency to perform better the
more examples they are given peaking at 3 and 4-shots re-
spectively. Similarly, Babbage and Ada show their peaks
given 2 and 4 examples while underperforming at one-shot
training. This is unsurprising, given the fact that these mod-
els are simplified versions of GPT-3 which have also been
trained on a smaller corpus of data for higher speed. Hence,
they need more than one example to grasp the task.

In table 3 we compare the F1 scores for action name and
their argument extractions as reported by previous and cur-
rent state of the art task-specific action sequence extrac-
tors against all GPT-3 engines: Davinci, Curie, Babbage
and Ada, ordered from most to least powerful The scores
are calculated based on 1 and account for essential, exclu-
sive and optional actions and their respective arguments. All
GPT-3 models are trained with two-shot examples. As ex-
pected, Davinci overall performs the best compared to the
rest of engines. We can see that Davinci also outperforms
the EAD, CMLP and STFC task-specific models for the
Windows Help and Support domain on extracting actions.
Even though it underperforms on the argument extraction
task compared to the state of art, it’s worth nothing that still
obtains better than random extraction scoring.

Ordering We want to assess whether GPT-3 is capable
of inferring plan order from text. This is a feature which
is mostly missing in previous task-specific state of the art
like Feng, Zhuo, and Kambhampati (2018) or Miglani and
Yorke-Smith (2020). As a preliminary evaluation, we cre-
ate three examples (one for each dataset, shown in Figure
2), where order of the plans does not match how actions are
listed in the text. In the Windows Help and Support exam-
ple, we state on the second and third sentences that action
click(advanced) must be performed eventually but only after
click(internet, options), and, even though the corresponding
sentences appear in the opposite order, GPT-3 places them
as expected. Similarly, in the CookingTutorial example, we
state that first we need to measure the quantity of oats and
cook them only later and once again, it generates the ac-
tions in correct ordering. For the last example, GPT-3 shows
to understand that action paint(walls) has to be done be-
fore remove(furniture) and, interestingly, even though dec-
orate(floor) is stated on the first sentence, the model seems
to understand that it can be performed anytime and places
the action last. Note that these are just anecdotal evidences
and we would need to perform studies over larger test sets
to further evaluate GPT-3’s ability to identify the ordering of
plans. Our current evaluation along this dimension is limited
by the lack of annotation regarding the ordering in the cur-
rently available datasets and one of our future works would
be to create/identify such text-to-plan dataset with additional
annotations on action ordering.

Figure 2: Query examples on WHS, CT and WHG. Each
query was input to Davinci along with two preceding train-
ing instances containing the largest proportion of optional
and exclusive actions. The output is shown in regular text
while the input is displayed in bold.

Discussion and Conclusion
In this paper we have shown that GPT-3, the state-of-art gen-
eral purpose Natural Language model, can compete against
task-specific approaches in the action sequence extraction
domain, getting closer than ever to surpassing their perfor-
mance. From the user’s perspective, these transformer mod-
els pose the advantage of needing almost negligible compu-
tational resources from the user side by being readily avail-
able at just one query away and seem like a possible solution
in the future to many natural language tasks should they keep
up with their rate of improvement. However, some limita-
tions are still prevalent on GPT-3. It is still far from being
accurate for the more action-diverse natural text datasets.
This becomes all the more apparent during argument ex-
traction where, as shown, it generally fails to obtain com-
petitive scores even on its most powerful Davinci version.
This hinders the possibility of using GPT-3 directly for gen-
erally complex extraction tasks. For less diverse plans, it
does show competing performance and we posit that it could
be used as an intermediate step in a hybrid system. On the
other hand, GPT-3 seems to show some ability to identify the
underlying sequentiality of the plan by recognizing words
like before, after, first, anytime or eventually and rearranging
the plans accordingly. This is a capability generally missing
from most state of the art plan extractors as they assume the
ordering of the plan to be same as that of the sentences cor-
responding to each action in the text. Hence, ordering speaks
for yet another potential advantage of using general models,
as in they are usually not limited by specific assumptions
made by system designers. Finally, note that the aforemen-
tioned strengths of the model could be further augmented
should OpenAI allow for more finetuning in the future.
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