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Abstract

Property Directed Reachability (PDR) is a sound and com-
plete SAT-based procedure for classical planning problems.
As with all SAT-based planners, PDR operates according to
the notion of a plan step. Existing works limit what can oc-
cur in a plan step to what is achievable instantaneously by
executing planning actions that do not interfere or conflict.
We have developed two new PDR planners each of which
explores a broadening of what can occur in a plan step, by
allowing a sequence of actions to be executed.
We also report on experimentation using the ramp-up SAT-
based planner Madagascar, and in particular focus on its
performance as a complete procedure given a completeness
threshold made available by recent developments in the SAT-
based planning setting.
This is a short version of a longer paper submitted to the
ICAPS 2021 Doctoral Consortium (DC)1.

Introduction
The classical propositional deterministic planning problem
is that of determining whether or not a goal condition is
reachable from an initial state by executing a finite sequence
of actions. The problem is represented succinctly in a propo-
sitionally factored form, such as STRIPS or PDDL (Mc-
Dermott et al. 1998). A broad family of planning proce-
dures solve the problem via a series of related queries to
a SAT(isfiablity) decision procedure. A much studied ap-
proach involves bounding the problem with a horizon, and
solving the bounded problem with a general purpose SAT
solver (Kautz and Selman 1992) Property Directed Reacha-
bility (PDR), is a recently proposed sound and complete pro-
cedure in this setting (Bradley 2011; Suda 2014). It tracks
and maintains reachability information for each step away
from the goal in a compact efficient logical representation.

In this paper, we compare a PDR planner to a SAT-based
planner using a given set of fixed horizons. Separately, we
also evaluate variations of PDR that increase the workload
of each individual SAT solver invocation by giving it a larger
portion of the problem. This is done with the aim that by
exposing more of the problem, the SAT solver will be able
to increase the efficiency of the overall procedure.

1Please contact the first author for a copy of the longer DC sub-
mission

Planning via Boolean SAT
The basics of Boolean SAT solving are here assumed knowl-
edge. Where φ is a formula in propositional logic, we write
` φ to indicate that φ is satisfiable. Where α is an assign-
ment, we write α � φ to indicate that α is a satisfying as-
signment of φ. We define the fixed-horizon classical plan-
ning problem by providing a direct ∀-step description of
that problem as a formula in Boolean logic (Rintanen, Hel-
janko, and Niemel 2006). Let X be the finite set of all state-
characterising facts. To describe the planning problem, for
each x ∈ X we require a SAT proposition x@t meaning:
x is true at the state encountered at step t. Where x@t is
a proposition, we write x@t for its negation, meaning x is
false at step t. Similarly, for each action a, we require a SAT
proposition a@t meaning a is executed at step t, we write
a@t for its negation, meaning a is not executed at step t.

A planning state, s, at time step t is described by a com-
plete assignment to the facts X , and can be represented by a
conjunction of literals Lits(s, t). Let I be the set of facts that
are initially true in the planning problem, then we have that
the initial state, sI , is represented by the conjunct:

Lits(sI , 0) ≡
∧
x∈I

x@0 ∧
∧

x∈X\I

x@0 (1)

In words, facts in I are exclusively true initially (i.e. at step
0). Where G is the planning goal—i.e. set of facts that must
be achieved—then for the direct encoding of the fixed hori-
zon, h ≥ 0, planning problem in SAT, we have the con-
straint: ∧

g∈G
g@h (2)

All goal facts in G are true of the state encountered in the
final step h.

Let A be the finite set of planning actions. For each ac-
tion a ∈ A we have: (i) a set of facts, pre(a) ⊆ X , called
“preconditions”, that must be satisfied at step t for a to be ex-
ecutable at t, (ii) the set of facts that are true, add(a) ⊆ X ,
called “add effects”, in the successor state supposing a is ex-
ecuted, and (iii) the set of facts, del(a) ⊆ X , called “delete
effects”, that are false in the successor. Formally, we have
the following clauses:



∀a ∈ A. ∀x ∈ pre(a). t ∈ 1 . . . h. a@(t− 1) ∨ x@(t− 1)

∀a ∈ A. ∀x ∈ add(a). t ∈ 1 . . . h. a@(t− 1) ∨ x@t
∀a ∈ A. ∀x ∈ del(a). t ∈ 1 . . . h. a@(t− 1) ∨ x@t

(3)
Lastly we require frame axioms that explain how the truth
values of state facts change between successive timesteps.
To ensure that all state transitions are explained by action
execution, we have the following:

∀x ∈ X.t ∈ 1 . . . h.
x@(t− 1) ∨ x@t ∨

∨
a s.t. x∈add(a) a@(t− 1)

∀x ∈ X.t ∈ 1 . . . h.

x@(t− 1) ∨ x@t ∨
∨

a s.t. x∈del(a) a@(t− 1)

(4)

The conjunction of Lits(sI , 0) with axioms from Equa-
tions 2, 3 and 4 gives the CNF formula corresponding to the
“∀-step” encoding of the fixed horizon planning problem. As
is custom, we admit multiple actions being set true at a step,
provided those do not conflict—i.e. an action deletes the pre-
condition of another—or interfere—i.e. one deletes/adds an
add/delete effect of the other.
∃-step semantics, described originally in (Dimopoulos,

Nebel, and Koehler 1997) and applied to planning by (Rin-
tanen 2012) often allow multiple actions which conflict to
be scheduled together, if there exists an ordering of the ac-
tions which permits a valid plan. This expands what can be
scheduled in a timestep. Some of our experiments are with
systems that employ this semantics.

A completeness threshold is a horizon such that if the
bounded planning problem at all bounds less than or equal to
this horizon do not admit a solution, then the original prob-
lem does not have a solution (Biere et al. 2003).

Backward Search: Property Directed Reachability
The PDR approach to SAT-based planning is to search back-
wards from the goal G. For increasing distances h ∈
{0, .., ĥ}, this approach iteratively discovers a series of CNF
formulae, Li for i ≤ h over symbols inX . We call these for-
mulae the layer information. For x ∈ X we again find the
concept of x@t, the proposition stating x is true at step t,
to be useful. Li@t denotes the rewriting of Li by replac-
ing propositional symbols x with their timed counterpart
x@t. Each Li defines an overapproximation of states that
are i steps from the goal. In other words, for every plan-
ning problem state s that can reach a goal state within i
steps, the backwards search maintains the invariant condi-
tion ` Lits(s, i) ∧ Li@i. For i > 0 every Li initially cor-
responds to the vacuously satisfied empty CNF formula –
i.e. the loosest possible overapproximation. For h = 0, L0

corresponds to the conjunction in Eq 2 omitting the timing
suffix on symbols – i.e. any occurrence of x@h in Eq 2 is
rewritten as x in L0. PDR begins by checking that the prob-
lem is nontrivial – i.e. if 0 Lits(sI , 0)∧L0, then the problem
is nontrivial because it can only be solved by a nonempty
plan. Then PDR proceeds iteratively, at the hth iteration
processing a family of timestamped states, represented by

their conjunctions Lits(s, i) where i ≤ h. Each Lits(s, i)
identifies with the assumption that from s the goal can be
achieved within i steps. Q is a container, comprised of a
stack for each layer index. When a state index pair (s,i)
is added, state s is added to stack i. When an item is re-
trieved from the container, it is retrieved from the stack with
the lowest index. Timestamped states are processed with re-
spect to Q, which at the beginning of the hth iteration con-
tains only Lits(sI , h). An iteration is completed when Q is
emptied, and whileQ remains nonempty its elements are re-
moved, one at a time, and evaluated as follows.
• CASE 1: An element Lits(s, i) is removed from Q and

there exists an assignment α such that:
α � Lits(s, i) ∧ T@i ∧ Li−1@(i+ 1) (5)

Above, T@i corresponds to the conjunction of axioms of
the form given in Eqs 3 and 4, fixing t = i. In other words,
T@i is the formula describing what state transitions are
possible from the state indicated by Lits(s, i). Writing
α�Y for the assignment projected to variables in the set Y ,
the assignment α�X@(i+ 1) describes a successor state
s′ satisfying the overapproximation Li−1. Lastly in this
case, PDR adds Lits(s′, i− 1) and Lits(s, i) to Q.

• CASE 2: No α exists satisfying Eq 5. A subformula r of
Lits(s, i) known as the reason is then derived so that when
r is substituted for Lits(s, i) in Eq 5 that formula remains
unsatisfiable. Descriptions of PDR offer some flexibility
regarding exactly how r is computed. In the worst case
r = Lits(s, i), and in practice we attempt to minimise
the number of terms in r. The negated timeless reason∨

l∈Lits(r,i) l, corresponds to the disjunctive clause con-
taining the timeless negation of all literals in Lits(r, i) –
i.e. if x@i occurs in Lits(r, i), the corresponding timeless
l would be x, and x would appear as a literal. The CNF
formulae ∀j ∈ {0, .., i}. Lj are all updated to include this
negated timeless variant of the reason. Intuitively, here we
have discovered that s is not i steps from a goal state, and
have added a (minimum) nogood to Li and all lower lay-
ers to reflect this. It remains to determine whether or not
s is i+1 steps away from the goal, and therefore if i < h
we add (s, i+ 1) to Q.
In our implementation, r is found iteratively, by repeat-

edly finding smaller subformulae of Lits(s, i).
In case a term of the form Lits(s, 0) is discovered the algo-

rithm terminates as the planning problem at hand is proved
satisfiable. Although peripheral to our current study, with
some auxiliary accounting it is straightforward at this point
to extract a plan (Suda 2014). Once Q is empty and the hth
iteration is complete, PDR adds clauses to the L CNFs so
that there is no consecutive Li and Li−1 where:
6 ∃c ∈ Li s.t. 0 Lits(c, i) ∧ T@i ∧ Li−1@(i+ 1) (6)

Above, Lits(c, i) is the negation of the disjunctive clause c
at step i. If at any time two consecutive formulae, Li and
Li−1, become equivalent, then PDR has proved that no plan
exists and the search can be aborted. In practice, equivalence
is performed by a syntactic check – i.e. treating the CNF as
a set of clauses, and checking that the set of clauses in two
consecutive L CNFs are identical.



Using Transition Macros
We propose a variation of PDR which we later show can de-
crease planner time, by processing multiple planning steps in
a single SAT call. This is done with the aim, that by expos-
ing more of the problem to the SAT solver, the solver can ar-
rive to conclusions faster than if small components are given
piece by piece. Processing multiple steps involves having
multiple corresponding intermediate states represented in
the SAT instance. These intermediate states are not exposed
to the PDR process. Where F is the number of planning
steps to be taken together, we replace T@i ∧ Li−1@(i+ 1)
in Eq 5 and Eq 6 with the multi-step macro:(

n=F−1∧
n=0

T@(i+ n)

)
∧ Li−1@(i+ F) (7)

The successor state s′ is then α�X@(i+ F). We refer to this
procedure as PDR-M.

Interleaved Layering
We propose another similar variation, which uses the layer
information L to constrain the intermediate states. For this
we replace T@i ∧ Li−1@(i + 1) in Eq 5 and Eq 6 with the
multi-step variation with interleaved layer information:(

n=B−1∧
n=0

T@(i+ n) ∧ Li−n−1@(i+ n+ 1)

)
(8)

Where B = min(F , i). B plays a similar role in Eq 8 as F
does in Eq 7, but allows for the case where i is too small,
and there are not enough layers. Unlike the macro approach
above, because the intermediate states are constrained by the
layer component of the formula, they can be extracted and
added to Q.

The check to see if no plan exists also needs to be
changed. Unlike traditional PDR which requires 2 succes-
sive layers to be equivalent, here, F + 1 successive layers
need to be equivalent. As before, this is done symbolically.
Because of this, a higher h is required to prove no plan ex-
ists, which can be a bottleneck. We refer to this procedure as
PDR-IL.

Experimental Results
All experiments were performed on an Intel Xeon Gold 6134
CPU@3.2GHz with 20GB Memory.

PDR, PDR-M and PDR-IL
The effectiveness of using the PDR, PDR-M and PDR-IL
is evaluated. We implemented PDR using Lingeling as the
SAT solver (Biere 2017). We include invariants, constraints
important for performance, from the plangraph as specified
in (Robinson et al. 2009).

The runtime performance of all PDR planners is domi-
nated by the time spent in the underlying satisfiability proce-
dure, which is what is measured and reported in this section.

Our implementation of PDR was tested on a subset of
benchmark planning problems from the International Plan-
ning Competitions up to 2014. WhenF = 1, PDR-M, PDR-
IL and traditional PDR are equivalent, we refer to this solver
as the baseline.

BLO Blocksworld PEG Pegsol
LOG Logistics WOO Woodworking
BAR Barman ZEN Zenotravel
CHI Childsnack SCA Scanalyzer
HIK Hiking Ptesting SOK Sokoban
TRU Trucks MYS Mystery
THO Thoughtful Bootstrap TRA Transport

Figure 1: Average speedup/slowdown factors for each F in
{1, .., 7}. Vertical lines left to right indicate values for F , 2
through 7.

We observed that the runtime performance of planners
could vary significantly for different values of F .

If any planner in this comparison cannot solve a problem,
for any value of F , then we exclude that problem from re-
porting.

We have run each PDR procedure under investigation on
each problem, using values of F ∈ {1, .., 7}. For each run
we measured the total time spent by the planner in the un-
derlying Boolean satisfiable procedure – i.e. here that is Lin-
geling. To report our experimental findings here, we have
summarised the collected runtime data by reporting the av-
erage speedup/slowdown factor relative to the baseline, plot-
ted in Figure 1. This is the average ratio of time spent rela-
tive to the baseline—i.e. a higher value means the variation
was slower. The runtime factor of the baseline procedure—
i.e. taking F = 1—is uniformly 1, and the runtime factors



Table 1: Standard Deviation of Speedup/Slowdown Factors for PDR-M

Domain
(#Tasks)

PDR-M PDR-IL
F=2 3 4 5 6 7 2 3 4 5 6 7

BLO (88) 4.85 3.98 0.99 3.87 1.46 13.19 82.51 3.29 3.28 2.77 3.1 3.30
LOG (74) 0.34 0.58 0.22 0.21 0.24 0.23 0.67 0.81 0.74 0.84 2.4 3.91
BAR (14) 0.39 1.09 2.78 1.31 2.3 13.52 0.88 0.96 1.71 4.21 29.14 20.87
CHI (4) 0.45 34.50 0.36 0.05 0.05 0.04 1.46 0.71 1.53 0.22 0.09 0.09
HIK (9) 0.53 0.52 1.93 1.02 2.76 2.44 0.46 1.13 1 5.02 5.58 6.16
TRU (2) 0.71 0.31 0.9 0.24 0.26 0.02 0.78 0.56 0.21 0.19 0.02 0.18
THO (2) 0.24 0.11 0.17 0.97 3422.9 457.56 1.97 0.2 0.34 0.64 642.35 0.37
PEG (9) 1.38 2.23 1.99 50.25 34.22 72.78 13.24 5.31 4.37 3.67 4.58 9.31
WOO (20) 0.42 0.78 1.33 1.75 0.95 1.18 0.55 1.03 1.64 1.63 1.59 1.63
ZEN (6) 0.54 0.26 1.15 0.26 0.35 0.58 0.82 0.7 1.12 0.52 0.55 0.5
SCA (3) 0.41 0.33 0.67 0.6 0.92 1.01 1.14 1.02 1.50 2.82 3.53 6.34
SOK (8) 8.73 2.57 11.61 9.54 0.94 0.53 1.94 2.1 2.59 9.83 1.05 3.08
MYS (7) 1.51 1.65 2.11 58.94 61.67 0.86 1.99 2.48 2.71 7.59 4.06 4.29
TRA (5) 0.49 1.15 2.31 1.87 3.85 5.47 0.79 4.01 2.37 5.83 4.50 10.26

plotted for the other planners are the average values across
the domain relative to this baseline. The standard deviations
between speedup/slowdown factors are shown in table 1.

It is more common to be able to speedup planning using
PDR-M than when using PDR-IL. Notably in the Logistics
domain, for PDR-M there is a consistent speedup for all F
values tested, especially for F = 4, which has a standard
deviation of 0.22.

PDR v.s. Ramp-Up Given Upper Bound
PDR is capable of proving a problem unsat. Traditional SAT-
based procedures can only prove unsat for a given horizon
bound. Here we contrast the runtime of fixed horizon meth-
ods with PDR for unsat problems. Madagascar is a state
of the art SAT planner which is used in this comparison
(Rintanen 2012). As this comparison is independent of the
previously mentioned work regarding PDR-M and PDR-IL,
Madagascar will be compared to standard PDR. The im-
plementation of PDR, PDRPlan was used (Suda 2014). A
subset of the 2012 IPC unsatisfiable track was used as the
benchmarks. Madagascar was used to solve each problem
with various horizons, including when available, a complete-
ness threshold from the state of the art generator PlanBound
(Abdulaziz 2019). When run with the horizons 10, 20, 40
and 80, the ∃-step semantics was used.

Table 2 shows the number of problems that were solved
in the allowed time, broken down by solver, horizon and do-
main. Here, for Madagascar, solved means that the solver
was able to disprove the existence of a plan at the given hori-
zon.

The experimental datapoints reported for PDR thus far
correspond to runtimes of a complete planning procedure.
Madagascar is complete given a horizon bound equal to the
completeness thresholds provided by PlanBound. For each
problem, PlanBound was run with a 1800s timeout. Here,
for cases where a bound <10,000 is found (22 problems),
we run Madagascar with a timeout of 220 hours. Madagas-
car is able to prove the instances unsat in 5 of those 22 prob-

Table 2: Number of instances solved by PDRPlan, and
Madagascar with various horizons.

Domain (#Tasks) PDR Madagascar
h=10 20 40 80

Bag Gripper (25) 0 4 4 4 1
Bag Transport (29) 1 25 2 0 0
Bottleneck (25) 16 25 21 16 14
Cave Diving (25) 5 25 7 5 4
Chessboard Pebbling (23) 3 23 23 0 0
Diagnosis (20) 15 20 20 19 15
Document Transfer (20) 4 20 19 11 9
Over Nomystery (24) 12 18 11 2 2
Over Rovers (20) 16 20 9 6 5
Pegsol (24) 14 20 8 4 4
Pegsol Row 5 (15) 4 15 4 3 3
Sliding Tiles (20) 0 20 20 0 0

lems, and in such cases is always able to do so using Unit
Propagation exclusively – i.e. no decisions are made.

Conclusion
We have compared PDR with a traditional SAT planner over
various horizons, including where possible a completeness
threshold. We evaluated these over a set of unsatisfiable
benchmark planning problems. We found using PDR on un-
satisfiable problems far more effective than traditional SAT
planning with a completeness threshold.

We also introduced two parameterizable variations of
PDR which solve multiple planning steps in a single SAT
call. These approaches, under various parameters, were eval-
uated over a set of planning problems. We found that using
our PDR variations, we can achieve a substantial (greater
than 10 times) speedup over the baseline in some cases.
However, the speedup gained is very sensitive to the domain
chosen and the parameters used.
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