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Abstract

Hierarchical Task Network (HTN) planning is a paradigm
that offers engineers a formalism for modeling planning do-
mains in terms of possible decompositions of compound
tasks. A complete decomposition of a compound task results
in totally or partially ordered primitive tasks, i.e., plans in the
classical sense. Existing specification languages for HTN do-
mains, such as HDDL, do only allow the assertion of precon-
ditions and effects for primitive tasks but not for compound
ones. Recently, a method for inferring preconditions and ef-
fects for compound tasks was proposed. It was hypothesized
that inferred preconditions and effects can aid knowledge en-
gineers in understanding HTN domain specifications and in
predicting the meaning of particular compound tasks. We de-
scribe preliminary results from a study that supports this hy-
pothesis and discuss future research directions.

Introduction
One important prerequisite for AI planning being used more
extensively in practice is to make it as accessible as pos-
sible. This can include support for experts and non-experts
in writing their own planning domains. As pointed out by
Lindsay et al. (2020) and McCluskey, Vaquero, and Vallati
(2017), validating whether a domain models an application
accurately is still considered to be a challenge. If one wants
to use or adapt an existing domain, it is crucial to understand
its mechanics as effortlessly and thoroughly as possible. We
approach this issue in case of totally ordered (t.o.) Hierarchi-
cal Task Network (HTN) planning (Erol, Hendler, and Nau
1996; Ghallab, Nau, and Traverso 2004). In HTN planning,
an abstract task is solved by refining it recursively into more
fine-grained subtasks until a concrete action plan known
from classical planning results. Besides this different view
on solving a planning problem, it is strictly more expressive
than STRIPS planning in the sense that a t.o. HTN plan-
ning formalism can express context-free languages whereas
STRIPS planning corresponds to regular language classes
(Höller et al. 2014). So, while it is certainly not the case for
every HTN planning domain one can argue that the expres-
siveness can lead to even more complex domains, which are
harder to examine compared to STRIPS domains. So-called
compound tasks play an important role in HTN domains as
they specify, together with their decomposition methods, the
problem hierarchy. However, in contrast to the actions (now

called primitive tasks) from STRIPS planning, these com-
pound tasks do not have preconditions or effects, particu-
larly in HDDL, a standard description language for HTN
planning problem (Höller et al. 2020). Therefore, one can-
not see their impact on states directly (Goldman 2009). This
leads to two issues: First, it can be hard to verify whether a
compound task functions as intended by the domain mod-
eler. Second, for someone unfamiliar with a domain it can
be tedious to oversee and understand all mechanisms of it.
Recently, Olz, Biundo, and Bercher (2021) formalized dif-
ferent kinds of preconditions and effects of compound tasks
based on the actions deeper down in the decomposition hi-
erarchy and presented possibilities to calculate them. More
precisely, this information specifies which state features will
possibly or definitely hold after the execution of a refinement
of a compound task and thus reveals some of their impli-
cations. In this work, we investigate whether these inferred
preconditions and effects of compound tasks can improve
comprehensibility of HTN planning domains. We report re-
sults from a user study which supports this hypothesis.

Related Work
As we consider a robotics domain in our study, we briefly
mention some work from robot programming: Tools aiming
at supporting both novices and experts in the programming
of robots include Code3 by Huang, Lau, and Cakmak (2016)
and Huang and Cakmak (2017). In general, high level prim-
itives with a close mapping to social interactions appear to
be the best abstraction level for programming social robots
(Diprose et al. 2017). With ROS-TiPlEx, La Viola et al.
(2019) present a framework that aims at facilitating the com-
munication between robot and planning experts to support
the development of plan-based autonomous robots. Orlan-
dini et al. (2020) provide a recent overview over more such
results concerning engineering tools, which support non-
planning experts when integrating planning tools in robotic
systems. In our study, we suggest using HTN planning as a
way to modeling abstract robot behavior.

Regarding tool support for planning domain modeling,
Strobel and Kirsch (2020) show that when programming
in PDDL, using a tool that highlights syntax and allows
to generate type diagrams can improve the programmers’
performance. Jannach, Jugovac, and Lerche (2015) found
that users of the RapidMiner software environment need less



HolidayIn
Vancouver

takePlane

SightseeingTravelTo

driveByCar visitMuseum watchOrca

driveByCarliveNearby atVancouver

takePlane

liveFarAway atVancouver

visitMuseum
interestInCulture

educated

watchOrca
interestInNature

relaxed

happy

happyhaveFlightTicket ¬haveFlightTicket

Figure 1: Visualization of a HTN planning domain to plan
holidays in Vancouver. Ellipses depict compound tasks, rect-
angles are primitive tasks and rectangles with rounded cor-
ners are methods.

time and less actions to fulfill a modeling task when an intel-
ligent extension which recommends additional operators is
used. More loosely related, Lindsay et al. (2020) proposed a
method for the automated refinement of pre-engineered hy-
brid domains based on machine learning techniques. While
there has been conducted quite a lot of research in the pro-
cess of constructing domain models in AI planning (Vallati
and Kitchin 2020), there is not much for HTN planning in
particular so far. Bercher et al. (2016) brought up the use-
fullness of preconditions and effects of compound tasks in
domain modelling, however, here they were not inferred but
already given and checked according to some criteria. Re-
cently, Lin and Bercher (2021) conducted a computational
complexity analysis of making certain types of changes to
the domain model motivated by modeling assistance.

Formal Framework
HTN Planning Formalism We will first introduce totally
ordered (t.o.) HTN planning and a corresponding formalism,
which is based on the ones by Geier and Bercher (2011) and
Behnke, Höller, and Biundo (2018). To illustrate our expla-
nations, we make use of an example, shown in Fig. 1, which
we also used in a small tutorial on HTN planning at the be-
ginning of our study. Assume you run a tourist agency and
want to plan holidays in Vancouver. Such a holiday bundle
consists of two tasks: the journey to Vancouver and some
sightseeing on-site. These two tasks in turn can be imple-
mented in different ways. One could take the car to Van-
couver or the plane, depending on where the clients live.
There are also multiple possibilities for sightseeing. As time
is short, the clients can only see a selection, which should be
chosen according to their interests. Your aim is to find such
holiday plans satisfying for clients and model it as a plan-
ning problem. As we described the problem, it consists of
multiple subtasks and some actions exclude others. In a clas-
sical planning problem we would need to make use of appro-
priate preconditions and effects to take these constraints into
account. In HTN planning, however, this can be modeled

quite naturally. Here, not only the actions known from clas-
sical planning (now called primitive tasks) exist, but also so-
called compound tasks. They represent possibilities of series
of further primitive or compound tasks, thereby embodying
some sort of problem hierarchy. The possibilities are given
by decomposition methods, which specify how compound
tasks were refined, which means that they were replaced by
other tasks. To solve an HTN planning problem one tries to
refine an initially given set of tasks (a task network), which
can be viewed as an unfinished plan. So, step by step always
one method of a compound task must be chosen and all of
its subtasks but no others must be inserted into the task net-
work until only primitive tasks remain that are executable
in the classical sense. In the example, the initial task would
be HolidayInVancouver. As it has only one method, there is
not much to choose, so the resulting task network consists of
the tasks TravelTo and Sightseeing, which in turn both have
two methods. Here one should take the ones such that the
resulting primitive tasks are executable, which depends on
the initial state. E.g., if the clients live far away, one should
pick takePlane.

More formally: A t.o. HTN planning domain D =
(F,A,C,M) consists of a finite set of facts F , primitive
tasks A, compound tasks C, and decomposition methods
M ⊆ C × T ∗, respectively, where T = A ∪ C. A primitive
task a = (prec, add , del) ∈ A is described—like the actions
in STRIPS planning—by its preconditions prec(a) ⊆ F and
its effects add(a), del(a) ⊆ F (the add, resp. delete effects).
Then, a ∈ A is applicable in a state s ∈ 2F if prec(a) ⊆ s.
If applicable to s and applied to it, it produces the successor
state s′ = (s \ del(a)) ∪ add(a). A sequence of primitive
tasks or actions ā = 〈a0 . . . an〉 with ai ∈ A for 0 ≤ i ≤ n
is applicable in a state s0 if and only if for all 0 ≤ i < n
ai is applicable in si, where si+1 results from applying ai
in si. A t.o. task network tn is a (possibly empty) finite se-
quence of tasks t̄ = 〈t0 . . . tn〉 ∈ T ∗. Compound tasks serve
as abstractions for primitive and/or compound tasks and can
be refined to a sequence of them specified by methods. A
method m = (c, t̄) ∈ M decomposes a compound task
c ∈ C within a task network tn1 = 〈t̄1 c t̄2〉 into a task
network tn2 = 〈t̄1 t̄ t̄2〉, written tn1 →c,m tn2. We write
tn → tn ′ if there is a (possible empty) sequence of methods
transforming tn into tn ′. We then call tn ′ a refinement of tn .
A t.o. HTN planning problem Π = (D, sI , tnI , g) contains
the domain D = (F,A,C,M), an initial state sI ∈ 2F ,
an initial task network tnI ∈ T ∗, and a goal description
g ⊆ F . Then, a sequence of actions tn = 〈a0 . . . an〉 ∈ A∗

is a solution to Π if and only if tnI → tn , tn is ap-
plicable in sI , and results in a goal state s ⊇ g. More-
over, the set of executability-enabling states of a compound
task c ∈ C is E(c) = {s ∈ 2F | ∃ ā ∈ A∗ : c →
ā and ā is applicable in s} and Rs(c) = {s′ ∈ 2F | ∃ ā ∈
A∗ : c → ā, ā is applicable in s and results in s′} is the set
of all states into which the execution of c in a state s ∈ 2F

can result (Olz, Biundo, and Bercher 2021).

Preconditions and Effects of Compound Tasks We have
seen that compound tasks do not have preconditions and ef-
fects in standard HTN planning. However, recently, Olz, Bi-



undo, and Bercher (2021) introduced various kinds of such
preconditions and effects, which were not specified by a do-
main modeler but follow from the primitive tasks deeper
down in the hierarchy. They can be inferred automatically
by analyzing the domain structure. We will briefly recap the
most important definitions since the aim of our study was
to test their potential for the comprehension of HTN plan-
ning domains. State-independent positive and negative ef-
fects of a compound task c are facts that hold or do not
hold, resp., after the successful execution of a refinement
of c independent of the state in which the task is executed,
i.e., eff +

∗ (c) := (
⋂

s∈E(c)

⋂
s′∈Rs(c)

s′) \
⋂

s∈E(c) s and
eff −∗ (c) :=

⋂
s∈E(c)(F \

⋃
s′∈Rs(c)

s′) if E(c) 6= ∅, oth-

erwise eff +/−
∗ (c) := undef . Mandatory preconditions of c

prec(c) :=
⋂

s∈E(c) s (if E(c) 6= ∅ and prec(c) := undef

otherwise) are facts that hold in every state for which there
exists an executable refinement. So, they are required in ev-
ery state in which a refinement of c shall be executed.

Applied to our example we can see that the state-
independent positive effects of HolidayInVancouver are
{atVancouver , happy}, the ones of Sightseeing are
{atVancouver}, and for TravelTo we get {happy}. The
sets of negative effects and mandatory preconditions are
empty. Certainly, it has not been difficult to determine the
information for the example. However, in general the struc-
ture of the domain can be more tangled such that it is
not easy to overview all combinations and the inference
gets harder. More precisely, determining whether a fact is
a state-independent effect is as hard as deciding whether
a t.o. HTN planning problem has a solution, which, de-
pending on the underlying hierarchy structure, ranges from
PSPACE-complete to EXPTIME-complete (Olz, Biundo,
and Bercher 2021).

User Study
We have set up an online study to test our main hypothe-
sis: Presenting inferred preconditions and effects of abstract
tasks increases the understandability of an HTN planning
domain. The online study is designed as between-subject ex-
periment with two groups, viz., the treatment group who gets
presented the inferred preconditions and effects and a con-
trol group who does not.

Methods
Materials The questionnaire starts out with asking for de-
mographic data, viz., age and gender. Next, the participants
are asked for their prior knowledge in computer science and
artificial intelligence. A tutorial on HTN planning based on
the Vancouver trip example is presented, where the distinc-
tion between compound and primitive tasks is introduced
to the participants. After the tutorial, the participants are
asked for a self assessment of their understanding of the
planning method on a 5-point Likert scale. Subsequently,
the first task is presented. The participants are introduced
to the robot arm-movement domain as depicted in Fig. 2.
They are informed about the initial state of the robot’s end-
effector (at(x3, y3)), the preconditions and effects of the

Figure 2: Depiction of the planning domain constituted by
nine end-effector positions.

Figure 3: The two task hierarchies of drawing an L and draw-
ing an U.

primitive task move(x, y, xNew , yNew), and about the de-
composition hierarchy for drawing the letter L, see Fig. 3.
The treatment group gets shown the compound tasks includ-
ing the inferred preconditions and effects, see Fig. 4. The
control group sees the same picture but with the precon-
ditions and effects removed, i.e., only the ellipses with the
compound tasks’ names. The first question that tests the par-
ticipant’s understanding reads: Which of these facts hold in
the final state? All nine facts of the form visited(x, y) are
listed along with a checkbox to be checked if the partici-
pant considers the respective fact to be true after the exe-
cution of the abstract task drawL. For the treatment group,
the answer to this question is immediately available due to
the inferred effects of the rightL compound task. The con-
trol group has to infer this information from the description
of the primitive tasks and the decomposition hierarchy. The
second question reads: Which of these facts hold in the final
state independent of whether the arm is at the top right or
left in the initial state? For the treatment group, the answer



Figure 4: The abstract tasks for drawing an L and drawing
an U, including inferred preconditions and effects.

again is immediately available through the inferred effects
of the drawL compound task. Next, the questionnaire asks
for a self assessment of the perceived difficulty of the task
(5-point Likert scale), and gives participants the opportunity
to give feedback on the difficulty via a text field. Afterwards,
the questionnaire asks for the effects of another compound
task drawU in the very same manner as for drawL. The de-
composition hierarchy of the drawU task is presented as de-
picted in Fig. 3, the abstract tasks along with their inferred
preconditions and effects is depicted in Fig. 4. Finally, par-
ticipants get a de-briefing where the trajectory of the robot’s
movement is shown as an animated GIF.

Participants We have recruited N = 200 participants via
prolific. We made a prescreening esnuring we only pick par-
ticipants with computer programming skills. One hundred
participants were directed to the questionnaire that contains
the inferred preconditions and effects (the treatment group),
and 100 participants were directed to the control question-
naire without this extra information. The mean age of par-
ticipants was 25 (SD = 8), 47 were female, 149 were male,
2 defined themselves as other, and 2 did not specify gender.
All participants were paid £2.80 for an estimated effort of
20 minutes to complete the questionnaire.

Results
We take the number of mistakes as a measure for how well
each participant has understood the HTN domain. For each
participant, we calculated how many wrong choices they
made regarding whether a fact holds or does not hold in
the final state. In support of our hypothesis, participants in
the treatment group (with inferred preconditions and effects)
in sum made less mistakes than participants in the control
group (without inferred preconditions and effects). The me-
dian difference is 2 (Mdntreatment = 6, Mdncontrol = 8).
A directed Wilcoxon rank-sum test indicates that this dif-
ference is statistically significant (W = 5724, p = .03).
Comparisons of the number of mistakes for each of the three
tasks—drawL relative to initial state (T1), drawL indepen-
dent of initial state (T2), and drawU (T3)—are shown in
Fig. 5. We generally find that there is a tendency for less
mistakes in the treatment group also within the sub-tasks,
but the difference does not reach significance. We did not

Figure 5: Number of mistakes for tasks T1-3 with compari-
son between the treatment group (G1) and the control (G2).

find any significant difference of self-assessed difficulty be-
tween the two groups. Qualitative analysis of the text-field
answers reveals that many participants had problems under-
standing the HTN planning setting.

Discussion
We found that participants who were presented the inferred
preconditions and effects made significantly less mistakes
than those in the control group. This supports the hypothesis
that presenting inferred preconditions and effects of abstract
tasks increases the understandability of an HTN planning
domain. However, the number of mistakes only differed sig-
nificantly between the two groups when the overall number
across all three tasks was looked at. Comparing the number
of mistakes between groups for each of the three tasks sep-
arately showed the same pattern as the overall comparison,
but the differences were not significant. There are several
possible explanations for this finding. First of all, the results
indicate that the task was perceived to be rather difficult by
most of the participants. The mean self-reported difficulty
was above average with values of 4.62 and 4.71 for the treat-
ment group and the control group respectively. In addition,
qualitatively analyzing the participants’ comments as to why
they found the task difficult or easy revealed that about two
third of the the participants reported that they had problems
with understanding or completing the task. The generally
high difficulty of the task could have decreased the possibly
beneficial effect of presenting inferred preconditions and ef-
fects, as in many cases participants were still unable to com-
plete the task even with the additional support. One reason
for the high perceived difficulty of the task could be an insuf-
ficient tutorial and explanations for the task. Therefore, fu-
ture studies should try to further improve the tutorial in order
to make the task clearer for all participants. Another possible
reason could be the population sample. For participants with
no prior experience in planning or even programming, the
task was possibly too difficult. Also, they might have got-
ten frustrated in the course of the study when not being able
to solve the task and therefore lost motivation, which might



be the reason for the many mistakes by the control group
especially in the last task.

Conclusions
We have reported results from a user study which indicates
that presenting inferred preconditions and effects for com-
pound tasks can help humans to comprehend HTN planning
domains. This result motivates future work on the develop-
ment of a knowledge engineering tool that integrates the in-
ference of such preconditions and effects. More research is
needed to better understand the conditions under which ad-
ditional information inferred from domain specifications can
aid the knowledge engineer.
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Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI 2014), 447–452. IOS Press.
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