
An Action Interface Manager for ROSPlan

Stefan-Octavian Bezrucav,1 Gerard Canal,2 Michael Cashmore,3 Burkhard Corves1

1 Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University
2 Department of Informatics, King’s College London

3 Department of Computer and Information Sciences, University of Strathclyde

Abstract

Task planning and task execution are two high-level robot
control modules that often are working with representations
of the scenario at different levels of abstraction. Thus, a
further mapping module is required to connect the abstract
planned actions to the robot-specific algorithms that must be
called in order to execute these actions.
We present a novel implementation of such a module that al-
lows a user to define this mapping for all actions through a
single configuration file. This greatly reduces the amount of
effort that is required to integrate an automated planner with
a robotic platform.
This module has been integrated as an Action Interface of the
automated task planning framework ROSPlan, and includes a
Graphical User Interface though which the configuration file
can be easily generated and updated. The use of the interface
is demonstrated in two scenarios: with robot actors possess-
ing only a single action, and a more complex scenario with
multiple agents and types of actions.

1 Introduction
Task planning is the process of determining the actions that
must be executed, the order in which they should be dis-
patched, and the actors that should carry them out in order
to achieve the set goals. This process is usually done on an
abstract and simplified representation of the considered sce-
nario. A complete representation of the environment, the ac-
tors, and their possible actions is not feasible for the plan-
ning process as the solvers are not capable of handling that
much information. On the other hand, the execution of the
planned actions, whether in a real or simulated scenario,
must consider these features and interactions. Thus, a flex-
ible, but yet robust mapping between the abstract planned
actions and their execution is required.

In this paper, we present the description of such a mapping
interface for actions of plans generated with automated plan-
ning approaches and written in the Planning Domain Defi-
nition Language (PDDL) (McDermott et al. 1998). Further-
more, we describe how it has been integrated in the state-of-
the-art task planning framework ROSPlan (Cashmore et al.
2015). The strength of this interface is that the mapping can
be completely defined through a single configuration file, re-
ducing the need for a hard-coded interface between PDDL
action and action implementation. Moreover, this configura-

tion can be generated through the use of a Graphical User
Interface.

In the next section we provide some background on the
Robot Operating System (Quigley et al. 2009) (ROS) that
is necessary to understand the particulars of interfacing ac-
tions. In Section 3, we analyze how different frameworks
handle this mapping process in simulated or real robotic ap-
plications working with ROS. In Sections 4 and 5 we present
the implementation of our action interface. The aim of this
interface is to reduce the effort required to interface PDDL
actions with a ROS action implementation, while maintain-
ing flexibility in plan execution. This benefit is demonstrated
in two simulated robotic scenarios described in Section 6.
The Graphical User Interface is presented in Section 7.

2 Background
The Robot Operating System (ROS) (Quigley et al. 2009)
is one of the standard meta-operating systems used in the
robotic community. It sustains the integration of differ-
ent algorithms in so-called ROS nodes and provides dif-
ferent structures for communicating data between these
nodes. The basic communication structures are the top-
ics, over which messages are routed according to the pub-
lish/subscribe paradigm, and the services that are based
on the request/reply paradigm (ROS.org 2021). In ad-
dition, actionlibs are a complex communication strategy
based on topics, that provide long-term non-blocking re-
quest/feedback/reply structures.

The robotic software realising the action execution con-
sidered in this paper is implemented in ROS as nodes,
each of which offers either a service or actionlib interface.
Through these communication structures, the algorithms in-
tegrated in each ROS node can be called or triggered and
responses can be received and further processed. If it is re-
quired to call or trigger multiple ROS nodes in a given se-
quence, this can be realized through a Moore Finite State
Machine (FSM) (Moore 1956), whose states represent such
calls or triggers and whose transitions are dependent on the
obtained responses.

Different task planning frameworks integrated in ROS use
the above presented communication structures to trigger the
concrete execution of the planned actions on each involved
actor. The ROSPlan framework (Cashmore et al. 2015) is
composed itself of different ROS nodes. The Plan Parsing

node is responsible for parsing the generated plan file in an
internal C++ representation and for sending it to the Dis-
patcher node. The latter selects actions to be executed and
sends them over a topic to Action Interface nodes that inter-
pret the command and then interface with the corresponding
robotic algorithms through services or actionlibs. Once the
respective executions have finished, the interface passes this
information to the dispatcher in form of an action feedback
message. The dispatcher then decides how to continue.

Action interfaces are typically implemented per robotic
algorithm with which they interface. Given the breadth of
different actions offered by different robots within ROS,
applying a framework for task planning such as ROSPlan
might require the implementation of many such interface
nodes. The contribution of this paper is a single light-weight
node that is able to interface any action through the use of a
configuration file.

3 Related Work
In this section we discuss how different frameworks handle
the mapping of planned actions to their implementations in
ROS. While there are many approaches to plan representa-
tion and execution discussed here, they must all handle the
problem of interfacing with the services and actionlibs pro-
vided by ROS libraries.

In the modified ROSPlan framework developed by Sanelli
et al. (2017) the generated plan is transformed into a Petri-
Net Plan (PNP) and then passed to the PNP executor. The
latter communicates with the software of the robot over the
PNP Service and PNP Action Server modules, through ser-
vices and actionlibs. Another modified version of the ROS-
Plan is presented in Harman et al. (2017). The authors have
adapted the framework to communicate not only with the
ROS nodes of the integrated robots, but also with IoT de-
vices from the environment. They have replaced the ROS-
Plan Action Interfaces nodes with Action Executor nodes,
but use the same communication strategies to the robots and
the IoT devices, over ROS actionlibs.

In other works, as in the MaestROB framework (Munawar
et al. 2018), the communication to the low-level robot con-
trollers is done over the Intu middleware and corresponding
ROS-Bridges. The communications structures are similar, as
they are based on the publisher/subscriber concept. PLAT-
INUm is another framework that uses the ROS-Bridges to
send commands to the Motion Planning module of the se-
rial manipulator and to receive the execution feedback from
it (Cesta, Orlandini, and Umbrico 2018). ROS-TiPlEx (Vi-
ola et al. 2019), is a tool that allows the interaction between a
planning and an expert in robotics for designing the planning
problem and corresponding low-level control strategies for
dispatching the planned actions. ROS-TiPlEx uses a time-
line planning approach, while the orchestration of the low-
level controls to ROS modules is based on FSMs. The tool
comes with a GUI that simplifies the configuration process
and improves the information sharing between the experts.

In Darvish et al. (2018), the FlexHRC architecture is pre-
sented. Similar to the above frameworks, it has a Robot Ex-
ecution Manager that receives the high-level plan and sends
individual actions to the Controller. The latter sends further

low-level commands to the robot itself, which returns sen-
sory data in form of a feedback, using similar communica-
tion structures to ROS. Furthermore, the Controller maps the
received actions to one low-level command or to a sequence
of low-level commands, similar to a FSM action interface. A
similar approach for grouping atomic actions in compound
skill, which are hierarchical and concurrent state-machines,
is utilized in (Johannsmeier and Haddadin 2017). In a sim-
ilar manner, in (Munawar et al. 2018) they refer to the exe-
cution triggered by only one call as a gesture, while the ex-
ecution of a sequence of such calls integrated in a structure
equivalent to an FSM is named a skill.

The contribution of this paper is a general solution, in
ROS, for the action interface component that all of these re-
lated approaches must implement. Specifically we present a
highly flexible action interface node for the ROSPlan frame-
work. Through the new action interface the concrete imple-
mentation of planned actions can be easily and intuitively
configured. The interface allows the creation and the modi-
fication of execution strategies, including complex ones such
as hierarchical finite state machines, in a user-friendly man-
ner. Only a configuration file is required, which can be cre-
ated through user interface, and no code must be generated.

4 ROSPlan Action Interface
In this section, we discuss the limitations of the existing
action interface used in ROSPlan. The initial implementa-
tion of the mappings between the abstract PDDL actions and
the low-level concrete ROS modules is through C++ code.
Users could also implement such custom interfaces between
ROSPlan and lower-level executors in the language of their
choice (i.e., Python) handling all the updates to the knowl-
edge base and planning state, which are handled in ROS-
Plan’s abstract C++ interface. For each action defined in the
PDDL domain file of the planning instance, one action in-
terface had to be defined as a ROS node. This action in-
terface integrates the concrete implementation that interacts
with the different ROS modules. For example, consider the
action interface of a move PDDL action. This contains the
generation of a ROS goal message and a call to the MOVE
BASE actionlib of the actor, which achieves that goal. Fur-
ther strategies, as cleaning the map in case that the first ex-
ecution command to MOVE BASE has failed, must also be
hard-coded into this interface.

Each planned PDDL action is a grounded action. This
means that it should be executed for the specific values of its
parameters. For example, the move action might have as pa-
rameters the actor agent, the starting pose from and the goal
pose to. This implies that the move action interface must be
able to interpret this and generate the correct ROS action-
lib goal for all possible variations of these parameters. This
challenge is also tackled in the hard-coded implementation,
often with the definition and the integration of an action-
specific configuration file. In the example case, the move ac-
tion interface takes as input a poses configuration file, where
all possible values of the to parameter are mapped to specific
coordinates required to generate the corresponding MOVE
BASE goal.

Although the actual action interfaces are apparently easy
to generate, they actually have some important limitations.
The most relevant one is in scalability. For each new PDDL
action defined in the domain file, a new ROS node must be
generated. Moreover, if the PDDL action has one or more
parameters whose values are relevant for the execution, a
specific configuration file must also be created.

Other issues are the reusability and readability. Each ac-
tion interface may require an implementation that is unique
to both the action implementation and the planning domain,
as well as a configuration file that is unique to the plan-
ning instance. Thus, it is hard to define and maintain a clear
structure that can be easily understood and modified by new
users, or reused in case new PDDL actions are defined. As a
consequence, code replication is common among interfaces
for similar actions. This also complicates the code maintain-
ability.

5 Action Interface Manager
The issues presented in the previous section motivated the
remodelling of the ROSPlan action interfaces. Their new
structure and the advantages that they bring with them are
detailed in the following.

Implementation
This new action interface has been implemented in Python.
Similar to ROSPlan’s sensing interface (Canal et al. 2019),
we have exploited the Python’s language reflection capabil-
ities to load at run-time all the required modules to run the
low-level controllers.

As depicted in Figure 1, we developed an action interface
manager (AIM) that loads the single configuration file and
creates the corresponding interfaces to different low-level
modules for each of the actions. This object is also in charge
of receiving the action dispatch messages that indicate which
(grounded) PDDL action should be executed, and starting
the corresponding interface. When the action execution fin-
ishes, the interface informs the dispatcher about the outcome
of the execution.

We have developed three action interface types: Action-
lib, Service, and FSM. However, our architecture has been
designed such that it is easy to extend to handle other types
of interfaces in a similar manner, such as to IoT devices, pro-
vided users write ROS wrappers for those APIs. In addition
to specifying the type of each interface, the configuration
file describes how each interface should construct service
requests and actionlib goals, as well as their expected feed-
backs or results. In this specification, PDDL parameters and
values stored in the ROS parameter server can be accessed
using the syntax ($pddlparam x) and ($rosparam
x). This allows the same action interface configuration to
scale to actions with many possible parameter variations
without requiring additional lines. The interface types are
described at a high-level below, followed by example con-
figurations. The complete specification of the configuration
file is presented in Appendix A.

Service and Actionblib action interfaces We provide in-
terface implementations to the basic ROS communication

Action
interface
Manager

Base Action
interface

Service
Action

interface

Action Lib
Action

interface

FSM
Action

interface

0,n

1

1,n

1

Figure 1: UML Diagram of the the Action Interface classes

protocols: actionlibs and services. They are both provide re-
quest/reply interaction, the former non-blocking and the lat-
ter blocking.

Both mechanisms require a request or goal to be achieved,
and send back a response with the result once finished.
The configuration file describes (a) the address of the ser-
vice/actionlib, (b) how the default requests are constructed
based on the PDDL parameters of the action, possibly us-
ing data from the ROS Parameter Server, (c) how these de-
fault requests may be overridden for specific combinations
of PDDL parameters, for which a different request may be
required, and (d) a description of the expected response to
a service or actionlib call that indicates the action has been
successfully executed.

When a planned action is dispatched, the AIM retrieves
the configuration to run the action, and passes it to the corre-
sponding interface. Then, the corresponding interface builds
the request message, calls the underlying interface, checks
its response when the action execution is completed, and re-
turns the result to the AIM. If it has been defined, the ex-
pected response is used to determine whether the PDDL ac-
tion has succeeded.

FSM action interface The third interface describes ac-
tion executions as a Finite State Machine (FSM), allowing
for more complex action definitions. The action interface
defines a set of named states that could be executed, each
linked to an action interface, including another nested FSM.
Each state defines the transitions to other states in the case of
successful or failed execution. Each transition defines both
the next state that will be executed (by name or to the special
state “goal state” that completes the FSM), and the PDDL
effects that will be applied before transitioning to the next
state. The formulation of an FSM action is described fully
by Bezrucav and Corves (Bezrucav and Corves 2020). The
use of the composite design pattern allows the reuse of ex-
isting interfaces, while remaining powerful enough to create
complex hierarchies of state machines.

Integration in ROSPlan
Figure 2 depicts the interactions with different components
of the ROSPlan framework. The new action interface is an
independent node subscribed to the ROSPlan Dispatcher
topics to be informed when actions need to be executed, and
publishes feedback with the result of the execution.

The new node is fully compatible with existing action in-
terfaces, which can be run alongside the new action interface
manager. The dispatch message of an action will be ignored
by the AIM if it is not in the configuration file, and will be
picked by the corresponding legacy action interface, which
will start the action execution.

PDDL
Plan

ROSPlan
Dispatcher

Action
Interfaces

Config

Action
Interface
Manager

ROS
Param Server

ROS
Module 1

ROS
Module n

...

Figure 2: Interactions between the the ROSPlan framework,
involved robots, ROS Parameter Server, plan file, and action
interface configuration.

6 Configuration Examples
All task planning frameworks for robotics created so far con-
tain a module through which the planned actions are mapped
to their concrete execution. Because there is no standard for
the development process of such a module, the implemen-
tations are diverse. This issue makes it hard to determine a
set of indicators with respect to which such modules from
different projects can be compared. With this motivation,
in this section we demonstrate exactly what is required to
map between the PDDL actions and their concrete execu-
tion with the AIM. Namely, the user needs to generate the
configuration file. Two examples of the configuration files
are presented:

1. The Navigation Scenario is a relatively simple scenario
with only one PDDL action.

2. In the Factory Scenario, the execution of seven different
complex actions are configured, for two different types of
actors in a factory.

Navigation Scenario
In the navigation scenario, one or more mobile base robots
are tasked with navigating around a known map. The goal

1 ;; Move between any two waypoints, avoiding terrain

2 (:durative-action goto_waypoint

3 :parameters (?v - robot ?from ?to - waypoint)

4 :duration (= ?duration (distance ?from ?to))

5 :condition (and

6 (at start (robot_at ?v ?from)))

7 :effect (and

8 (at end (visited ?to))

9 (at start (not (robot_at ?v ?from)))

10 (at end (robot_at ?v ?to)))

11)

Listing 1: The goto waypoint PDDL action of the Naviga-
tion Scenario.

1 actions:

2 - name: goto_waypoint

3 interface_type: actionlib

4 default_actionlib_topic: /($pddlparam

v)/move_base↪→
5 default_actionlib_msg_type:

move_base_msgs/MoveBase↪→
6 default_actionlib_goal:

7 target_pose.header.frame_id: "map"

8 target_pose.pose.position.x: ($rosparam

/wp/($pddlparam to))[0]↪→
9 target_pose.pose.position.y: ($rosparam

/wp/($pddlparam to))[1]↪→
10 target_pose.pose.orientation.w: 1

Listing 2: Complete configuration for the navigation sce-
nario.

of the automated planning problem is that each waypoint
has been visited once by any robot, and from a planning per-
spective is very simple. The single PDDL action is named
goto waypoint, and is depicted in Listing 1.

The execution of this action is carried out by the MOVE
BASE module. Listing 2 shows the complete configuration
file for the scenario, which connects the goto waypoint ac-
tion with MOVE BASE. The action configuration specifies
the actionlib topic for the action, based on the robot PDDL
parameter (line 4). The target coordinates of the MOVE
BASE action are set from values stored in the ROS parame-
ter server, using the PDDL parameter to as key (lines 8-9).
This is everything a user needs to supply to connect ROS-
Plan with MOVE BASE. As an informal comparison, the pre-
existing C++ interface to MOVE BASE consists of 192 lines
of code across two files and must be configured separately
for each robot.1 This stark contrast illustrates the utility of
the new interface: it is fast and low effort (in this case 10
lines) to interface actions and assemble an automated plan-
ning system for ROS.

1The preexisting MOVE BASE interface in the ROSPlan reposi-
tory https://github.com/KCL-Planning/rosplan demos/tree/master/
rosplan demos interfaces/rosplan interface movebase.

Factory Scenario
The AIM is demonstrated in the simulated Factory Scenario2

developed as part of the Sharework3 project. In this scenario
there are two agents, a human and an Autonomous Guided
Vehicle, which can execute seven different complex actions:
move, load, unload, attach tool, detach tool, manipulation
action 1 and manipulation action 2. For the move action only
one PDDL durative-action is defined, while for the other
six actions two PDDL durative-actions are created, one for
each type of actor. Furthermore, each of these actions re-
quires a multiple-step execution with failure-catching struc-
tures. Multiple-step execution means that the execution of
the planned action requires calling multiple ROS module
in sequence to successfully execute. Failure-catching struc-
tures means that for the safe and robust execution of the ac-
tion, failed execution of any step requires additional steps to
return the system to a safe state from which further planning
can occur. Given these requirements, a FSM action interface
is configured for each PDDL action.

An excerpt of the configuration for the move PDDL action
is depicted in Listing 3. As mentioned above, a finite state
machine is required to describe the sequence of basic actions
that need to be executed in order to reach the goal state or
to prevent error situations. In Listing 3 the first two states
of that FSM are presented. The execution of the first state
(lines 5-17) is independent on the grounding of the PDDL
move action. Therefore, the default values for the message
type, topic, goal and result are set (lines 7 - 12). The default
behaviour is to call a service named “action failure”. Such
services are helpful in simulations, where failures may need
to be generated on purpose.

Upon success of the first state (lines 14 - 15), the ex-
ecution is continued with the state ba1. The execution of
state ba1 (lines 18 - 31) is dependent on the grounded agent
and to parameters of the move PDDL action (line 21). This
state performs an actionlib call to MOVE BASE for a given
set of parameters. For example, given specific parameters of
the PDDL action (line 23) the goal description is generated
with coordinates corresponding to to and sent on topic cor-
responding to the agent (lines 26 - 28).

This is only a snippet of the entire configuration for the
move PDDL action that shows the high flexibility of the
new action interfaces in describing complex and robust be-
haviours for different execution variants. In order to bet-
ter comprehend this complexity, Figure 3 shows half of the
FSM action interface for the move PDDL action. In this
graph, states are represented as nodes and transitions be-
tween them are represented as edges. This picture also il-
lustrates the failure-catching behaviour. For example, in the
last displayed state move to goal reverse the entire PDDL
action is reversed to attempt to return the robot from an ob-
structed state to the initial position.

The implementation without the new AIM requires the
creation of 13 different Action Interface ROS nodes, each
with a specialized C++ class that contains the implementa-
tion of the function concreteCallback. In this function

2https://youtu.be/8Onh9SKF1yk
3https://sharework-project.eu/

1 actions:

2 - name: move

3 interface_type: fsm

4 states:

5 - name: start_state

6 interface_type: service

7 default_service_msg_type:

action_failure_srvs/ActionFailureSimulator↪→
8 default_service:

/action_failure/action_failure_simulator↪→
9 default_service_request:

10 probability: 0.0

11 default_service_response:

12 response: "success"

13 transitions:

14 succeeded:

15 - to_state: ba1

16 failed:

17 - to_state: error_state

18 - name: ba1

19 interface_type: actionlib

20 default_actionlib_msg_type:

move_base_msgs/MoveBase↪→
21 pddl_parameters: [agent, to]

22 parameter_values:

23 - values: [summit_xl_1, workbench11]

24 actionlib_topic: /summit_xl_1/move_base

25 actionlib_goal:

26 target_pose.header.frame_id:

"summit_xl_1/map"↪→
27 target_pose.pose.position.x: 0.6

28 target_pose.pose.position.y: -0.6

29 - values: [summit_xl_2, workbench12]

30 actionlib_topic: /summit_xl_2/move_base

31 actionlib_goal:

32 ...

Listing 3: Excerpt of the configuration file for the Factory
Scenario.

both the sequence of the required actions for a successful
execution of the planned PDDL action, as well as all the
recovery procedures must be hard coded. Furthermore, the
complex actions of the Factory Scenario, (i.e., move, load
or manipulation action 1) interface with both standard ROS
modules (i.e. MOVE BASE or MOVE IT) and also custom
modules. Each such module requires an unique implementa-
tion within the action interface. Last, in order to consider the
configurations for all possible grounded parameters, a con-
figuration file must be created for each of these 13 PDDL
actions. In comparison, using the AIM no code was written
outside of the main configuration file.

7 Graphical User Interface
While the AIM offers a low-effort approach to configure new
actions, and offers the ability to set up more complex FSM
actions, it can still require a very long configuration file. In
the configuration file for the 13 PDDL actions of the Factory
Scenario, almost 130 states are defined and the description
of each one can have up to 15 lines. To intuitively manage
this high amount of information, a Graphical User Interface

Figure 3: Part of the FSM Action Interface for the move ac-
tion represented as a graph. After one failed attempt to move
to goal, the navigation is retried. After two failed attempts
the navigation map is cleared and the agent attempts to re-
turn to the initial position.

(GUI) was also developed. It sustains the generation and the
maintenance of these configuration files and it is already in-
tegrated in the ROS ecosystem, as an rqt plug-in.

New action interfaces for the PDDL actions can be con-
figured with the GUI. For each the user can select its type
(FSM, actionlib or service). The actionlib and service inter-
faces can be directly configured by setting the default values
and, if required, the values for the specific grounded param-
eters. The FSM interfaces require first to define its states.
The states can be once again of type FSM, actionlib or ser-
vice, can be individually configured and, for each of them,
the transitions must be defined.

A screenshot of the GUI is depicted in Figure 4a. The
main window of the GUI displays the overview of the action
interfaces on the left. Those that are defined as FSMs may be
expanded in a tree view. On the right side, the fields for the
configurations are presented. Figure 4b presents the second
window of the GUI, used to set the configuration values for
the specific PDDL parameters.

Further functionalities of the GUI are the Import and
Export options, through which configuration files can be
loaded into the GUI and new or modified ones can be saved
on disk. In order to assist the development process of the
configuration for FSMs action interfaces, their structures can
be printed out directly from the GUI. For example, Figure 3
was generated with this functionality.4

4A video demonstration of the user interface is available online

(a) Main window

(b) Second window for the parameter-specific configuration

Figure 4: The two windows of the GUI through which the
different action interfaces can be configured

Execution Monitor
The AIM provides a single node from which to monitor the
progress of different action executions. A tool that monitors
this execution progress was created in the ROS ecosystem as
an rqt plug-in. It displays all the action interfaces, indepen-
dent of their type, and highlights which of them are active.
It also supports the asynchronous tracking of the execution
of different planned PDDL actions of the same type. This
feature is depicted in Figure 5, where the execution status of
two move PDDL actions, carried out by two different actors
from the Factory Scenario is shown.

8 Conclusion
In this paper we have introduced a new tool for the the map-
ping of planned PDDL actions to concrete execution strate-
gies and integrated it into the ROSPlan framework. The orig-
inal implementation requires the generation of many hard-
coded C++ files and configuration files. The new implemen-

https://youtu.be/7-nrpOe7hlg.

Figure 5: Monitoring of the PDDL actions execution through
the configured action interfaces: the execution of one
grounded PDDL action has reached the second state of the
corresponding FSM action interface (orange), while the par-
allel execution of another PDDL action of the same type, but
with different grounded parameters, has reached the fourth
state of the FSM action interface (cyan).

tation is much more flexible and user-friendly, as it only re-
quires the setup of a configuration file. In order to further
improve this process, we developed different tools already
integrated in the ROS ecosystem such as a GUI and Execu-
tion Monitor. The benefits the AIM have been illustrated on
two scenarios of different complexity.

The aim of this work is to lower the barrier for inexperi-
enced users of ROS and ROSPlan to build new scenarios that
integrate automated planning and robotics. In future work
we will continue to expand upon these tools to allow the user
to define more complex interfaces, for example that account
for durative constraints or non-deterministic effects.

Acknowledgements
The industrial scenario simulation used for the experimen-
tal demonstration was developed as part of the Sharework
project, that is funded through the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 820807. This work has also been partially
supported by the EPSRC grant THuMP (EP/R033722/1).

References
Bezrucav, S.-O.; and Corves, B. 2020. Improved AI
Planning for Cooperating Teams of Humans and Robots.

In International Conference on Automated Planning and
Scheduling workshop on Planning and Robotics (PlanROB).
Canal, G.; Cashmore, M.; Krivić, S.; Alenyà, G.; Maga-
zzeni, D.; and Torras, C. 2019. Probabilistic Planning for
Robotics with ROSPlan. In Towards Autonomous Robotic
Systems, 236–250. Springer International Publishing. ISBN
978-3-030-23807-0. doi:10.1007/978-3-030-23807-0\ 20.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Rid-
der, B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Car-
reras, M. 2015. ROSPlan: Planning in the Robot Operating
System. In Brafman, R., ed., Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, 333–341. Palo Alto, Calif.: AAAI Press. ISBN
9781577357315.
Cesta, A.; Orlandini, A.; and Umbrico, A. 2018. A Dy-
namic Task Planning System for Advanced Manufacturing
Scenarios. In Finzi, A.; Karpas, E.; Nejat, G.; Orlandini, A.;
and Srivastava, S., eds., International Conference on Auto-
mated Planning and Scheduling workshop on Planning and
Robotics (PlanROB), 65–74.
Darvish, K.; Bruno, B.; Simetti, E.; Mastrogiovanni, F.; and
Casalino, G. 2018. Interleaved Online Task Planning, Sim-
ulation, Task Allocation and Motion Control for Flexible
Human-Robot Cooperation. In 2018 27th IEEE Interna-
tional Symposium on Robot and Human Interactive Commu-
nication (RO-MAN), 58–65. IEEE. ISBN 978-1-5386-7980-
7. doi:10.1109/ROMAN.2018.8525644.
Harman, H.; Chintamani, K.; and Simoens, P. 2017. Ar-
chitecture for incorporating Internet-of-Things sensors and
actuators into robot task planning in dynamic environments.
In 2017 IEEE International Symposium on Robotics and In-
telligent Sensors (IRIS), 13–18. IEEE. ISBN 978-1-5386-
1342-9. doi:10.1109/IRIS.2017.8250091.
Johannsmeier, L.; and Haddadin, S. 2017. A Hierarchi-
cal Human-Robot Interaction-Planning Framework for Task
Allocation in Collaborative Industrial Assembly Processes.
IEEE Robotics and Automation Letters 2(1): 41–48. doi:
10.1109/LRA.2016.2535907.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. URL https://
homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf.
Moore, E. F. 1956. Gedanken-experiments on sequential
machines. Automata studies 34: 129–153.
Munawar, A.; Magistris, G. D.; Pham, T.-H.; Kimura, D.;
Tatsubori, M.; Moriyama, T.; Tachibana, R.; and Booch, G.
2018. MaestROB: A Robotics Framework for Integrated Or-
chestration of Low-Level Control and High-Level Reason-
ing. URL http://arxiv.org/pdf/1806.00802v1.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS: an
open-source Robot Operating System. In IEEE, ed., Inter-
national Conference on Robotics and Automation Workshop
on Open Source Software, volume 3.
ROS.org. 2021. ROS Concepts. URL http://wiki.ros.org/
ROS/Concepts.

Sanelli, V.; Cashmore, M.; Magazzeni, D.; and Iocchi, L.
2017. Short-Term Human-Robot Interaction through Condi-
tional Planning and Execution. In Barbulescu, L., ed., Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling. Palo Alto, California,
USA: AAAI Press. ISBN 978-1577357896.
Viola, C. L.; Orlandini, A.; Umbrico, A.; and Cesta, A.
2019. ROS-TiPlEx: How to make experts in A.I. Planning
and Robotics talk together and be happy. In 2019 28th
IEEE International Conference on Robot and Human Inter-
active Communication (RO-MAN), 1–6. doi:10.1109/RO-
MAN46459.2019.8956417.

Appendix A. Action Interface Configuration
The BNF for the configuration file is given below in four
parts: the top-level structure of the file, and then the details
of the three action interface types (actionlib, service, and
FSM).

Top-level Structure
<configuration> ::= actions:

<action>*
<action> ::= - name: <var>

<service-action>|<actionlib-action>|<fsm-action>
<var> ::= <string>|<rosparam>|<pddlparam>|<var>*
<rosparam> ::= ($rosparam <var>) /* Use value from ROS param server */
<pddlparam> ::= ($pddlparam <var>) /* Use value from PDDL parameter */

Actionlib Interface
The actionlib interface configuration is defined below, and an example is shown in Listing 2. Optionally, a default actionlib
topic, message type, goal, and result can be set. If no default is set, then it is expected that these will be set per PDDL parameter
instead. The optional parameter list params is a set of variables matching the parameter labels of the PDDL operator. Each
parameter configuration then specifies the objects bound to those parameters, and a topic, message type, or goal that will
override the default configuration.

<actionlib-action> ::= interface_type: actionlib
[default_actionlib_topic: <var>]
[default_actionlib_msg_type: <var>]
[default_actionlib_goal: <ros-msg>]
[default_actionlib_result: <ros-msg>]

::= pddl_parameters: [<var>*] /* PDDL parameters */
parameter_values:
<al-param-config>*

<al-param-config> ::= - values: [<var>*] /* PDDL objects */
[actionlib_topic: <var>]
[actionlib_msg_type: <var>]
[actionlib_goal: <ros-msg>]
[actionlib_result: <ros-msg>]

<ros-msg> ::= <ros-msg-assign>|<ros-msg>*
<ros-msg-assign> ::= <var>: <var>

Service Interface
The configuration for service action interfaces is described below. Similar to the actionlib interface, a default service, service
type, request, and result can be set. These defaults can be overridden by specified action parameters.

<actionlib-action> ::= interface_type: service
[default_service: <var>]
[default_service_type: <var>]
[default_service_request: <ros-msg>]
[default_service_result: <ros-msg>]
pddl_parameters: [<var>*] /* PDDL parameters */
parameter_values:
<srv-param-config>*

<srv-param-config> ::= - values: [<var>*] /* PDDL objects */
[service: <var>]
[service_type: <var>]
[service_request: <ros-msg>]
[service_result: <ros-msg>]

FSM Interface
<fms-action> ::= interface_type: fsm

states:
<fsm-state>*

<fsm-state> ::= - <service-action>|<actionlib-action>|<fsm-action>
transitions:

succeeded:
- to-state: <fsm-transition>
failed:
- to-state: <fsm-transition>

<fsm-transition> ::= <var>|start_state|goal_state|error_state

An Interactive Approach for the Analysis and Shielding of Partially Observable
Monte Carlo Planning Policies

Giulio Mazzi, Giovanni Bagolin, Alberto Castellini, Alessandro Farinelli
Università degli studi di Verona,

Dipartimento di Informatica,
Strada Le Grazie 15, 37134, Verona, Italy

giulio.mazzi@univr.it, giovanni.bagolin@studenti.univr.it, alberto.castellini@univr.it, alessandro.farinelli@univr.it

Abstract

Partially Observable Monte-Carlo Planning (POMCP) is a
powerful online algorithm able to generate approximate poli-
cies for large Partially Observable Markov Decision Pro-
cesses. The online nature of this method supports scalabil-
ity by avoiding complete policy representation. This favors
the use of this technique for planning in robotic applica-
tions. However, the lack of an explicit representation hin-
ders interpretability. In this work, we present a methodol-
ogy based on Satisfiability Modulo Theory (SMT) for ana-
lyzing POMCP policies by inspecting their traces, namely,
sequences of belief-action-observation triplets generated by
the algorithm. The methodology is used in an iterative pro-
cess of trace analysis consisting of three main steps, i) the
definition of a question by means of a parametric logical for-
mula describing (probabilistic) relationships between beliefs
and actions, ii) the generation of an answer by computing the
parameters of the logical formula that maximizes the number
of satisfied clauses (solving a MAX-SMT problem), iii) the
analysis of the generated logical formula and the related de-
cision boundaries for identifying unexpected decisions made
by POMCP concerning the original question. The result can
be used to build a shield that blocks unexpected decisions in
future POMCP runs. A graphical user interface is here pre-
sented, which supports the iterative process facilitating the in-
teraction between the user and the system, the interpretability
of the results, and the generation of shields. The methodol-
ogy and the related tools are applied to a real-world problem
concerning mobile robot navigation.

1 Introduction
Planning in a partially observable environment is an impor-
tant problem in artificial intelligence and robotics. A pop-
ular framework to model such problem is that of Partially
Observable Markov Decision Processes (POMDPs) (Cas-
sandra, Littman, and Zhang 1997) which represent dy-
namic systems where the state is not directly observable
but must be inferred from observations. Computing opti-
mal policies, namely functions that map beliefs (i.e., prob-
ability distributions over states) to actions, in this context
is PSPACE-complete (Papadimitriou and Tsitsiklis 1987).
However, recent approximate and online methods allow han-
dling many real-world problems. A pioneering algorithm for
this purpose is Partially Observable Monte-Carlo Planning
(POMCP) (Silver and Veness 2010) which uses a particle

filter to represent the belief and a Monte-Carlo Tree Search
based strategy to compute the policy online. The local rep-
resentation of the policy made by this algorithm however
hinders the interpretation and explanation of the policy it-
self. In fact, POMCP never represents the entire policy but it
generates online the (approximated) Q-function for the cur-
rent belief.

Explainability is instead becoming a key feature of artifi-
cial intelligence systems (Gunning 2019), robotics (Setchi,
Dehkordi, and Khan 2020), and planning (Fox, Long, and
Magazzeni 2017) since in several contexts humans need to
understand why specific decisions are taken by the agent.
The presence of erroneous behaviors in these tools (due, for
instance, to the wrong setup of internal parameters) may
have a strong impact on autonomous cyber-physical and
robotic systems that interact with humans, and detecting
these errors in automatically generated policies is very hard
in practice. For this reason, improving policy explainability
is fundamental.

In this work, we present a methodology that can be used to
interpret POMCP policies, with a focus on detecting unex-
pected behavior compared to a set of high-level assumptions
that the designer believes to be true. This is based on the
XPOMCP methodology presented in (Mazzi, Castellini, and
Farinelli 2021a), in which an expert provides qualitative in-
formation on system behaviors (e.g., “the robot should move
fast if it is highly confident that the path is not cluttered”)
and the proposed methodology supplies quantitative details
of these statements based on evidence observed in traces
(e.g., the proposed approach could say that the robot usu-
ally moves fast if the probability to be in a cluttered segment
is lower than 1%). Experts are however also interested in
identifying states in which the planner does not respect their
assumptions. The proposed methodology supports this kind
of analysis. It allows expressing partially defined assump-
tions employing logical formulas, called rule templates. The
methodology then computes parameters of rule templates
from traces using a Satisfiability Modulo Theory (SMT)
solver. In this work we present also a web application that
supports both the generation of the logical formulas by the
expert and the analysis of the results by means of a graphical
interface

This work proposes three main contributions to the state-
of-the-art, which we summarize in the following:

• we propose an approach for analyzing properties of traces
generated by POMCP. A logical rule is first specified by
human experts, then variables are instantiated by an SMT-
solver, and the achieved logical formula represents trace
properties;

• we present a graphical user interface that supports the
overall policy analysis process, from template generation
to the trace analysis using the logical formula;

• we evaluate the methodology on a robotic navigation
problem.

In Section 2 we highlight the main differences between the
proposed approach and related works in the literature. Sec-
tion 3 provides a formalization of the XPOMCP methodol-
ogy and a description of the graphical user interface. In Sec-
tion 4, we present a detailed analysis of a robotic navigation
problem using the proposed methodology. Finally, Section 5
draws conclusions and sketches directions for future work.

2 Related Works
We have identified two main research topics with relation-
ships with our method and goals, namely, policy verification
and explainable planning. Formal logic is strongly employed
in verification of machine learning and reinforcement learn-
ing algorithms.

In recent years, SMT-based approaches have been devel-
oped to verify the safety of neural networks (Huang et al.
2017; Katz et al. 2017; Bunel et al. 2018). These method-
ologies encode the neural network into SMT formulas and
check if safety properties hold on these formulas, or they
provide counterexamples for properties that are not satis-
fied. To the best of our knowledge, there is no equivalent
approach to verify that a specific property holds on policies
generated by POMDPs, and in particular by POMCP. A pos-
sibility to use SMT-based approaches to verify POMCP poli-
cies is to encode the POMDP problem in one of the logic-
based frameworks presented in (Cashmore et al. 2016; Nor-
man, Parker, and Zou 2017; Wang, Chaudhuri, and Kavraki
2018; Bastani, Pu, and Solar-Lezama 2018), where property
guarantees can be formally proved. However, these frame-
works use SMT-solvers to build a policy that satisfies prede-
fined properties while we use a MAX-SMT representation
of the problem with a different goal, namely to evaluate if
the policy satisfies expert assumptions. Namely, we aim at
enhancing policy explainability without altering the policy
itself.

A work in which verification is achieved by exploiting a
simplified representation of the problem provided by an ex-
pert is (Zhu et al. 2019). It describes a method for verify-
ing properties related to the safety of fully observable sys-
tems modeled by Markov Decision Processes (MDPs). The
approach works on a pre-trained neural network represent-
ing a black-box policy. It uses a linear formula summarizing
the policy behavior to allow using off-the-shelf verification
tools. This differs from our work for two reasons: first, we
work on partially observable environments, and our logical
formulas work on beliefs instead of states; second, in (Zhu
et al. 2019) the formula is used as an input to the verification

Figure 1: Methodology overview.

tool while we use it to interact with humans and improve
policy explainability.

Explainable Artificial Intelligence (XAI) (Gunning 2019)
is a rapidly growing research field focusing on human inter-
pretability and understanding of artificial intelligence (AI)
systems. In particular Explainable planning (XAIP) (Cash-
more et al. 2019; Fox, Long, and Magazzeni 2017; Langley
et al. 2017; Anjomshoae et al. 2019) aims at investigating
planning tools that come with justifications for the decisions
they make. In our work, we use the high-level insight pro-
vided by the user to build an explanation of the policy in
use. A particularly interesting kind of questions analyzed in
XAIP are known as contrastive question (Fox, Long, and
Magazzeni 2017). They are used to structure the interac-
tion between humans and the AI systems to be explained. In
these questions, the expert asks the agent question as “Why
have you made this decision instead of this other one, that
I believe could be a better option?”and the system answers
motivating its choice instead of the alternative one. These
questions are, however, very difficult to answer in online
frameworks as POMCP (Castellini et al. 2020) because the
information required to build the answer may not be avail-
able to the agent at run time. We, therefore, do not use con-
trastive questions but ground the interaction between human
and planner on logical formulas that are framed by the ex-
pert, using her/his insight, and then instantiated by the SMT
solver according to the observed behavior of the system. The
identification of decisions that violate user’s expectation al-
lows then to generate an iterative process in which the ex-
pert, that can refine the rule interactively, acquires new un-
derstanding about the policy.

3 Methods
In this section, we provide a full description of the proposed
methodology and a presentation of the web application that
implements it. We also present a running example concern-
ing a mobile robot to show a direct application of the most
important concepts.

3.1 Method overview
The proposed methodology, called XPOMCP, is summa-
rized in Figure 1. It leverages the expressiveness of logical
formulas to represent specific properties of the investigated
policy. As a first step, a logical formula with free variables is

defined (see box 2 in Figure 1) to describe a property of in-
terest of the policy under investigation. This formula, called
rule template, defines a relationship between some proper-
ties of the belief (e.g., the probability to be in a specific state)
and an action. Free variables in the formula allow the ex-
pert to avoid quantifying the limits of this relationship. For
instance, a template saying “Do this when the probability
of avoiding collisions is at least x”, with x free variable, is
transformed into “Do this when the probability of avoiding
collisions is at least 0.85”. These free variables are deter-
mined by analyzing a trace (see box 1). In the following,
we call trace a set of runs performed by POMCP on a spe-
cific problem. Each run is a set of steps, and each step corre-
sponds to an action performed by the agent having a belief
and receiving an observation from the environment.

By defining a rule template the expert provides useful
prior knowledge about the structure of the investigated prop-
erty. Hence, the rule template defines the question asked by
the expert. The answer to this question is provided by the
SMT solver (see box 3), which computes optimal values for
the free variables to make the formula explain as many ac-
tions as possible in the observed traces.

The rule (see box 4) provides a human-readable local rep-
resentation of the policy function that incorporates the prior
knowledge specified by the expert, and it allows to split trace
steps into two classes, namely, those satisfying the rule and
those not satisfying it. The approach, therefore, allows iden-
tifying unexpected decisions (see box 6), related to actions
that violate the logical rule (i.e., that do not verify the ex-
pert’s assumption). The quantification of the violation, i.e.,
the distance between the rule boundary and the violation,
also supports the analysis because it provides an explicit way
to explain the violations themselves, which could even be
completely unexpected due to expert imprecise knowledge
or policy errors.

3.2 The eXplainable POMCP Web Application
We present a web application that can be used to interact
with the XPOMCP methodology. The front-end is written in
JavaScript and uses the React library, the back-end is imple-
mented using Python and the Flask library. XPOMCP em-
ploys the Z3 SMT-solver (De Moura and Bjørner 2008) to
compute parameters for the rule templates. Figure 2a shows
the homepage of the application. The Example link can be
used to load a predefined example, or it is possible to use
the Write a rule button to build a new rule from scratch.
Right now, two domains are defined: tiger that presents the
famous POMDP problem (Cassandra, Littman, and Zhang
1997), and velocity regulation that presents the robotic prob-
lem described in Section 3.3.

Figure 2b shows the template writing process. After click-
ing the Write a rule button, a sequence of pop-up panels
presents questions on the template that the user wants to
create. It asks which domain to consider (tiger or velocity
regulation), which trace to use (it is possible to load a new
trace file or use one of the traces already stored in the sys-
tem), the action described by the rule, and a logical formula
that describe the expert insight on when to select that spe-
cific actions. The logical formula is in disjunctive normal

form and contains comparisons between properties of the
trace and free-variables. The web interface makes it easy to
create and reuse free-variables and to access the data stored
in the trace. It is also possible to add hard constraints using
the Hard Constraint button, as described in Section 3.6. Fig-
ure 2c presents an example of complete rule for the tiger do-
main. When the template is complete, the Send Rule button
can be used to compute the rule parameters on the specific
trace. The back-end uses XPOMCP to compute values for
the free variables by analyzing the trace, and the results are
presented in Figure 2d. The upper part of the page shows
the final rule (i.e., the rule template with all its free variables
instantiated). Under the rule, the page presents a list of un-
satisfiable steps (on the left) and a graphical representation
of the rule (right). The list of unsatisfiable steps is ordered in
decreasing values of Hellinger distance (H2), a metric that
quantifies the severity of an unsatisfiable step, as described
in Section 3.7. They also show the run, the step, the action,
and the belief of the steps. The graphical representation of
the rule shows columns with the distribution of probabili-
ties. All the unsatisfiable steps are also printed inside the
graphical representation of the rule and can be selected to
further analyze these problematic steps. For example, if we
select the first unsatisfiable step, it shows that this is an un-
expected decision because the agent decided to listen even if
it was 96.7% sure that the tiger is in the left door (with this
belief, the correct action is to open the right door). Section 4
presents other examples of the GUI.

3.3 Running example: velocity regulation in
mobile navigation

We present a problem of velocity regulation in robotic plat-
forms as a case study to show how XPOMCP works. The
same problem is used also in Section 4 to present a use case
of the software. A robot travels on a pre-specified path di-
vided into eight segments which are in turn divided into sub-
segments of different sizes, as shown in Figure 3. Each seg-
ment has a (hidden) difficulty value among clear (f = 0,
where f is used to identify the difficulty), lightly obstructed
(f = 1) or heavily obstructed (f = 2). All the subseg-
ments in a segment share the same difficulty value, hence
the hidden state-space has 38 states. The goal of the robot is
to travel on this path as fast as possible while avoiding col-
lisions. In each subsegment, the robot must decide a speed
level a (i.e., action). We consider three different speed lev-
els, namely slow, medium, and fast. The reward received for
traversing a subsegment is equal to the length of the subseg-
ment multiplied by 1 for low speed, 2 for medium speed, and
3 for fast speed. The higher the speed, the higher the reward,
but a higher speed suffers a greater risk of collision (see the
collision probability table p(c = 1 | f, a) in Figure 3.c). The
real difficulty of each segment is unknown to the robot (i.e.,
hidden part of the state), but in each subsegment, the robot
receives an observation, which is 0 (no obstacles) or 1 (ob-
stacles) with a probability depending on segment difficulty
(see Figure 3.b). The state of the problem contains a hidden
variable (i.e., the difficulty of each segment), and three ob-
servable variables (current segment, subsegment, and time
elapsed since the beginning).

(a) Homepage of the XPOMCP Web App (b) Creation of a rule template

(c) Complete rule template
(d) Example of results

Figure 2: Usage of the XPOMCP Web App.

We are interested in a rule describing when the robot trav-
els at maximum speed (i.e., a = fast). We expect that the
robot should move at that speed only if it is confident enough
to be in an easy-to-navigate segment, but this level of con-
fidence varies slightly from segment to segment (due to the
length of the segments, the elapsed times, or the relative dif-
ficulty of the current segment in comparison to the others).
To obtain a rule that is compact but informative, we want
the rule to be a local approximation of the behavior of the
robot, thus we only focus on the current segment without
considering the path as a whole when we write this rule. The
task of XPOMCP is to find the actual bounds on the prob-
ability distribution (i.e., belief) that the POMCP algorithm
uses to make its decisions and to highlight the (unexpected)
decisions that do not comply with this representation. The
algorithm identifies a set of notable exceptions in which the
robot decides to move at high speed even if it was not certain
that the segment was free of obstacles.

3.4 Partially Observable Monte-Carlo Planning
A Partially Observable Markov Decision Process
(POMDP) (Kaelbling, Littman, and Cassandra 1998)
is a tuple (S, A, O, T, Z, R, γ), where S is a set of

partially observable states, A is a set of actions, Z is
a finite set of observations, T : S × A → Π(S) is the
state-transition model, with Π(S) probability distribution
over states, O: S × A → Π(Z) is the observation model,
R: S × A → R is the reward function and γ ∈ [0, 1] is a
discount factor. An agent must maximize the discounted
return E[

∑∞
t=0 γ

tR(st, at)]. A probability distribution
over states, called belief, is used to represent the partial
observability of the true state. To solve a POMDP it is
required to find a policy, namely a function π: B → A that
maps beliefs B into actions.

We use Partially Observable Monte-Carlo Planning
(POMCP) (Silver and Veness 2010) to solve POMDPs.
POMCP is an online algorithm that solves POMDPs by
using Monte-Carlo techniques. The strength of POMCP is
that it does not require an explicit definition of the transi-
tion model, observation model, and reward. Instead, it uses
a black-box to simulate the environment. POMCP uses a
Monte-Carlo Tree Search (MCTS) at each time-step to ex-
plore the belief space and select the best action. Upper
Confidence Bound for Trees (UCT) (Kocsis and Szepesvári
2006) is used as a search strategy to select the subtrees to
explore and balance exploration and exploitation. The be-

(a) Map
f p(o = 1 | f)

clear 0.0
lightly obstr. 0.5
heavily obstr. 1.0

(b) Occupancy model
f a p(c = 1 | f, a)

clear slow 0.0
clear medium 0.0
clear fast 0.028

lightly obstr. slow 0.0
lightly obstr. medium 0.056
lightly obstr. fast 0.11
heavily obstr. slow 0.0
heavily obstr. medium 0.14
heavily obstr. fast 0.25

(c) Collision model

Figure 3: Main elements of the POMDP model for the ve-
locity regulation problem. (a) Path map. The map presents
the length (in meters) for each subsegment. (b) Occupancy
model p(o | f): probability of observing a subsegment
occupancy given segment difficulty. (c) Collision model
p(c | f, a): collision probability given segment difficulty and
action.

lief is implemented as a particle filter, which is a sampling
over the possible states that is updated at every step. At each
time-step a particle is selected from the filter, each particle
represents a state. This state is used as an initial point to
perform a simulation in the Monte-Carlo tree. Each simula-
tion is a sequence of action-observation pairs and it collects
a discounted return, and for each action, we can compute
the expected reward that can be achieved. The particle filter
is updated after receiving an observation. If required, new
particles can be generated from the current state through a
process of particle reinvigoration.

3.5 SMT and MAX-SMT
The problem of reasoning on the satisfiability of formulas in-
volving propositional logic and first-order theories is called
Satisfiability Modulo Theory (SMT). In XPOMCP, we use
propositional logic and the theory of linear real arithmetic to
encode the rules that describe the behavior of policies, and
we use Z3 (De Moura and Bjørner 2008) to solve the SMT
problem. We encode our formulas as a MAX-SMT prob-
lem, which has two kinds of clauses, namely, hard, that must
be satisfied, and soft that can be satisfied. A model of the
MAX-SMT problem hence satisfies all the hard clauses and

as many soft clauses as possible, and it is unsatisfiable only
when hard clauses are unsatisfiable. Our rules are intended
to describe as many decisions as possible among those taken
by the policy hence MAX-SMT provides a perfect formal-
ism to encode this requirement. The Z3 solver is used to
solve the MAX-SMT problem (Bjørner, Phan, and Flecken-
stein 2015). Subsection 3.6 presents the details of this en-
coding.

The key ingredient for the MAX-SMT formulation are
rules and rule templates. A rule template represents the
question the expert wants to investigate. It is a set of first-
order logic formulas without quantifiers explaining some
properties of the policy, and has the following form:

r1 : select a1 when (
∨

i1
subformulai1);

. . .

rn : select an when (
∨

in
subformulain);

[where
∧

j
(requirementsj);]

(1)

where r1, . . . , rn are action rule templates. A subformula is
defined as

∧
kps ≈ xk, where ps is the probability of state

s, symbol ≈∈ {<,>,≥,≤}, and xk is a free variable that
is automatically instantiated by the SMT solver analyzing
the traces (when the problem is satisfiable). In general, bold
letters with an overline (e.g., x, y) are used to identify free
variable while italic letters (e.g., p, ai) are used for fixed val-
ues read from the trace. The where statement can be used
to specify an optional set of hard requirements that can take
different forms, such a the definition of a minimum value
(e.g., x0 ≥ 0.9) or a relation (e.g., x2 = x3). These are used
to define prior knowledge on the domain which is used by
the rule synthesis algorithm to compute optimal parameter
values (e.g., equality between two free-variables belonging
to different rules can be used to encode the idea that two
rules are symmetrical).

For instance, in our running example the actions (i.e.,
low, medium, high) represent speeds . Each step t con-
tains the partially observable state (segment t, subsegment t,
difficultyt) and the selected action at. Since difficulty is a
probability distribution on 38 = 6561 states we do not use
this value directly. For the sake of brevity, we introduce the
diff function which takes a distribution on the possible
difficulties distr, a segment seg, and a required difficulty
value d as input and returns the probability that segment s
has difficulty d in the distribution distr. We can now write
the rule template:

rf : select afast when p(low) ≥ x1 ∨
p(high) ≤ x2;

where x1 ≥ 0.9 ∧
p(low) = diff(distr, seg, clear) ∧
p(high) = diff(distr, seg, heavy)

(2)

The first literal of rf specifies that we select action afast
if the probability to be in a segment with low difficulty is
greater than a certain threshold, where with x1 ≥ 0.9 in the

requirement we declare that this threshold must be at least
0.9 (an information that we expect to be true), while the sec-
ond is an upper bound on the belief that the current segment
is hard (i.e., p(high) ≤ x2). To encode Equation (2), for
each step t in the trace we add the clauses:
• p(low)t = diff(difficultyt, segment t, clear),

• p(high)t = diff(difficultyt, segment t, heavy)

• if the robot performs action afast (moving fast), then the
formula (p(low)t ≤ x1 ∨ p(high)t ≥ x2) is added to the
problem,

• if the robot performs a different action (i.e., aslow or
amedium) then the formula ¬(p(low)t ≤ x1∨p(high)t ≥
x2) is added.

Finally, we add the constraints:
• (x1 ≥ 0.0 ∧ x1 ≤ 1.0) ∧ (x2 ≥ 0.0 ∧ x2 ≤ 1.0) to ensure

that x1 and x2 are probabilities,
• x1 ≥ 0.9 to force the hard constraint.
A learned rule is a rule template with all free variables in-
stantiated (e.g., x1, x2). For a rule to properly describe a
trace generated by a policy, all steps in the trace should sat-
isfy the rule (i.e., the action defined in the rule should be
taken in a step if and only if the belief satisfies the rule con-
ditions). This is however almost impossible in real traces
because the policy is usually a complex formula. For this
reason, we implemented a soft mechanism to check clause
satisfiability, as described in Subsection 3.6. In our example,
from rule template (2) and a trace we obtain the learned rule:

rf : select afast when p(low) ≥ 0.945 ∨
p(high) ≤ 0.07;

while an example of output provided by XPOMCP when a
rule is violated is:

Violation in run 2, step 4:

- Selected action: afast

- Belief:p(low) = 0.38,

p(medium) = 0.31,

p(high) = 0.31.

3.6 Rule Synthesis
Rule synthesis is performed by Algorithm 1 that takes as
input a trace ex generated by POMCP and a rule template r.
The output is the rule r with all free variables instantiated to
satisfy as many steps of ex as possible. The solver is a Z3
instance used to find a model for the formulas.

The solver is first initialized and hard constraints are
added in line 1 to force all parameters in the template to
satisfy the probability constraint (i.e., to have value in range
[0, 1]). Then in the foreach loop in lines 2–10 the algorithm
maximizes the number of steps satisfying the rule template
r. In particular, for each action rule ra, where a is an action,
and for each step t in the trace ex the algorithm first gen-
erates a literal la,t (line 4) which is a dummy variable used
by MAX-SMT to satisfy clauses that are not satisfiable by a
free variable assignment. This literal is then added to the cost

Algorithm 1: RuleSynthesis
Input: a trace generated by POMCP ex

a rule template r
Output: an instantiation of r

1 solver ← probability constraints for thresholds in r;
2 foreach action rule ra with a ∈ A do
3 foreach step t in ex do
4 build new dummy literal la,t;
5 cost← cost ∪ la,t;
6 compute pt0, . . . , p

t
n from t.particles;

7 ra,t ← instantiate rule ra using pt0, . . . , p
t
n;

8 if t.action 6= a then
9 ra,t ← ¬(ra,t);

10 solver.add(la,t ∨ ra,t);

11 solver.minimize(cost);
12 goodness← 1− distance to observed boundary;
13 model← solver.maximize(goodness);
14 return model

objective function (line 5) which is a pseudo-boolean func-
tion collecting all literals. This function essentially counts
the number of fake assignments that correspond to unsat-
isfied clauses. Afterwards, the belief state probabilities are
collected from the particle filter (line 6) and used to instati-
ate the action rule template ra (line 7) by substituting their
probability variables pi with observed belief probabilities.
This generates a new clause ra,t which represents the con-
straint for step t. This constraint is considered in its negated
form ¬(ra,t) if the step action t.action is different from a
(line 9) because the clause ra,t should not be true.

The set of logical formulas of the solver is then updated
by adding the clause la,t ∨ ra,t. In this way the added clause
can be satisfied in two ways, namely, by finding an assign-
ment of the free variables that makes the clause ra,t true (the
expected behavior) or by assigning a true value to the literal
la,t (unexpected behavior). The second kind of assignment
however has a cost since the dummy variables have been in-
troduced only to allow partial satisfiability of the rules. In
line 11, in fact, the solver is asked to find an assignment of
free variable which minimizes the cost function, which con-
siders the number of dummy variables assigned to true. This
minimization is a typical MAX-SMT problem in which an
assignment maximizing the number of satisfied clauses is
found. Since there can be more than a single assignment of
free variables that achieves the MAX-SMT goal, the last step
of the synthesis algorithm (lines 12–13) concerns the identi-
fication of the assignment which is closer to the behavior ob-
served in the trace. This problem is solved by maximizing a
goodness function that moves the free variables assignment
as close as possible to the numbers observed in the trace,
without altering the truth assignment of the dummy literals.
Notice that this problem concerns the optimization of real
variables and it is solved by the linear arithmetic module.

3.7 Identification of unexpected decisions
A key element of XPOMCP concerns the characterization of
steps that fail to satisfy the rule. They can be seen as unex-
pected decisions, namely, exceptions to the general rule that
the expert expects to be true. They can provide useful in-
formation for policy interpretation. We define two important
classes of exceptions, namely, those related to the approxi-
mation made by the logical formula and those actually due
to an unpredicted behavior (e.g., an error in the POMCP al-
gorithm, or a decision that cannot be described with only
local information). We expect exceptions in the first class to
fall quite close to the rule boundary, while exceptions in the
second class to be more distant from the boundary. In the
following, we call the second kind of exceptions unexpected
decisions since their behavior is unexpected compared to the
expert knowledge on the policy.

In this section, we provide a procedure for differentiat-
ing the first class of exceptions from the second one, to find
as many unexpected decisions as possible. The input of the
procedure is a learned rule r, a set of steps (called steps) that
violate the rule, and a threshold τ ∈ [0, 1]. The output of the
algorithm is a set of steps related to unexpected decisions.
The procedure first randomly generates w samples (i.e., be-
liefs) b̄j , j = 1, . . . , w, that satisfy the rule. Then, for each
belief bi in steps a distance measure is computed between
bi and all b̄j , j = 1, . . . , w. The minimum distance hi is fi-
nally computed for each bi and compared to a threshold τ . If
hi ≥ τ then bi is considered an outlier because its distance
from the rule boundary is high.

Since beliefs are discrete probability distributions, we
use a specific distance measure dealing with such kinds
of elements, namely, the discrete Hellinger distance (H2)
(Hellinger 1909). This distance is defined as follow:

H2(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
Pi −

√
Qi)2

where P,Q are probability distributions and k is the discrete
number of states in P and Q. An interesting property of H2

is that it is bounded between 0 and 1, which is very useful
to define a meaningful threshold τ . In Section 4 we discuss
how we set this threshold for our experiments.

3.8 Shielding Decisions with XPOMCP
We present an extension that implements the unsatisfiable
steps analysis presented in Section 3.7 directly into the
POMCP algorithm. A complete description of this extension
is available in (Mazzi, Castellini, and Farinelli 2021b). The
methodology is summarized in Figure 4. We integrate the
rules computed by XPOMCP directly into POMCP to pre-
emptively prune undesired actions considering the current
belief. The shield includes a set of rules trained as explained
in Section 3.6 a set of samples generated as described in
Section 3.7. To shield the action of the POMCP, we start by
building a set of legal actions L that satisfy the logical rules
and can be performed on the current belief, and we force
POMCP to only consider legal actions in the first step of
the simulation. After a legal action is selected, the Monte-
Carlo Tree Search is performed as usual. Notice that when

Figure 4: Shielding decisions with XPOMCP

Algorithm 2: Shielding
Input: a belief b, a shield s, safe action asafe
Output: set of legal actions L

1 L ← ∅;
2 foreach action a ∈ A do
3 if a /∈ s then
4 L ← L ∪ a;
5 else if s.test constraints(b) then
6 L ← L ∪ a;

7 else if ∃r ∈ s.Repr : H2(b, r) < s.τ then
8 L ← L ∪ a;

9 if L = ∅ then
10 L ← {asafe};
11 return L ;

the original implementation of POMCP selects a particle in
the simulation process, it assumes that the state encoded by
the particle is the current state of the system (which for a
POMDP is not observable) and thus the belief can only be
considered in the first step.

With this mechanism, we can ensure that the rule of the
shield is respected but we do not force POMCP to select a
specific action, the best action is still decided using the reg-
ular POMCP but only among the legal ones. In more detail,
as reported in Algorithm 2, for each possible action a, we
consider a as a legal action if it satisfies at least one of these
three conditions, namely, i) the shield does not define any
rule (i.e., any restriction) for this action (line 3), ii) the cur-
rent belief satisfies the constraints defined by an action rule
for action a (line 5) iii) the Hellinger distance between the
belief and the closest representative of the action rule for a
is lower than the predefined threshold (line 7). These condi-
tions could result in an empty set of legal actions L (i.e., if
the rules are very strict). In this case, it is important to define
a default safe action asafe that is used when no other action
is possible. While this is a domain-specific requirement, it
is reasonable to assume that most domains have such action
(e.g., wait and listen to gather extra data, take low-risk action
that yields low rewards). The computation of legal actions is
performed only once for a simulation step since the current

belief does not change until a new observation is received
from the real environment. Checking that the belief satis-
fies the constraints has a fixed cost, checking the H2 of the
representative beliefs increases linearly with the number of
beliefs. As shown in Section 4, this is a negligible cost, and
the reduced number of actions that must be tested (because
not all actions are now legal) can also slightly reduce the
execution time.

4 Results
A full quantitative evaluation of the performance of
XPOMCP is presented in (Mazzi, Castellini, and Farinelli
2021a). In this work, we provide a summary of the achieved
results. Then, we focus on a specific use case for the pro-
posed methodology that describes the behavior of a robotic
agent in the velocity regulation domain. This is an iterative
process, we start with a simple rule and we use the result to
improve our description.

4.1 XPOMCP performance
To test the performance of XPOMCP in detecting unex-
pected behaviors, in (Mazzi, Castellini, and Farinelli 2021a)
the methodology is used on different traces generated by
POMCP in the Tiger and the Velocity Regulation domains.
In both cases, hard-to-detect errors are injected into POMCP
(by wrongly set one of its parameters), thus the traces con-
tain wrong decisions. Using a proper rule template it is pos-
sible to detect the wrong decisions as unexpected behaviors.
The results obtained by XPOMCP are then compared to Iso-
lation Forest (IF), a state-of-the-art anomaly detection algo-
rithm. Similar to XPOMCP, IF does not require a training
set and can be used to directly analyze a trace. In the Tiger
domain it is possible to compute the correct policy, and this
is used as ground truth to evaluate the performance of the
two methodologies. The experiments show that XPOMCP
yields a performance increase of up to 47% when compared
to IF. XPOMCP achieves these results because it exploits
the knowledge provided by the expert to better characterize
anomalous behaviors.

4.2 Shielding performance
In (Mazzi, Castellini, and Farinelli 2021b), the rules gener-
ated by XPOMCP are used to build a shielding mechanism.
The effectiveness of the shield is measured by computing the
difference between the average discounted reward achieved
by POMCP with and without the shield. The methodology is
tested in Tiger and Velocity Regulation, with and without er-
rors. Note that when a faulty POMCP was tested, the shield
was trained using traces that contain errors. Table 1 shows
a summary of the results. In the Tiger domain, the experi-
ments show a performance improvement of up to 188.71%
using the shielding mechanism. With a proper rule, it is pos-
sible to write a shield that recreates the correct policy, thus
the POMCP performs well in all the instances. Similarly,
in Velocity Regulation the shielding mechanism achieves a
performance improvement of up to 136.53%. In this case,
the correct policy is unknown, but it is possible to write a
good shield using the explainability methodology presented
in (Mazzi, Castellini, and Farinelli 2021a).

Figure 5: First template iteration

4.3 Detailed robotic case study

Figure 6: First Rule

Iteration 1. We start with a rule describing when the robot
travels at maximum speed (i.e., a = afast). We expect that
the robot should move at that speed only if it is confident
enough to be in an easy-to-navigate segment. We express
this with the template:

rf : select afast when p(low) ≥ x1 ∨
p(high) ≤ x2;

where x1 ≥ 0.8 ∧
p(low) = diff(distr, seg, clear) ∧
p(high) = diff(distr, seg, heavy)

this template can be satisfied if the probability of being in
a clear segment (p(low)) is above a certain threshold or
the probability of being in a heavily obstructed segment
(p(high)) is below another threshold. From our previous ex-
perience with this domain, we expect x1 to be above 0.8, thus
we add this information in the where statement. Finally, we
add mappings between the belief on the difficulty of the cur-
rent segment with the risk of moving in that segment (i.e,

No Shield Shield
c return time (s) return RI time (s) #SA

110 3.702(±0.623) 0.066(±0.027) 3.702(±0.623) 0.00% 0.065(±0.029) 0
80 3.593(±0.632) 0.067(±0.030) 3.702 (± 0.623) 3.03% 0.061(±0.027) 4
60 3.088(±0.673) 0.060(±0.025) 3.702 (± 0.623) 19.88% 0.061(±0.027) 121
40 −4.173(±1.101) 0.035(±0.017) 3.702 (± 0.623) 188.71% 0.052(±0.023) 647

a) Tiger
No Shield Shield

c return time (s) return RI time (s) #SA
103 24.716(±3.497) 10.166(±0.682) 26.045 (± 3.640) 5.38% 10.118(±0.238) 7

90 18.030(±3.794) 10.173(±0.234) 22.680 (± 3.524) 25.79% 10.166(±0.241) 12
70 4.943(±5.260) 10.278(±0.234) 8.970 (± 4.556) 81.46% 10.377(±0.230) 51
50 0.692(±5.051) 10.374(±0.230) 1.638(±4.525) 136.53% 10.435(±0.336) 171

b) Velocity Regulation

Table 1: Experimental Results. Column c show the reward range parameter (a lower value generates more errors). The second
(third) column shows the average return (time) achieved by the original POMCP and the relative standard deviation. The Shield
section shows the average return and time achieved by POMCP using a shield (column four and six), values in bold show a
statistically significant difference with respect to the shield counterpart (according to a paired t-test with 95% confidence level).
Column RI shows the relative increase in performance between the two original and shielded POMCP. Finally, column #SA
shows how many times the shield alters the decision during the execution

Figure 7: Second template iteration

low for clear segments,medium for slightly obstructed seg-
ments, high for heavily obstructed segments). For the sake
of brevity, this mapping is omitted in the next rule templates.

Figure 5 shows how the rule can be written using the web
app. By analyzing the specified trace, our methodology pro-
vides the rule:

rf : select afast when: p(low) ≥ 0.8581 ∨
p(high) ≤ 0.0287;

that fails to satisify 5 out of the 340 steps.

Iteration 2. The previous result is acceptable, but we try
to further improve the precision of the rule by studying the
unsatisfiable steps. Two of the unsatisfiable steps select the
fast action even if the requirement of the rule is not satis-
fied. One of them (the robot moves at high speed with belief
[p(low) = 0.747, p(medium) = 0.170, p(high) = 0.084])
is far away from the rule (i.e., it present a behavior that is
significantly different than the one described by the rule).
The other unsatisfiable step is closer but cannot be described
with this simple template, it is an approximation error. On

Figure 8: Second Rule

the other hand, three other unsatisfiable steps select medium
speed even if their beliefs satisfy the boundaries of the rule.
This means that our rule is too broad, and using this simple
structure captures too many situations.

To improve the template, we add an additional literal
(p(low) ≥ x3 ∧ p(medium) ≥ x4), that use both diffi-
culty low (i.e., clear segment) and medium (i.e., lightly ob-
structed) to describe the behavior of the policy. This is more
complex, and we aim to use it to better describe some steps
that are close to the rule but cannot be properly described.
We obtain the new template (also presented in Figure 7):

rf : select afast when

p(low) ≥ x1 ∨ p(high) ≤ x2 ∨
(p(low) ≥ x3 ∧ p(medium) ≥ x4);

where x1 ≥ 0.8

Figure 9: Third template iteration

and the rule (Figure 8):
rf : select afast when

p(low) ≥ 0.9011 ∨ p(high) ≤ 0.0233 ∨
(p(low) ≥ 0.8489 ∧ p(medium) ≥ 0.0936);

that only fails to satisfy 4 steps. As in the previous iteration,
one of the step (the robot moves at high speed with belief
[p(low) = 0.747, p(medium) = 0.170, p(high) = 0.084])
is far from the rule. This is a true outlier, a step that be-
haves unlike all the others explored by the POMCP. In this
case, all the other three steps that cannot be satisfied use the
same action of the rule, but they are also very close to the
final rule. We can further refine the template to capture these
other unsatisfiable steps, but we consider this result a good
compromise between simplicity and correctness.

Figure 10: Third Rule

Iteration 3. We write a template to describe when the
robot moves at slow speed. We identify two important sit-
uations that can lead the robot to move at slow speed i) the

robot is uncertain about the current difficulty (the belief is
close to a uniform distribution), ii) the robot knows that the
current segment is hard. We try to use p(medium) ≥ y1 and
p(high) ≥ y2) this idea. The template is the following (also
shown in Figure 9):

rs : select aslow when p(medium) ≥ y1 ∨
p(high) ≥ y2;

that yields the rule:
rs : select aslow when p1 ≥ 0.1920 ∨

p2 ≥ 0.0791

which fail to satisfy 28 out of 340 steps. Notice that the low
value for y1 and y2 (i.e., 0.148 and 0.097) describes all the
belief close to the uniform distribution. By analyzing the 28
unsatisfiable steps, we notice that 26 of them are situations
in which the robot decides to move at medium speed (i.e.,
amedium) even if the condition for moving at speed aslow
are satisfied (e.g, three of these steps have belief [p(clear) =
0.319, p(medium) = 0.342, p(high) = 0.338], [p(low) =
0.345, p(medium) = 0.337, p(high) = 0.318], and
[p(low) = 0.335, p(medium) = 0.333, p(high) = 0.332]
respectively). This analysis tells us that the POMCP consid-
ers a worthy risk to move at medium speed (i.e., speed 1)
even if it does not have a strong understanding of the current
difficulty. If we consider this to be a non-acceptable risk, we
should modify the design of POMCP, e.g., by increasing the
number of particles used in the simulation.

Iteration 4. If we want to properly describe the current
policy, we can create a rule that groups together action aslow
and amedium, to convey the idea that there is a significant
overlap between the two actions.

rs,m : select aslow ∨ amedium when

p(medium) ≥ y1 ∨ p(high) ≥ y2;

that yields the rule
rs,m : select aslow ∨ amedium when

p(medium) ≥ 0.124 ∨ p(high) ≥ 0.029

That fails to satisfy 6 steps. Many of which are unsatisfiable
using both rules. It is possible to further refine the rule to
improve the understanding of the behavior (e.g., to discover
if there are some situation in which action amedium is always
preferred to action aslow, or vice versa), but we consider this
a good results that capture most of the behavior of the policy
in a compact and readable representation.

5 Conclusions and future work
In this work, we present how to use a methodology that
combines high-level indications provided by a human expert
with an automatic procedure that analyzes execution traces
to synthesize key properties of a policy in the form of rules.
This work paves the way towards several interesting research
directions. Specifically, we aim at improving the expressive-
ness of the logical formulas used to formalize the indica-
tions of the expert (e.g., by employing temporal logic), and
to define a generic language that can be used to build new
domains for the system.

References
Anjomshoae, S.; Najjar, A.; Calvaresi, D.; and Främling, K.
2019. Explainable Agents and Robots: Results from a Sys-
tematic Literature Review. In Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’19, 1078–1088. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9781450363099.
Bastani, O.; Pu, Y.; and Solar-Lezama, A. 2018. Verifiable
Reinforcement Learning via Policy Extraction. In Proceed-
ings of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, 2499–2509. Red
Hook, NY, USA: Curran Associates Inc.
Bjørner, N.; Phan, A.-D.; and Fleckenstein, L. 2015. vZ - An
Optimizing SMT Solver. In Proceedings of the 21st Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems - Volume 9035, 194–199.
Berlin, Heidelberg: Springer-Verlag. ISBN 9783662466803.
Bunel, R.; Turkaslan, I.; Torr, P. H. S.; Kohli, P.; and
Mudigonda, P. K. 2018. A Unified View of Piecewise Linear
Neural Network Verification. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, 3-
8 December 2018, Montréal, Canada, 4795–4804.
Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Maga-
zzeni, D.; and Smith, D. 2019. Towards Explainable AI
Planning as a Service. 2nd ICAPS Workshop on Explain-
able Planning, XAIP 2019.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Proceedings of the Twenty-Sixth International Conference
on International Conference on Automated Planning and
Scheduling, ICAPS’16, 79–87. AAAI Press. ISBN 1-57735-
757-4, 978-1-57735-757-5.
Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. In-
cremental Pruning: A Simple, Fast, Exact Method for Par-
tially Observable Markov Decision Processes. In In Pro-
ceedings of the Thirteenth Conference on Uncertainty in Ar-
tificial Intelligence, 54–61. Morgan Kaufmann Publishers.
Castellini, A.; Marchesini, E.; Mazzi, G.; and Farinelli, A.
2020. Explaining the influence of prior knowledge on
POMCP policies. In Proceedings of the 17th European Con-
ference on Multi-Agents Systems.
De Moura, L.; and Bjørner, N. 2008. Z3: An Efficient
SMT Solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, 337–340. Berlin, Heidelberg:
Springer-Verlag. ISBN 3540787992.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. CoRR abs/1709.10256.
Gunning, D. 2019. DARPA’s Explainable Artificial Intelli-
gence (XAI) Program. ii–ii. ISBN 978-1-4503-6272-6.
Hellinger, E. 1909. Neue begründung der theorie quadratis-
cher formen von unendlichvielen veränderlichen. Journal
für die reine und angewandte Mathematik 136: 210–271.

Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety Verification of Deep Neural Networks. In Com-
puter Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part I, volume 10426 of Lecture Notes in Com-
puter Science, 3–29. Springer.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artif. Intell. 101(1–2): 99–134. ISSN 0004-3702.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks. In Majumdar, R.;
and Kunčak, V., eds., Computer Aided Verification, 97–117.
Cham: Springer International Publishing. ISBN k78-3-319-
63387-9.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In Proc. ECML’06, 282–293. Berlin, Hei-
delberg: Springer-Verlag.
Langley, P.; Meadows, B.; Sridharan, M.; and Choi, D. 2017.
Explainable Agency for Intelligent Autonomous Systems. In
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, AAAI’17, 4762–4763. AAAI Press.
Mazzi, G.; Castellini, A.; and Farinelli, A. 2021a. Identifica-
tion of Unexpected Decisions in Partially Observable Monte
Carlo Planning: A Rule-Based Approach. In accepted at the
21th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’21.
Mazzi, G.; Castellini, A.; and Farinelli, A. 2021b. Rule-
based Shielding for Partially Observable Monte-Carlo Plan-
ning. In Accepted at the 31th International Conference on
Automated Planning and Scheduling, ICAPS ’21.
Norman, G.; Parker, D.; and Zou, X. 2017. Verification and
control of partially observable probabilistic systems. Real-
Time Systems 53(3): 354–402.
Papadimitriou, C. H.; and Tsitsiklis, J. N. 1987. The Com-
plexity of Markov Decision Processes. Math. Oper. Res.
12(3): 441–450. ISSN 0364-765X.
Setchi, R.; Dehkordi, M. B.; and Khan, J. S. 2020. Explain-
able Robotics in Human-Robot Interactions. Procedia Com-
puter Science 176: 3057–3066.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Lafferty, J. D.; Williams, C. K. I.; Shawe
Taylor, J.; Zemel, R. S.; and Culotta, A., eds., Advances
in Neural Information Processing Systems 23, 2164–2172.
Curran Associates, Inc.
Wang, Y.; Chaudhuri, S.; and Kavraki, L. E. 2018. Bounded
Policy Synthesis for POMDPs with Safe-Reachability Ob-
jectives. ArXiv abs/1801.09780.
Zhu, H.; Xiong, Z.; Magill, S.; and Jagannathan, S. 2019.
An Inductive Synthesis Framework for Verifiable Reinforce-
ment Learning. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, PLDI 2019, 686–701. New York, NY, USA: As-
sociation for Computing Machinery. ISBN 9781450367127.

Combining Temporal and Probabilistic Planning for Robots Operating
in Extreme Environments

Jun Hao Alvin Ng1, 2*, Yaniel Carreno1, 2*, Yvan Petillot1, Ronald P. A. Petrick1

Edinburgh Centre for Robotics
1Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
2University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom

{alvin.ng, y.carreno, y.r.petillot, r.petrick}@hw.ac.uk

Abstract

To coordinate robots to achieve common goals requires rea-
soning about constraints and uncertainty present in complex
and non-deterministic environments. In large-scale problems,
this is computationally expensive making it impractical for
online planning and execution. Furthermore, complete and
accurate models are difficult to handcode while approximate
models may result in unsound plans. We propose a decoupled
framework composed of a centralised goal allocation algo-
rithm and an online learning and planning module. The for-
mer reasons about robot capabilities and temporal constraints
to coordinate multiple robots. The latter is a reinforcement
learning agent that executes the temporal plan when possible;
otherwise it follows a policy trained offline with an approx-
imate model. The robot learns over time to improve its per-
formance in future episodes. We demonstrate our approach
on a real-world application involving a fleet of heterogeneous
robots operating in an offshore energy environment.

Introduction
In real-world robotics applications, planning provides solu-
tions that enable autonomous and intelligent behaviour for
robots to complete their goals in dynamic and uncertain en-
vironments. When multiple robots are required to achieve a
goal, temporal planning can be used for coordination. Tem-
poral planning considers temporal constraints and durative
actions in the decision-making process to synthesise tem-
poral plans comprising of concurrent actions from multi-
ple robots. In addition, temporal planning provides long-
horizon strategic planning while managing constrained re-
sources (Bernardini, Fox, and Long 2017).

Most temporal planners consider only a single determin-
istic outcome of probabilistic actions which results in poor
robustness during plan execution. Robotic applications in
extreme environments are often probabilistically interesting
(Little, Thiebaux et al. 2007)—a planning problem that in-
cludes: (i) multiple goal trajectories; and (ii) at least one
pair of distinct goal trajectories share a common sequence
of outcomes except in the last state where there are distinct
outcomes of the same action—and reasoning over uncertain-
ties can lead to robust plans. For instance, a robot operating
in a hazardous offshore structure (see husky2 in Figure 1)

*The first two authors have equal contribution.

Figure 1: Overview of the mission environment where a fleet
of robots executes temporal plans. Mission replanning con-
siders action probability of failure which might force reallo-
cation of goals amongst the fleet.

may choose a longer path to move from point A to point B
if the path poses less risk to its safety. Probabilistic planners
reason about probabilistic outcomes of actions or exogenous
events but are unable to consider temporal constraints and,
hence, are ill-suited for multi-agent planning. Existing work
combining temporal planning and reasoning under uncer-
tainty (Schillinger, Bürger, and Dimarogonas 2018; Bernar-
dini, Fox, and Long 2017; Tsamardinos 2002; Zhang et al.
2017) does not fully address the requirements of our appli-
cation of interest: deploying and coordinating a fleet of het-
erogeneous robots in an extreme environment with temporal
uncertainty and probabilistic outcomes, without the require-
ment of a complete and accurate domain model.

This paper presents two main contributions. First, we pro-
pose a novel hybrid framework, TEMPORALPROB, which
combines the advantages of temporal planning and proba-
bilistic planning. A centralised multi-agent planning (MAP)
module acts as a strategic long horizon planner coordinating
multiple robots, and reasons with temporal constraints and
robot capabilities. Each robot is a decentralized reinforce-
ment learning (RL) agent which acts robustly in the face
of uncertainty while learning over time to improve reason-
ing capabilities. The two-tier approach significantly reduces
the search space on both levels. This decreases the computa-
tional cost, enabling online planning and execution which is
essential for robots operating over long horizons in extreme

environments with uncertainty.
The second contribution is the mapping of a temporal

MAP problem to a set of single-agent probabilistic planning
problems, one for each agent. The former considers tempo-
ral information while the latter considers probabilistic out-
comes. We model the duration of executing actions as costs,
and joint goals, which are goals that require robots’ coordi-
nation, as time-constrained goals such that the RL agent can
optimise the makespan and reason over coordinated actions.
Furthermore, the search spaces of the single-agent planning
problems are reduced by considering only a subset of the
state-action space of the MAP problem. This aids in reduc-
ing the sample complexity of the RL algorithm.

Related Work
Our work involves temporal planning, probabilistic reason-
ing, reinforcement learning, and MAP. To the best of our
knowledge, our framework is the first of its kind to solve
problems in this space: temporal, probabilistic, multi-agent,
and without the true model. However, we review related
work which covers a combination of these areas.

Temporal Planning. Temporal planners (e.g., SGPlan (Hsu
and Wah 2008), LPG-TD (Gerevini and Long 2006), and
TFD (Eyerich, Mattmüller, and Röger 2009)) reason about
action duration and temporal constraints, and can be used to
solve MAP problems which require coordination and collab-
oration among the agents. However, these planners have not
been widely introduced in MAP problems due to scalability
issues. Some approaches have shown the ability to provide
solutions while improving the initial plan output based on
their cost function. For instance, POPF (Coles et al. 2010)
uses the makespan—the time that elapses from the start of
plan implementation to the end—as a cost function and is
able to generate plans which coordinate agents to achieve
goals. An extension to POPF is OPTIC (Benton, Coles, and
Coles 2012) which introduces reasoning about preferences.
OPTIC produces better plans by introducing soft deadlines
and temporal preferences on plan trajectory. These temporal
planners deal with deterministic domains and produce plans
which cannot deal with unexpected situations, thus the need
for replanning during plan execution arises.

Temporal and Probabilistic Planning. Temporal planning
problems with uncertainty require probabilistic reasoning
for plan optimality. (Schillinger, Bürger, and Dimarogo-
nas 2018) addresses a multi-robot coordination problem to
achieve a global goal. A deterministic finite-state automaton
is used to model probabilistic outcomes of actions and tem-
poral specifications of the goal. A goal allocation algorithm
assigns an option to each robot. Our work considers tempo-
ral constraints of both actions and goals, handles multiple
goals, and does not require a complete and accurate model.
(Bernardini, Fox, and Long 2017) combines Monte Carlo
methods, which reason over the probabilistic motion of a tar-
get, with temporal planning, which offers long-term strate-
gic planning, to solve a search-and-tracking problem. We
consider uncertainty in outcomes of task-level actions rather
than in motion, and are interested in multi-agent coordina-
tion to complete a set of goals. (Tsamardinos 2002; Zhang

et al. 2017) reason about probabilistic dynamics and tempo-
ral uncertainty during plan execution. We deal with temporal
uncertainty by learning the duration of actions from obser-
vations. (Zhang et al. 2017) coordinates robots to avoid con-
flicts such that each robot can complete its goal while we are
interested in coordinated goals.

Multi-Agent Planning and Learning. Multi-agent RL
(MARL) algorithms learn in the shared state-action spaces
of all agents (Zhang, Yang, and Başar 2019) which are often
prohibitively large and do not scale well with the number of
agents. Thus, MARL algorithms typically have a high sam-
ple complexity. This is evident in work such as (Xinyi et al.
2019) which requires an excessive amount of training data.
This is not practical in our application of robots operating
in extreme environments as data collection is expensive and
potentially unsafe. (Xinyi et al. 2019) trains a neural network
with Q-learning to learn and encode a task allocation so that
planning is computationally faster with a feed-forward oper-
ation. We achieve lower computational cost by decoupling
MAP and goal allocation from single-agent planning and
learning. We consider single-agent RL and use model-based
RL which has a lower sample complexity than model-free
methods (Buckman et al. 2018; Deisenroth and Rasmussen
2011; Finn, Abbeel, and Levine 2017).

Preliminaries
Here we present relevant background on planning, model
representations, and reinforcement learning.

Markov Decision Process (MDP). MDPs model fully-
observable problems with uncertainty. A finite-horizon
MDP is a tuple of the form 〈S,A, T,R, s0, H, γ〉 where S is
a set of states,A is the set of actions, T : S×A×S → [0, 1]
is the transition function, R : S × A→ R specifies rewards
for performing actions, s0 is the initial state, H is the plan-
ning horizon, and γ is the discount factor. Factored MDPs
(Boutilier, Dearden, and Goldszmidt 2000) represent large,
structured MDPs compactly. For example, T can be repre-
sented by dynamic Bayesian networks (DBN) which exploit
the fact that the transition of a state variable often depends
only on a small number of variables.

Model-Based Reinforcement Learning (MBRL). MBRL
methods use a domain model, which is either known or
learned, to approximate a policy π for a MDP. The expected
return for π is computed using the Q-function.

Goal Allocation Problem. A goal allocation problem is de-
fined by a tuple t := 〈R,RC,G,GC,X〉; whereR is a set of
agents; RC is a set of capabilities; G is a set of goals; GC is
a set of capabilities required to implement the goals; and X
is a set of goal coordinates. The capabilities define skills that
allow an agent to execute actions. For instance, the capabil-
ity canMove is required to execute the action navigate.
Each agent r ∈ R can have multiple capabilities.

Planning Domain Definition Language (PDDL). Our tem-
poral planning problems are modelled using a variant of
PDDL (McDermott et al. 1998), the de facto standard rep-
resentation language supported by most modern planners.

PDDL provides a way of describing the components of a
planning problem, i.e., how the world is structured, what ac-
tions are available, etc. Given our choice of planner, OPTIC,
we will use the temporal constructs supported by PDDL2.1
(Fox and Long 2003) and later.

Temporal Planning Problem. Actions change the values
of state fluents in a planning problem and are described by
their preconditions and effects. For temporal planning, we
adopt the full PDDL2.1 variant (Fox and Long 2003) with
continuous change. A temporal planning problem is a tuple
Pt := 〈P, V,A, I,G, T 〉, where P is set of propositions; V
is a set of fluents;A is a set of instantaneous and durative ac-
tions where each ai is a tuple 〈apre , aeff , adur 〉, apre is a set
of conditions that must hold for the action to be applicable,
aeff is the set of action effects, and adur is a set of duration
constraints; I is the initial state defined by the propositions
and fluents (P ∪ V); G is a set of goals, G : P ∪ V ; and T
is a set of time windows. Each time window is defined using
timed initial literals (TILs) which define the time t at which
particular propositions in P become true/false.

Relational Dynamic Influence Diagram Language
(RDDL). RDDL (Sanner 2010) is a planning language for
describing relational MDPs. Semantically, RDDL describes
DBNs extended with an influence diagram. The domain
file specifies object types, non-fluents, fluents, conditional
probability functions (CPFs), and a reward function. The
problem file specifies objects, the initial state, and values of
non-fluents.

Our framework performs two levels of reasoning. First,
it considers a MAP problem, modelled as a temporal plan-
ning problem described in PDDL, and performs goal allo-
cation. Next, it considers a single-agent planning problem,
modelled as a MDP and described in RDDL, and learns a
policy using MBRL.

System Framework Definition
Temporal planners based on PDDL2.1, like OPTIC, support
the implementation of planning problems with hard con-
straints and joint goals. Joint goals are achieved by coor-
dinated actions from multiple robots. These planners gen-
erate temporal plans which distribute the goals over multi-
ple agents to minimise the makespan. However, the result-
ing goal allocation quality is often quite poor (Carreno, Pet-
rick, and Petillot 2019). This can be resolved with planners
which support preferences to guide the search based on cost
functions. However, solutions tend to be domain-dependent
which affect the generalisation of the approach. Instead, we
address this issue by decoupling the goal allocation process
from the planning process. We propose a goal allocation al-
gorithm which maximises the number of completed goals,
and minimises a cost function involving the spatial distances
between goals, makespan, and aborted goals.

Another limitation of temporal planners is the lack of rea-
soning over every probable outcome of actions. Current ap-
proaches to temporal planning are deterministic and do not
consider unexpected situations during plan execution. This
necessitates replanning. We address this issue by combin-
ing temporal planning, which deals with multi-agent coor-

Figure 2: TEMPORALPROB framework for planning, acting,
monitoring, and replanning. The modules outlined in green
(blue) dotted lines represent high-level (low-level) reason-
ing. High-level reasoning deals with temporal and multi-
agent planning while low-level reasoning deals with online
learning and single-agent planning and replanning due to
probabilistic uncertainty.

dination, and model-based reinforcement learning (MBRL),
which deals with probabilistic dynamics. Since it is diffi-
cult to handcode domain models for complex, real-world
applications, MBRL is selected over probabilistic planners
as it does not require the true model. We use a deterministic
high-level (H-L) domain for temporal planning and a proba-
bilistic low-level (L-L) domain for MBRL. We discuss these
domains in the Implementation Scenario section.

TEMPORALPROB Framework. We introduce a novel
framework, TEMPORALPROB, as shown in Figure 2, which
integrates a multi-role goal allocator algorithm (MRGA)
(Carreno et al. 2020), temporal planning, and reinforcement
learning. TEMPORALPROB performs planning, plan execu-
tion, replanning, and learning in an integrated cycle where
observations from plan execution are utilised to improve
planning performances. Firstly, a MAP, described in PDDL,
is augmented with information from MRGA which allocates
goals to robots by considering the capabilities of the robots.
The augmented problem is given to the temporal planner,
OPTIC, which synthesises a multi-robot plan. We refer to
this phase of planning as the high-level (H-L) phase as it
abstracts away probabilistic outcomes which could be en-
countered during plan execution.

Secondly, the H-L domain, problem, and plan are mapped
to L-L domains, problems, and plans, one for each robot. We
assume that the true probabilistic dynamics of the environ-
ment are unknown and thus rely on handcoded, approximate
models which neglect probabilistic dynamics. These approx-
imate models are generative: given a state-action pair (s, a),
it predicts the successor state (s′) and immediate reward (r).
Thirdly, each robot would execute its L-L plan. When unex-
pected events render the L-L plan inapplicable (i.e., the pre-
condition of the action suggested by the L-L plan is not sat-
isfied in the current state), the robot then acts according to a
greedy policy based on the Q-function which is trained with
simulated observations (s, a, r, s′) produced by the genera-
tive domain model. Each robot adapts to unexpected situa-

Algorithm 1: TA(Mr
m, NS,G

′, R,G,Rc, Gc, Rcap, Gcap)

Input: R: Robot Set
G: Goal Set
Rc: Coordinates of Robot Set
Gc: Coordinates of Goal Set
Rcap: Robots Capability Set
Gcap: Goal Capability Requirement Set
Mr
m : Goal Makespan Set

G′ : Number of Goals in the Mission
NS : Number of Sensor Sets

1 begin
2 allocate(G, R, Rcap, Gcap)
3

{
GAINIT , RAINIT , Csol, Rsol

}
← ∅

4 [Csol, Rsol] = cluster cal (G,R,Rc, Gc)

5 RAINIT = max
{

weight cal(RG,Csol,Rsol)
}

6 regions dist(RAINIT ,Rc, Csol, Cc)
7 allocate firstGoal(GAINIT ← G)
8 GAFINAL (G)← GAINIT

9 allocateGoal(R,G,NS,G′,Mr
m, dist)

10 return transformPDDL
(
GAFINAL

)

tions and attempts to complete as many of its allocated goals
as possible within the makespan of the H-L plan.

Lastly, the observations acquired during plan execution
are used to improve the L-L domains and to update the ex-
pected duration of the actions. At the end of the mission, the
robot feeds back information to the High-Level Mission Ad-
visor (HLMA). When feedback from every robot is received,
HLMA updates MRGA on the robots’ capabilities, observed
duration of actions, and status of goals (completed or not).
If there are unsatisfied goals, MRGA re-allocates these goals
to the robots and the cycle repeats.

TEMPORALPROB reduces the computational costs by re-
stricting the search space. The H-L reasoning deals with the
combined state-action spaces of multiple agents and consid-
ers multi-agent coordination, temporal constraints, and robot
capabilities. However, it neglects the probabilistic nature of
actions and only considers their most probable outcomes.
The L-L reasoning deals with the state-action spaces of sin-
gle agents and considers probabilistic outcomes. In essence,
we decompose a MAP with temporal constraints into several
single-agent probabilistic planning problems. Moreover, we
consider the plan execution for each robot. If required, each
robot is empowered to deviate from its L-L plan to adapt to
unexpected situations rather than replan at the H-L, starting
off by having MRGA re-allocate goals, which is potentially
impractical. For example, if a robot requests replanning at
the H-L while another robot is performing an inspection, this
forces the latter to abort the inspection as the H-L plan, and
thus the L-L plans, could have changed. The remainder of
this section is presented in a manner following the algorith-
mic workflow of TEMPORALPROB as shown in Figure 2.

Multi-Role Goal Allocator (MRGA). We address the goal
allocation problem in the context of a fleet of heteroge-
neous robots considering the approach defined in (Carreno

et al. 2020). We propose a planner agnostic solution, called
MRGA, which guides the search by optimising goal allo-
cation. This is outlined in Algorithm 1. MRGA considers
the capabilities of each robot and the capabilities required
to complete each goal (line 2) to define and allocate the set
of goals each robot can complete. Next, the goals are clus-
tered into regions (lines 3 to 4). In line 3, GAINIT repre-
sents the initial set of goals allocated to each robot (one per
robot); RAINIT describes the set of robots allocated to each
cluster; Csol is a set of clusters of goals; and Rsol is a set
of integers representing the number of goals each robot can
achieve in each cluster in Csol. The number of regions are
constrained to be equal to the number of robots. The ap-
proach establishes a rank amongst robots with respect to the
number of goals they can implement in each region (line 5).
RAINIT records which robot should be sent to each region
(initially) considering the number of goals they can achieved
in that region. RG represents the set of goals each robot can
achieve. Each robot is then assigned to a region (line 6) after
considering two criteria: (i) the number of goals a robot has
the required capabilities to complete, and (ii) the distance
between the robot’s current position and the closest goal.
Then, MRGA allocates a goal in the region of each robot
to the robot; this goal has the shortest path with respect to
the robot’s initial position (line 7). The allocated goals are
removed from the set of incomplete goals in G (line 8) and
stored in GAFINAL. The remaining goals are allocated to
robots while considering the total makespan, the robots and
goals coordinates, and the redundancy of the capabilities of
the robots required to complete the goals (line 9).

The allocation is sequential which allows MRGA to eval-
uate the cost each robot incurs in achieving a particular goal.
Robots are not restricted to a region and can move to other
regions if they are required to complete goals in those re-
gions. This is the case when a robot possesses the neces-
sary capability to achieve a goal located in a different region
to the one the robot is initially operating in. The goal al-
location GAFINAL is transformed into PDDL fluents (i.e.,
robot can act ?r - robot ?wp - poi) (line 10) which are in-
cluded in the H-L domain and problem files (see the Imple-
mentation Scenario section for more details). In the PDDL
domain, the fluent robot can act is included in the precon-
dition of actions to constrain the selection and execution of
actions for the appropriate robot. Since PDDL planners do
not deal with the goal allocation problem directly, MRGA
decreases overall planning times and improves the optimal-
ity of the resulting plans.

Temporal Planning. The H-L domain and problem aug-
mented with the information provided by MRGA are given
as inputs to the temporal planner, OPTIC, which produces
a temporal H-L plan. The H-L plan specifies the actions
each robot executes at a time instance. We decompose the
H-L plan into individual plans, one for each robot and map
each plan to a L-L plan. The L-L plans are dispatched to the
robots which then proceed to execute their L-L plans.

Online Planning, Execution, and Learning. During plan
execution of the L-L plan, an expected situation could inval-
idate the plan which necessitates replanning. For example,

the robot’s manipulator arm might become damaged forcing
the robot to return to the base for repairs. This leads to two
consequences. Firstly, the robot is now at the base and is po-
tentially further away from the goals it has been allocated.
Secondly, joint goals which require the coordination of the
robot would not be completed unless the repair is done. One
solution is to replan at the H-L: MRGA reallocates the goals
and OPTIC generates a new H-L plan. However, this could
be impractical in real-world applications. If goals are reallo-
cated whenever a robot experiences an unexpected outcome,
it would lead to situations where robots are frequently dis-
rupted in the midst of executing some actions and thus never
achieve any useful work.

Following this observation, we propose to replan at the
L-L where every robot is capable of online replanning. The
robot deliberates over whether it should return to the base
to repair its manipulator arm. This might be undesirable if
the mission time exceeds the start time of a joint goal af-
ter the repair. However, if the probability of success with a
damaged manipulator arm is low, then the robot might focus
on completing other goals which does not require manipu-
lation. Alternatively, it could choose to prioritise joint goals.
A probabilistic planner is unable to reason about these as we
assume an incomplete and deterministic model is available
initially. Hence, a learning approach such as MBRL is used.

We describe our approach in detail with Algorithm 2
which is a MBRL algorithm. It takes as input a generative
model M, a problem instance which specifies the initial
state (s0) and the goals (G) allocated to the robot, joint goals
(G ⊆ G), and a L-L plan (A) which is mapped from the H-L
plan given by the temporal planner. The planning problem is
represented as an MDP with a continuous time dimension t
for mission time, (S,A, T,R, s0, H, γ, t). This shares simi-
larity with time-dependent MDPs (Boyan and Littman 2001)
though we are only considering time-dependent rewards for
joint goals. Algorithm 2 starts by initialising a parameterised
Q-function, Qθ, with simulation training (lines 6-9) using
M which predicts the successor state, reward (rt), and exe-
cution duration (∆t) (line 7). This is similar to Dyna (Sutton
et al. 2008). During simulation training, actions are selected
with an epsilon-greedy policy, πepsθ . The reward (or cost) of
executing an action is −∆t, and a reward of +100 is given
for each goal achieved while no reward is given for a joint
goal if t exceeds its start time (or its time constraint).
Qθ is approximated as a linear function of the weight vec-

tor θ and a set of basis functions F . The basis function is
represented by features which are conjunctive ground state
fluents. The initial set of features comprises every state flu-
ent. New features, which are conjunctions of any two exist-
ing features, are added incrementally using iFDD+ (Geram-
ifard et al. 2011), an online feature discovery algorithm. The
weight vector is updated with Double Q-learning (Hasselt,
Guez, and Silver 2016) (line 9). The mission time t (line 8)
is used to determine if any joint goal g ∈ G can no longer be
achieved (line 7). This happens when t exceeds the start time
of the joint goal. The simulation training is computationally
expensive but can be done offline before the robot starts its
mission.

After simulation training, the robot executes A sequen-

Algorithm 2: MBRL(M,P,G, A,Hsim, Hplan, Hmk, N)

Input: M: Approximate, Generative Model
P: Problem Instance with initial state s0 and set of
goals G
G: Joint Goals
A: Plan
Hsim: Simulated Horizon
Hplan: Plan Horizon
Hmk: Maximum Allowable Makespan
N : Number of Simulations

1 begin
2 θ ← 0
3 F ← initialize features(M, P)
4 for 1 to N do
5 t = 0
6 for i = 1 to Hsim do
7 si, ri,∆t←

simulate(M,G, G, si−1, πepsθ (si−1), t))
8 t← t+ ∆t
9 F , θ ←

update(F , θ, si−1, πθ(si−1), ri, si)

10 t = 0
11 Follow = >
12 for i = 1 to Hplan do
13 if Follow then
14 a← follow plan(A)
15 if a is not applicable in si−1 then
16 Follow = ⊥

17 if ¬ Follow then
18 a← πgreedyθ (si−1)

19 si,∆t← act(si−1, a)
20 t← t+ ∆t
21 M← update model (M, si−1, a, si,∆t)
22 if no uncompleted goals or t ≥ Hmk then
23 returnM, si, t

24 returnM, sHplan
, t

tially (line 14). If an unexpected outcome occurs which ren-
ders the next action in A to be inapplicable (line 15), the
robot then follows a greedy policy based on Qθ (line 18).
Exploitation is desired for safety reasons and because Qθ is
updated only during simulation training. The advantage of
following a policy rather than a plan is the reduced compu-
tational time which makes it attractive for online execution.
The latter requires replanning whenever an unexpected state
is reached. Since the policy is trained withM which is of-
ten an approximation of the true model, the policy could be
suboptimal or unsound in regions of the state spaces where
M is a poor predictor. This is an issue known as distribution
shift. Recent works have proposed solutions to deal with this
(Janner et al. 2019; Yu et al. 2020; Wan et al. 2019; Abbeel,
Quigley, and Ng 2006). A plausible solution is to terminate
the algorithm when a state that is not seen during simulation
training is visited. We leave the issue of distribution shift for

Algorithm 3: ADVISOR(R,P, RL,NR,Rcap,Mr
m)

Input: R: Robot Set
P: Initial Problem
RL: Reinforcement Learning Advice Set
NR: Number of Advice Sets
Rcap: Robots Capability Set
Mr
m : Goal Makespan Set

1 begin
2 while not NR← ∅ do
3 for 0 to length (R) do
4 acquiredMod(nr):

append modifications(RL,r)
5 modify robotLoc(P ,R)
6 modify problemDur(P ,R)
7 modify Goal(P ,R)
8 reason Repairs(P ,R)

9 return Mr
m, Rcap, G

future work as it is not within the scope of this paper.
The action is executed (line 19) and the resulting obser-

vation is used to update M to provide more accurate pre-
dictions (line 21) and thus resulting in a closer approxima-
tion of Qθ to the optimal Q-function. A model-learning al-
gorithm such as LFIT (Martı́nez et al. 2015) can be used
to learn a domain model represented in RDDL. The current
state and mission time are inputs to the temporal planner
for replanning, if necessary. The mission is terminated (line
22) if (1) there are no remaining goals, (2) Hplan number
of actions executed, or (3) the mission time exceeds Hmk,
the makespan of the H-L plan. The last condition is neces-
sary to avoid having robots idle for a long period of time
after completing their missions due to a robot’s prolonged
mission—H-L replanning is done only after all robots have
completed or terminated their missions.

High-Level Mission Advisor (HLMA). The High-Level
Mission Advisor (HLMA) acts as a bridge between MRGA
and MBRL. This is detailed in Algorithm 3. The algo-
rithm considers the feedback, or advice, from MBRL and
terminates after all advice are considered. Each modifi-
cation, where nr represents the modification number, is
evaluated over the set of robots R (line 3) to determine
the advice for each robot r ∈ R (line 4). Having this
information distributed over the fleet of robots, HLMA
generates a H-L problem where the locations of robots
(line 5), duration of actions (line 6), the status of goals
(completed or failed) (line 7), possible reasons for failure
to complete a goal, and the additional time required to
complete failed goals (line 8) are updated or included in
the H-L problem. MRGA then decides if the goal should
be allocated to another robot to minimise the makespan
of the H-L plan. When all advice are considered, HLMA
returns the analysis of the goal makespan set Mr

m, robot
capabilitiesRcap, and unsolvable goalsG (line 9). These are
used in the next goal allocation using MRGA (Algorithm
1). MRGA updates the capabilities of robots when a goal
fails to be achieved by considering the time each robot

requires to achieve an unsatisfied goal. Thus, HLMA
forces MRGA to reallocate unsatisfied goals such that the
total makespan is minimised. MRGA updates the capa-
bilities, cap, of a robot r with the equation fk(r, cap) =
min

[
fd(Rcap, r, cap),max(i,d)∈MR(r)(tmin(g) + d)

]
,

where fk is the set of goals initially allocated to a robot, fd
is the set of unsatisfied goals which can be deleted from fk,
and fd(Rcap, r, cap) is a function which removes capabil-
ities from the set of capabilities Rcap for robot r when the
time (tmin(g)+d) to achieve the goal g is not the minimum.
HLMA utilises the L-L problem to modify/generate a set of
instances in the H-L domain. MRGA considers this updated
H-L domain to allocate any remaining unsatisfied goals.

Example for H-L Replanning. HLMA improves the qual-
ity of plans from replanning by considering failures during
plan execution that could affect the optimality of goals al-
location. Figure 1 shows an example where tasks in an ini-
tial H-L plan (Plan-1) is distributed amongst a fleet of three
robots. A terrestrial robot (husky1) fails to inspect the con-
dition of an industrial motor (task-B) due to a damaged
camera. This task requires coordination with an aerial robot
(uav1) which supervises husky1 while it inspects the motor.
Replanning is required due to the failure. HLMA considers
the additional time required for husky1 to return to the base
for repairs, which is predicted by M, to advise MRGA on
the reallocation of goals. Plan-2 (in Figure 1) shows task-B
is reallocated to husky2 as a consequence of HLMA’s advice
(i.e., the time incurred to repair husky1 is larger than that of
having husky2 achieve the goal).

Implementation Scenario
Our application of interest is the autonomous maintenance
of an offshore oil rig using a fleet of robots which oper-
ate concurrently (see Figure 1). This requires a consider-
able number of sensors, actuators, and coordination between
robots. For instance, a UAV needs to supervise a husky while
the latter is manipulating a valve at an area where there is a
high risk of explosion. In this section, we describe the H-
L and the L-L domains, the mapping from a H-L domain
(problem) to a L-L domain (problem), and the decompo-
sition of a H-L plan to a set of L-L plans. The H-L do-
main models multiple robots and is used in MRGA and in
temporal planning. It is deterministic and does not consider
probable outcomes due to probabilistic actions. The L-L do-
main models probabilistic actions which allows reasoning
over every probable outcome during plan execution.

High-Level (H-L) Domain. The H-L domain is described in
PDDL. In addition to state fluents which describe the state
of the robot and the environment, we introduce additional
state fluents to define (i) robot capabilities to execute dif-
ferent goals based on their sensory system, (ii) robot avail-
ability, and (iii) restrictions associated with the positions the
robots can reach in the environment. For example, the fluent
robot can act(?r ?wp) constrains robot ?r to a set of loca-
tions ?wp where it can be. We use functions to represent
energy and data resources a robot has, and distances. For ex-
ample, distance intime (?wpi ?wpf) defines the time robot ?r

Figure 3: The mapping from a H-L action for a husky or a
UAV to a sequence of L-L actions. More than one H-L action
can be mapped to a L-L action, however, the grounding of
these L-L actions will be different.

at ?wpi takes to reach ?wpf. The values of functions are up-
dated by HLMA when new observations are acquired. There
are six H-L actions, all of which are deterministic and dura-
tive, for a robot ?r:

• navigation (?r ?wpi ?wpf): ?r moves from location ?wpi
to ?wpf,

• take image (?r ?s ?wp): ?r captures an image of the loca-
tion ?wp with its camera ?s,

• check temperature (?r ?s ?wp): ?r measures the tempera-
ture at location ?wp with its sensor ?s,

• check pressure (?r ?s ?wp): ?r measures the pressure at
location ?wp with its pressure sensor ?s,

• valve inspection (?r ?s ?wp): ?r inspects the valve at lo-
cation ?wp with its camera ?s, and

• manipulate valve (?r1 ?r2 ?s1 ?s2 ?wp1 ?wp2): a husky
?r1 ’s manipulator arm ?s1 turns the valve at location
?wp1 while a UAV ?r2 at location ?wp2 records the pro-
cess with its camera ?s2.

Our application involves two heterogeneous robots, the
husky and the UAV, which have different sensors onboard.
Thus, some PDDL actions and fluents could apply to one
type of robot and not the other. The duration of the H-L ac-
tions are determined from data collected in past experiments
involving real robots.

Low-Level (L-L) Domain. The probabilistic dynamics in
our application of interest are (1) the robot may lose lo-
calisation while going to another waypoint, (2) its camera
may lose calibration at any point, and (3) its manipulator
arm (for Huskies) might be damaged while navigating to
another waypoint due to collision. To model these proba-
bilistic dynamics, we use RDDL which has a richer repre-
sentation than Probabilistic PDDL (PPDDL) (Younes and
Littman 2004). Both RDDL and PPDDL cannot represent
temporal aspects, hence, we map the H-L actions to non-
durative L-L actions, as shown in Figure 3. The L-L actions
which a robot ?r can execute are:

• capture image(?r ?poi): ?r takes an image of ?poi,

• locate poi(?r ?poi): ?r search for ?poi at its current loca-
tion,

• inspect poi(?r ?poi): a husky ?r inspects the temperature,
pressure, or value, or a UAV ?r records a husky manipu-
lating the valve ?poi,

• localise(?r): ?r localises itself,
• goto waypoint(?r ?wpi ?wpf): ?r navigates from location

?wpi to ?wpf,
• manipulate valve(?r ?poi): a husky ?r manipulates the

valve ?poi,
• repair manipulator(?r): a husky ?r repairs its manipulator

arm, possibly with external aid, and
• calibrate camera(?r): ?r calibrates its camera, possibly

with external aid.

We introduce the actions localise, repair manipulator, and
calibrate camera to handle unexpected situations. An ill-
calibrated camera reduces the probability of success of in-
spect poi and manipulate valve, while a damaged manip-
ulator arm reduces the probability of success of manipu-
late valve. A robot can only calibrate its camera or repair its
manipulator arm at the base. If it loses localisation, it cannot
execute any other actions except localise.

We consider and model temporal elements of the H-L do-
main in the L-L domain. First, the costs of L-L actions rep-
resents the duration of executing the actions. A RL algo-
rithm which maximises the expected return will therefore
learn policies which minimise the makespan. Second, joint
goals are represented as fluents which must be made true by
the time instances as defined by the end time of the H-L ac-
tion manipulate valve in the temporal plan. Robots fail to
complete a joint goal if the mission time exceeds the start
time of the joint goal. A joint goal of manipulating a valve
is achieved when a husky executes manipulate valve and a
UAV executes inspect poi concurrently. Either robot can ex-
ecute the joint action before the start time of the joint goal.
When this happens, the robot simply idles till the start time.
Replanning at the H-L is required to coordinate robots to
complete any remaining joint goal.

Mapping between H-L and L-L Representations. We use
three variants of the L-L domain in our experiments. The
first variant is the true model which is used by the simula-
tor to return a successor state during plan execution. This
model is not made known to the planners. The second vari-
ant is a deterministic model which is an approximation of the
true model and only predicts the most probable outcome of
probabilistic actions. Both variants are handcoded. The third
variant is a model learned from observations collected pre-
viously using the model learner from (Martı́nez et al. 2015).
The L-L problems and L-L plans are mapped from the H-L
problem and temporal plan. We illustrate the mapping from
a temporal plan for a H-L problem used in our experiments
(see Experiments and Results section) to L-L plans.

To generate the L-L plan for husky2, we extract H-L ac-
tions from the temporal plan which involve husky2. Each
of these H-L actions is mapped to L-L actions as in Fig-
ure 3. The first navigation action is mapped to localise

H-L Time: (Action) [Duration]

0.00: navigation(h2 wpg1 wpg52) [166.35]

0.00: navigation(h1 wpg0 wpg31) [115.18]

0.00: navigation(uav1 wpa0 wpa35) [111.50]

...

166.35: check pressure(h2 p-sensor1 wpg52) [20.00]

268.04: valve inspection(h2 c h1 wpg35) [50.00]

318.04: man valve(h2 uav1 c uav0 wpg35 wpa35)[30.00]

L-L (Action) - h2

localise(h2)

goto waypoint(h2 wpg1 wpg52)

locate poi(h2 pressure wpg52)

inspect poi(h2 pressure wpg52)

...

manipulate valve(h2 valve wpg35)

L-L (Action) - uav1

localise(uav1)

goto waypoint(uav1 wpa0 wpa35)

...

locate poi(uav1 valve wpa35)

inspect poi(uav1 valve wpa35)

Figure 4: Fragment of a H-L temporal plan for a UAV (uav1)
and two Huskies (h1, h2) and the fragments of the L-L
plans which are mapped from the H-L plan (the L-L plan
for husky1 is not shown).

and goto waypoint if the robot is not localised in the ini-
tial state, and subsequent navigation actions are mapped to
goto waypoint. check pressure(husky2 pressure analyser1
wpg52) is mapped to locate poi(husky2 pressure wpg52)
and inspect poi(husky2 pressure wpg52)—the robot needs
to locate the valve before it can approach the valve for in-
spection. This low-level detail is abstracted in the H-L do-
main but is useful for implementation as the actions relate
to different actuation commands. inspect poi does not con-
sider the sensor pressure analyser1 in its arguments since
reasoning about robot capabilities is not required at L-L. We
introduce a new object pressure wpg52 to represent a poi
at wpg52 to avoid ambiguity—the L-L actions locate poi
and inspect poi relate to several possible H-L actions (i.e,
check temperature, check pressure, and valve inspection),
and if there are more than one poi at the same location, there
is a need to differentiate if the robot is inspecting the pres-
sure, temperature, or valve.

The joint goal of manipulating the valve valve wpg35 is
allocated to uav1 and h2 by MRGA. The actions which
achieve this joint goal are highlighted in red in Figure
4. The H-L joint action manipulate valve (abbreviated as
man valve in the figure) achieves this joint goal and requires
the coordination of uav1 and h2. This H-L action is mapped
to the L-L actions manipulate valve(h2 valve wpg35) and
inspect poi(uav1 valve wpa35). Both robots have to execute
their L-L actions by the mission time T = 318.04 to achieve
the joint goal. Thus, a joint goal has a time constraint and is
added to G in Algorithm 2. If one of the robots attempts to
achieve the joint goal before T , it will have to wait for the
other robot. If either robot did not attempt the joint goal (by
executing their respective L-L actions) by T , the joint goal
can no longer be achieved until H-L replanning is done. Both

robots will no longer follow their L-L plans and will adapt
to the situation by following their L-L policies instead.

The H-L problem involves multiple robots and objects
which are decomposed to single-agent problems. The ob-
jects in a L-L problem are a subset of the objects in the H-L
problem. These objects are in the initial state of the robot,
are involved in the goals allocated to the robot, or are in
the L-L plan. Following the example in Figure 4, there are
six objects for the L-L problem of husky2 : husky2, wpg1,
wpg35, wpg52, pressure wpg52, and valve wpg35. In con-
trast, the H-L problem has 68 objects of which 56 are lo-
cations. The L-L action goto waypoint alone would have
3,080 grounded instantiations considering all of the 56 lo-
cations whereas our implementation has only six grounded
instantiations. By using a subset of objects, the state-action
space is reduced which decreases the sample and computa-
tional complexities of Algorithm 2. The initial state for the
L-L problem takes from the H-L problem the locations of
the base and the robot. Information on whether the robots
are localised and the conditions of the Huskies’ manipulator
arms and cameras are not represented in the H-L problem.
This information is provided separately.

Experiments and Results
We evaluate our work with a mission: two Huskies (husky1,
husky2) and a UAV (uav1) are tasked with checking the
temperature at a poi, checking the pressure at another poi,
taking images of two other poi, and manipulating two valves.
These 6 H-L goals are mapped to 8 L-L goals. The manip-
ulation of a valve is a joint goal which requires the coor-
dination of a husky and a UAV to achieve. This is mapped
to 2 L-L goals, one for the husky and one for the UAV. We
conducted simulated experiments using RDDLSim (Sanner
2010) as the simulator. We added normally-distributed noise
to the duration of actions (20% of its mean duration) which
is not made known to our algorithms.

In the first round of planning, MRGA allocates the goals
to the robots. Each husky is tasked with manipulating a valve
which requires the supervision of uav1 (i.e., uav1 has two
temporally-dependent joint goals since it cannot perform
both at the same time). In addition, uav1 needs to take im-
ages of two poi and husky2 needs to check the tempera-
ture and pressure of two poi. The state-action spaces of the
L-L problems for uav1, husky1, and husky2 are 236 × 45,
212 × 12, and 229 × 41, respectively. If we did not eliminate
objects which are of no relevance to a robot when mapping
from H-L problem to L-L problems, the state-action spaces
of the Huskies would increase to 237 × 56 (both Huskies
share the same state-action spaces).

We evaluate the utility of learning over time using MBRL.
A L-L policy is learned by simulation training using an ap-
proximate model (see Algorithm 2). The parameters for the
simulation training areHsim = 30 andN = 1000. We com-
pare two possible scenarios: Scenario 1, where no observa-
tions are available and a deterministic model is used, and
Scenario 2, where observations are acquired from previous
missions and an approximate probabilistic model is learned.
We assume that the preconditions of L-L actions are known

Scenario Robot TC1 MCPlan
1 MCPolicy

1 %TC
2

%MCPlan
2

%MCPolicy
2

1 uav1 245/400 13/100 14/100 64 42 3
2 uav1 255/400 25/100 12/100 81 46 19
1 husky1 55/100 44/100 11/100 89 23 62
2 husky1 66/100 44/100 22/100 88 23 55
1 husky2 234/300 27/100 27/100 93 36 56
2 husky2 252/300 34/100 28/100 97 43 52

Table 1: Comparison in performance using a deterministic model (Scenario 1) and a learned model (Scenario 2) to train L-L
policies for 100 independent simulations of a mission. The performance is evaluated by the following metrics: TC (number of
goals completed / total number of goals), MCPlan (number of missions completed by following the L-L plan / total number
of missions), and MCPolicy (number of missions completed by following the L-L policy / total number of missions). The
superscript 1 (2) denotes the results obtained in the first (second) round of planning. In the second round, the results are
represented in percentages (e.g., a value of 64 for %TC means 64% of the allocated goals are completed).

for both scenarios and that they only differ in their transi-
tion functions. As the deterministic model does not consider
any probabilistic outcomes, it cannot predict states where
the robot loses localisation, its camera loses calibration, or
its manipulator arm is damaged. Therefore, these states are
never encountered in the simulation training and the L-L
policy is suboptimal or even unsound in these regions of the
state space. On the other hand, the learned model predicts all
probabilistic outcomes, albeit with the wrong probabilities1.

Since the environment is probabilistic, we simulated 100
independent runs for each scenario. The performances of
both scenarios are shown in Table 1 and are measured by the
number of goals completed (TC) and the number of mis-
sions completed by following the L-L plan (MCPlan), or
by following the L-L policy (MCPolicy). A robot’s mission
is completed if all of its goals are completed. If no unex-
pected situations are encountered during plan execution, a
robot can complete all of its goals by executing its L-L plan.
Otherwise, it has to adapt by following its L-L policy.

Our empirical results show that the learned model leads
to improved performances. In general, the robots completed
more missions and goals in Scenario 2 than in Scenario 1.
Following the L-L policy trained with the learned model,
uav1 completed 255 out of 400 goals (uav1 is allocated 4
goals, and there are 100 missions), 10 goals more than the
deterministic model. The largest performance improvement
due to the learned model is demonstrated in the results for
husky1 where husky1 completed 22 missions out of 100
missions by following the L-L policy as compared to 11
missions using the deterministic model. Due to the proba-

1The model used by RDDLSim (the truth model) has a proba-
bility of 0.08 for a camera to be damaged and a probability of 0.05
for a manipulator arm to be damaged. If the camera is damaged, the
probabilities of success for the L-L actions locate poi, inspect poi,
and capture image are 0.2. If the manipulator arm is damaged, the
probability of success for the L-L action manipulate valve is 0.2.
The learned model has a probability of 0.42 for a camera to be
damaged and a probability of 0.12 for a manipulator arm to be
damaged. If the camera is damaged, the probabilities of success
for locate poi, inspect poi, and capture image are 0.77, 0.69, 0.24,
respectively. If the manipulator arm is damaged, the probability of
success for manipulate valve is 0.74.

bilistic nature of the environment, only a small number of
the missions are completed when the robots follow the L-L
plan (MCPlan). The utility of adapting to unexpected sit-
uations by switching to the L-L policy can be observed by
the relatively significant number of missions completed by
following the L-L policy (MCPolicy).

At the end of its mission, the robots feed back to HLMA.
If at least one goal is not completed, replanning at the H-L is
required. In this second round of planning, a new temporal
plan and problem instance are mapped to a set of L-L prob-
lems. The robots then continue their mission to complete the
remaining goals. We do not re-use the L-L policies from be-
fore as the objects of the planning problems and goals have
changed (i.e., the state-action spaces have changed and are
different across the simulated runs in the second round). In-
stead, we train new L-L policies with simulation training us-
ing the approximate models again. This underlines the ad-
vantage of learning models which can generalise over dif-
ferent planning problems. We assume realistically that ob-
servations acquired in a mission (the previous mission) are
insufficient to improve the model and hence use the same
models as before for both scenarios.

Table 1 shows the results for the remaining missions
where at least one goal is not achieved (uncompleted mis-
sions). Since both scenarios have different numbers of un-
completed missions, results are represented in percentages
for ease of comparison. Scenario 2 generally outperforms
Scenario 1 though in some cases, Scenario 1 is better (i.e.,
the MCpolicy for husky1 and husky2). In Scenario 2, the
robots completed more goals previously as compared to Sce-
nario 1. The uncompleted goals are typically the joint goals.
In other words, Scenario 2 has a larger proportion of goals
which are joint goals. These are difficult to complete, and
sometimes impossible in the current mission (i.e., it might
not be possible for a husky to repair a damaged manipulator
arm and then manipulate the valve in time).

In Scenario 1 (Scenario 2), 21 (26) missions were com-
pleted where every robot completes all of its allocated goals.
Following H-L replanning, in Scenario 1 (Scenario 2), 34
(46) more missions were completed. This leaves 45 (28) un-
completed missions with 74 (44) uncompleted goals in Sce-
nario 1 (Scenario 2). This provides evidence that our work

Figure 5: Makespan using a deterministic and a learned
model for the first (1 and 2) and second (3 and 4) round
of planning respectively for 100 independent simulations.

Figure 6: Cumulative reallocation of goals using a determin-
istic and a learned model for the first (1 and 2) and second
(3 and 4) round of planning respectively for 100 independent
simulations.

could improve performances over time even with an approx-
imate model by updating the generative model given new
observations. Furthermore, the absence of probabilistic rea-
soning, due to the use of a deterministic model, in Scenario
1 causes the performances to deteriorate.

We also evaluated the interaction of the MBRL approach
with temporal planning. Figure 5 shows the statistics for the
makespan in the first and second round of planning. In gen-
eral, the makespans in the second round are longer. This is
because the advice from HLMA influences the reallocation
of goals such that the risk of failure is reduced during plan
execution. Furthermore, the learned model experienced the
larger change in makespan as HLMA considers the proba-
bilities of unexpected outcomes. MRGA is thus forced to re-
allocate goals less optimally (i.e., trading off makespan for
reduced risk). However, this translates to an increase in the
number of missions completed for the learned model.

Figure 6 shows the cumulative reallocation of goals in
both scenarios and for both rounds of planning. Here, the
advice from HLMA influences the number of goals that

MRGA reallocates. HLMA introduces several changes in
the duration of actions that affect MRGA’s reasoning about
goal distribution. If HLMA is not used, MRGA focuses on
reallocation by considering the positions of the robots but
does not consider changes in the duration of actions. HLMA
also reasons about the trade-off in allocating a goal to a robot
that needs to repair its manipulator arm (or calibrate its cam-
era) such that it can achieve a goal with a high probability,
versus assigning the goal to an operational robot that may be
further away from the goal. Based on this reasoning, HLMA
advises MRGA to maintain the capability associated with
the goal implementation (fk(r, cap)) in the capability set of
the robot with the best performance. The number of goals,
normalised by the total number of goals, which have to be
reallocated is reduced from the first to the second round of
planning. Our approach optimises the goal distribution con-
sidering learned knowledge from observations. Scenario 2
outperforms Scenario 1 in terms of the number of realloca-
tions required (the fewer the better) in both rounds of plan-
ning as a result of using a more accurate model. HLMA al-
lows the approach to reach the best possible plan in compar-
ison to the initial deterministic plan. Therefore, the number
of goal reallocations that considers the risk of failure, which
is feed back by MBRL, is gradually reduced over subsequent
rounds of planning. This explains the similarity of the results
(3.2% ∼ 6.4%) for the second round of planning in Sce-
nario 2. The goals reallocated after replanning are mostly
associated with the positions of the robots when failures oc-
cur as HLMA does not provide additional insights about the
probability of failures (for the same mission) as they were
considered in the previous plan update.

Conclusions and Future Work

In this paper, we propose a novel hybrid framework, TEM-
PORALPROB, which decouples multi-goal allocation, multi-
agent planning (MAP) under temporal constraints, and
model-based single-agent reinforcement learning (MBRL).
By considering different levels of model abstractions, we re-
duce the search space. MAP does not need to reason over
all probable outcomes of actions while MBRL only deals
with the state-action spaces of a single robot without consid-
ering temporal constraints. The reduced computational cost
of our framework offers better scalability to large planning
problems and is well-suited for online planning and execu-
tion. To introduce robustness to uncertainty, feedback from
MBRL advises the multi-goal allocation and MAP in their
decision-making processes. We demonstrated the applica-
bility of our approach with a fleet of heterogeneous robots
in simulated experiments. Results showed that goal-directed
performances improved with a model learned from prior ob-
servations as compared to an initially assumed deterministic
model. For future work, probabilistic reasoning can be used
to estimate delays a robot might experience to complete joint
goals and provide guidance to a temporal planner to include
buffer time. Also, different strategies for goal reallocation
can be explored, e.g., when a robot is unlikely to complete a
joint goal or a severe unexpected outcome is encountered.

Acknowledgements
This work was funded and supported by the ORCA Hub
(orcahub.org), under EPSRC grant EP/R026173/1.

References
Abbeel, P.; Quigley, M.; and Ng, A. Y. 2006. Using inac-
curate models in reinforcement learning. In Proceedings of
ICML, 1–8.

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In Proceedings of ICAPS.

Bernardini, S.; Fox, M.; and Long, D. 2017. Combining tem-
poral planning with probabilistic reasoning for autonomous
surveillance missions. Autonomous Robots 41(1): 181–203.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored representa-
tions. Artificial intelligence 121(1-2): 49–107.

Boyan, J. A.; and Littman, M. L. 2001. Exact solutions to
time-dependent MDPs. In Advances in Neural Information
Processing Systems, 1026–1032.

Buckman, J.; Hafner, D.; Tucker, G.; Brevdo, E.; and Lee, H.
2018. Sample-efficient reinforcement learning with stochas-
tic ensemble value expansion. In Advances in Neural Infor-
mation Processing Systems, 8224–8234.

Carreno, Y.; Pairet, È.; Petillot, Y.; and Petrick, R. P. A.
2020. Task Allocation Strategy for Heterogeneous Robot
Teams in Offshore Missions. In Proceedings of AAMAS.

Carreno, Y.; Petrick, R. P. A.; and Petillot, Y. 2019. Multi-
agent Strategy for Marine Applications via Temporal Plan-
ning. In IEEE-AIKE, 243–250. IEEE.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of ICAPS, 42–49.

Deisenroth, M.; and Rasmussen, C. E. 2011. PILCO: A
model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on Ma-
chine Learning, 465–472.

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In ICAPS.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Pro-
ceedings of the ICML.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR 20:
61–124.

Geramifard, A.; Doshi, F.; Redding, J.; Roy, N.; and How, J.
2011. Online Discovery of Feature Dependencies. In Pro-
ceedings of the ICML, 881–888.

Gerevini, A.; and Long, D. 2006. Preferences and soft con-
straints in PDDL3. In Proceedings of ICAPS Workshop on
Planning with Preferences and Soft Constraints, 46–53.

Hasselt, H. v.; Guez, A.; and Silver, D. 2016. Deep Re-
inforcement Learning with Double Q-Learning. In Proc.
AAAI, 2094–2100.
Hsu, C.-W.; and Wah, B. W. 2008. The SGPlan planning
system in IPC-6. In Proceedings of ICAPS.
Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When to
trust your model: Model-based policy optimization. In Ad-
vances in Neural Information Processing Systems, 12519–
12530.
Little, I.; Thiebaux, S.; et al. 2007. Probabilistic planning
vs. replanning. In ICAPS Workshop on IPC: Past, Present
and Future.
Martı́nez, D.; Ribeiro, T.; Inoue, K.; Alenyà Ribas, G.; and
Torras, C. 2015. Learning probabilistic action models from
interpretation transitions. In Proc. ICLP, 1–14.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language (Ver-
sion 1.2). Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (rddl): Language description. Unpublished ms. Aus-
tralian National University 32: 27.
Schillinger, P.; Bürger, M.; and Dimarogonas, D. V. 2018.
Auctioning over Probabilistic Options for Temporal Logic-
Based Multi-Robot Cooperation Under Uncertainty. In
IEEE-ICRA, 7330–7337.
Sutton, R. S.; Szepesvári, C.; Geramifard, A.; and Bowling,
M. H. 2008. Dyna-style planning with linear function ap-
proximation and prioritized sweeping. In Proceedings of
UAI.
Tsamardinos, I. 2002. A Probabilistic Approach to Robust
Execution of Temporal Plans with Uncertainty. In SETN.
Wan, Y.; Zaheer, M.; White, A.; White, M.; and Sutton, R. S.
2019. Planning with expectation models. In Proceedings of
IJCAI, 3649–3655.
Xinyi, Z.; Qun, Z.; Bailing, T.; Boyuan, Z.; and Ming,
Y. 2019. Fast task allocation for heterogeneous un-
manned aerial vehicles through reinforcement learning.
Aerospace Science and Technology 92: 588 – 594.
ISSN 1270-9638. doi:https://doi.org/10.1016/j.ast.2019.06.
024. URL http://www.sciencedirect.com/science/article/pii/
S1270963818318704.
Younes, H. L.; and Littman, M. L. 2004. PPDDL1. 0: The
language for the probabilistic part of IPC-4. In Proceedings
of ICAPS.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
Policy Optimization. arXiv preprint arXiv:2005.13239 .
Zhang, K.; Yang, Z.; and Başar, T. 2019. Multi-Agent Rein-
forcement Learning: A Selective Overview of Theories and
Algorithms.
Zhang, S.; Jiang, Y.; Sharon, G.; and Stone, P. 2017. Mul-
tirobot Symbolic Planning under Temporal Uncertainty. In
Proceedings of AAMAS, 501–510.

Construction Site Automation: Open Challenges for Planning and Robotics

Paolo Forte, Anna Mannucci, Henrik Andreasson, Federico Pecora
Center for Applied Autonomous Sensor Systems (AASS), Örebro University

Fakultetsgatan 1, 702 81 Örebro - Sweden
<name>.<surname>@oru.se

Abstract

This paper describes open challenges in deploying fleets of
autonomous vehicles for material handling in construction
sites. First, we review the level of automation of current appli-
cations, identifying the technological barriers which are cur-
rently limiting automation. Second, we describe the material
flow coordination problem in terms of sequences of elemen-
tary tasks. Finally, we discuss discrete and continuous-time
formulations to solve the integrated task and motion plan-
ning, coordination and control problems. We also discuss a
potential architecture for closing the sense-plan-act loop in
construction site automation.

1 Introduction
In the last decades, interest in automating earth-moving pro-
cesses has grown significantly in view of its potential to im-
prove productivity, reduce labour force, and create a safer
work environment. This interest is also driven by the fact
that construction operations, such as loading, unloading and
moving material, are repetitive, and therefore suitable for au-
tomation (Xu and Garcı́a de Soto 2020; Jayaraj and Divakar
2018). Moreover, robots could potentially perform construc-
tion tasks where human presence is undesirable, unsafe, or
impossible, e.g., in military applications (Ha, Yen, and Bala-
guer 2019), in mines, or in space (where teleoperation is not
possible due to long time delays).

Today, construction sites are only partially automated
(Davila Delgado et al. 2019; Dadhich, Bodin, and Andersson
2016), if at all. Indeed, achieving reliable autonomous nav-
igation in dynamic, harsh, unstructured environments like
construction sites is still an open challenge. Weather con-
ditions and the progress of construction activities constantly
change the environment. Therefore, offline plans of robot ac-
tions often need to be revised at run-time to account for un-
planned contingencies. However, online re-planning is diffi-
cult due to constraints on maneuverability deriving from the
nontrivial kinematic models of most construction machines
and from the size, shape and nature of the carried payloads.
Operations in the construction site also require interactions
between different robots: excavators may be used to trans-
port materials but have limited payload, hence they are less
effective than haulers over long distances. Optimizing fleet
performance is nontrivial since it depends on both individual

robot capabilities and how shared resources are contended
among robots, i.e., interference costs (Nam and Shell 2015).

This paper focuses on automation of material flow in con-
struction sites, that is, the problem of finding a feasible way
of displacing material using a fleet of autonomous wheel
loaders, excavators and bulldozers. The main contributions
of the paper are:

1. In Section 2, we review the current state of automation in
construction sites, summarizing the material flow problem
and the level of automation currently achieved. In doing
so, we outline the importance of 3D graphical tools as a
flexible and intuitive way to convey high-level plans.

2. Furthermore, we define a taxonomy of construction-site
tasks and how they relate to each other, such that complex
tasks can be specified as sequences of elementary tasks.

3. In Section 3, we discuss two solutions for material flow
planning: the former combines elements of the Sokoban
game (Junghanns and Schaeffer 1997) and of the blocks-
world domain (Gupta and Nau 1992); the latter poses the
problem as an optimization problem with both continuous
and discrete variables.

Section 4 discusses a possible architecture, and relevant
work is summarized in Section 5.

2 Motivating application scenario
Earth-moving operations are construction processes that
consist of moving soil from one position to another via ac-
tivities such as excavating, loading, hauling, and dumping
material. As detailed in the following sections, there are
three key process elements: earth-moving robots (agents ex-
ecuting actions), environment model (where actions are per-
formed) and construction tasks (what, when and how).

2.1 Earth-Moving Robots
Construction operations usually require the cooperation of
different robots. These include excavators (Fig. 1 (left)),
commonly used to load material onto haulers (Fig. 1 (cen-
ter)). Correctly operating these machines manually requires
more than 10 years of experience (Hishimoto et al. 2020)
due to their non-trivial kinodynamics. Moreover, these ma-
chines are characterized by significant purchasing/leasing
prices, high operating and maintenance costs. Safe, au-
tonomous and accurate motion planning and control, as well

Fig. 1: Earth-moving robots: an excavator (left), a hauler
(center), and a bulldozer (right).

as efficient fleet composition and task allocation may reduce
operating costs and increase safety.

At a high level of abstraction, the status of these machines
can be described as follows (Peurifoy et al. 2018). During
the operational process, an excavator can be: busy (either
performing a task or traveling) or idle. An excavator can per-
form tasks on its own (e.g., soil preparation and excavation)
or interact with haulers (i.e., soil-loading), and it can move
to new working areas or to parking stations. Once the ma-
terial is loaded, haulers move the material to a desired po-
sition. Similarly to excavators, haulers are characterized by
two states: busy or idle, and in the busy state a hauler can be
stationary (if it needs to wait for an excavator that loads the
material) or mobile. The operations of haulers are composed
of specific actions such as filling, travelling, and dumping.

2.2 Environmental Model

Online reasoning, activity identification and monitoring are
essential steps to control the performance of earth-moving
operations (e.g., an excavator should have finished loading
the material before the hauler starts moving). In addition,
planned earth-moving operations and external factors (such
as rain) may affect the traversability and therefore the abil-
ity to execute operations. However, maintaining an effec-
tive representation of the construction site is challenging.
Traversability is indeed not trivial to model, as environmen-
tal conditions may have different effects on different robots,
e.g., mud may slow down an excavator but render the area
inaccessible by a hauler.

A related problem is that of obtaining knowledge of
the current situation from observations. Many vision-based
methods are in use in on-site construction management ap-
plications for, e.g., safety assessment (Chi and Caldas 2012),
progress monitoring (Ahmed, Haas, and Haas 2012), and
productivity analysis (Kim et al. 2018). These methods use
image processing and supervised learning to identify work-
ers, equipment, materials, and structures (Golparvar-Fard,
Heydarian, and Niebles 2013). Hence, they rely on the avail-
ability of a sufficient amount of labelled training data to rec-
ognize construction resources. Data of the construction site
can be collected using unmanned aerial vehicles (UAV), and
used to create a 3D model of the site (Bang et al. 2020; Hal-
bach and Halme 2013). The model would ideally be used in
a 3D graphical tool which allows users to drag and drop ma-
terials in the environment, thereby specifying goals for the
fleet, as shown in Fig. 2.

Fig. 2: Example of a goal specification via drag and drop
operations, source: (Halbach and Halme 2013).

2.3 Construction Site Tasks
A goal of construction site automation is to synthesize con-
struction tasks (e.g., reach a pile, load the material and
dump it at dump locations, etc.) from high-level specifica-
tions (e.g., drag-and-drop amounts of material into desired
locations). This subsumes the problems of synthesizing fea-
sible motions and controls for the robots (that is, solving the
motion planning, coordination and control problems), and
maintaining feasibility in the face of contingencies. To the
best of our knowledge, a classification of tasks in construc-
tion sites that is adequate for automated planning has never
been specified. We therefore propose the following (see also
Fig. 3):
Navigating: all required operations to move between loca-
tions. This task may be performed by all the robots shown
in Fig. 1 with different costs/efficiency in terms of carried
payload per trip. Reliable and safe autonomous navigation
requires accurate localization and motion control, multi-
machine coordination, online monitoring, obstacle detec-
tion and avoidance.

Material handling: all operations to load, unload or flatten
the material. This task may be performed by excavators or
bulldozers (Fig. 1).

Spreading/compacting: when navigating and handling the
material, these tasks are performed concurrently.

Fig. 3: Construction site tasks: loading (left), navigating
and material handling (right), source: (Halbach and Halme
2013).

The main challenge in plan synthesis is to solve the task
assignment and sequencing, motion planning and control
problems jointly. Typically, in order to diminsh computa-
tional overhead, these problems are solved in a decoupled
manner, often neglecting constraints imposed by other sub-
problems. However, the higher the level of abstraction at
the task level (e.g., assuming holonomic kinodynamics), the
higher the probability that the resulting plan will be unfea-
sible or sub-optimal. How to effectively reason about kin-
odynamic and environmental constraints is indeed an open
problem (Erdem, Patoglu, and Schüller 2016).

3 Task Planning: Problem Formulation
Some task features can be described accurately in dis-
cretized space (e.g., the type and sequence of actions to be
performed), while others require a continuous-space repre-
sentation (e.g., the spatial distribution and quantity of gran-
ular materials). To understand the complexity vs. perfor-
mance trade-off while discretizing some of these quanti-
ties, we here investigate two formulations of the task plan-
ning problem: a discrete one, based on a combination of the
Sokoban and Blocks-world domains, and a continuous for-
mulation, where the problem is posed as an Optimal Assign-
ment Problem (OAP).

3.1 Discrete Formulation
In this representation we discretize the following: 1) the
quantity of material into fixed volumes (blocks); 2) the en-
vironment into sectors – each corresponding to a load or
unload location and having a fixed block capacity– where
each sector may be either free (no material) or occupied ac-
cording to the quantity of material stored in it; 3) the set
of traversable paths using a roadmap, whose nodes corre-
sponds to fixed locations (one per sector), and whose edges
represent the existence of kinematically-feasible paths be-
tween nodes. Similarly to Sokoban, blocks can be pushed;
similarly to the blocks-world, they can be be picked, stacked
and unstacked. The volume of material that can be moved by
each robot in one trip depends on the robot and the material
types. Some earth-moving processes, e.g., building a road,
may require different layers of material to be displaced in
a predefined order (as shown in the example in Fig. 4). We

Fig. 4: Layers description to build a road.

include elements of the blocks-world domain to account for
these ordering constraints among tasks. The full PDDL for-
mulation of the domain is available online in two variants1

(with and without durative actions) and has been tested with
both total and partial-order planners2. Note that in this for-
mulation: 1) fixed sectors and fixed positions of piles inside
sectors are assumed; 2) plans are computed and executed
synchronously among all robots (leading to useless waiting
times); 3) multi-robot interference must be accounted for
separately, e.g., by considering intersections among trajecto-
ries (hence with polynomial cost in the number of edges of
the roadmap); 4) specifying the problem is not straightfor-
ward as it requires good knowledge of the PDDL domain,

1See http://bit.ly/38gc4HA for details.
2A selection of the tested planners is reported at https://

planning.wiki/ref/planners. In future work we will investigate the
use of the multi-agent version of PDDL (MA-PDDL).

rendering automatic/easy specification of the problem (as
would be required for real deployment) problematic.

3.2 Continuous Formulation
Continuous optimization may be exploited to formulate the
task planning problem while avoiding the discretization into
sectors and allowing arbitrary locations of piles. In future
work we will investigate a Single Task, Multi Robot, Time-
extended Assignment (ST–MR–TA) Multi-Robot Task As-
signment (MRTA) (Gerkey and Matarić 2004) formulation,
where tasks (which can be cooperative) are asynchronously
assigned to idle robots while considering task scheduling.
To account for multi-robot interference, we will combine
interference-free costs (e.g., the capabilities of different
robots) and interference costs (e.g., overlapping trajectories)
in the objective function of the OAP as done in (Forte et al.
2021). We expect this to yield an intractable Mixed Inte-
ger Linear Programming (MILP) problem (Nam and Shell
2015). We specifically aim to investigate the interactive vari-
ables to define/tune the complexity and scalability of this
continuous formulation, e.g., the maximum number of alter-
native paths for each pair of nodes in the roadmap.

4 Towards an Architecture
As we have discussed, the earth-moving problem subsumes
solving task planning, as well as other important sub-
problems, such as:
Tasks allocation and sequencing, e.g., integrating one of
the solutions proposed in Section 3. This module outputs
an allocation of robots to sequences of tasks which are sub-
ject to temporal and resource constraints.

Motion planning, which either synchronously (Discrete
Formulation) or asynchronously (Continuous Formulation)
generates the set of kinematically feasible paths.

Coordination, which is responsible of defining and refin-
ing over time the set of constraints on the robot trajecto-
ries to: 1) avoid inter-robot collisions (safety); 2) ensure
all robots will accomplish their tasks (liveness). For this
purpose, we will leverage our previous work (Pecora, Cir-
illo, and Dimitrov 2012) on heuristically-driven precedence
constraints over shared regions of the robots’ paths.

Perception, which is responsible for 1) constructing collec-
tions of spatial constraints for the robot motions and obsta-
cle detection, and 2) monitoring the progress/outcome of
construction tasks. This may close the system control loop
to handle contingencies and failures.

Localization, which provides the positions of robots in the
site (e.g., by combining data from GPS, on-board range de-
vices and IMUs (Saarinen et al. 2013)).

Control, which computes robot commands satisfying all
constraints posed by the previous modules.

Task planning will hence be integrated into an architecture
including each of these processes (see Fig. 5).

We believe that a shared representation and online rea-
soning are keys to effectively close the overall sense-plan-
act loop in dynamic and unpredictable environments as con-
struction sites.

Fig. 5: A possible modular architecture.

5 Related Work
Interesting work in the literature which shares some similar-
ities with the earth-moving problem is reported below.
Integrated task and motion planning architectures.

Several results in hybrid planning (i.e., integrating high-
level planning with low-level robot control) have been
proposed over the years to solve complex hybrid planning
problems, with different outcomes according to the level
of integration (Erdem, Patoglu, and Schüller 2016). Both
Cambon, Alami, and Gravot (2009) (multi-robot in a fixed
and known environment) and Lozano-Perez and Kael-
bling (2014) (single robot) combine symbolic search for
sequences of (discrete) tasks and reasoning about (con-
tinuous) geometric constraint to defer the specification of
high-level plans (in a discrete space of actions) to low-
level planners (which account for geometric constraints
and kinematic feasibility). Extensions toward dynamics
and uncertainties in the environment, online re-planning
and multi-robot cooperation are required to apply these
techniques in construction sites. Conversely, only a subset
of earth-moving problems are addressed by Multi-Agent
Task Assignment and Path Finding methods (Ma et al.
2017), in which dealing with asynchronous assignment,
with uncertainties, online planning and replanning under
kinodynamic constraints are current open issues.

Motion planning in dynamic environments. Mansouri,
Lagriffoul, and Pecora (2017) proposes a variant of the
multi-vehicle routing problem with homogeneous fleets
which accounts for non-holonomic constraints and dense,
dynamic obstacles related to a real-world mining appli-
cation. Similarly to the problem described in this paper,
the authors highlight advantages and limitations of for-
malizing their problem as a variant of the Sokoban game.
However, their tasks (drilling blast holes, which create ob-
stacles and hence change the traversability of the environ-
ment) do not require interaction with the material, nor the
cooperation of different machines.

Construction site inspection and monitoring. Unmanned
aerial systems (UASs) and Unmanned ground vehicles
(UGVs) have recently been utilized for safety inspec-
tion (Martinez et al. 2021), to detect unsafe conditions
and protect workers from potential injuries and fatal ac-
cidents (Park, Kim, and Cho 2017), and to detect cracks
on buildings, e.g., bridges (Morgenthal et al. 2019; Lim,
La, and Sheng 2014), or houses after natural disasters
(Torok, Golparvar-Fard, and Kochersberger 2014). Tools
for productivity analysis of earth moving processes based

on image data have shown promise in terms of economic
yield, higher efficiency and reduction of costs (Kim et al.
2018; Kim, Chi, and Seo 2018). Zhu, Ren, and Chen
(2016) proposes a particle filtering approach which mit-
igates occlusion problems in tracking construction work-
ers and equipment; Park and Brilakis (2016) presents an
integrated detection and tracking method to localize con-
struction objects in consecutive video frames. Kim, Kim,
and Kim (2016) presents a tracking method for moving
objects in construction sites using the Gaussian mixture
model and morphological processing, and a construction
equipment tracking method based on real-time learning
from an automatically developed training database (Kim
and Chi 2017).

6 Conclusion
On-site autonomous construction robots promise to improve
productivity and working conditions for humans. Yet au-
tomating the earth-moving process poses difficulties in both
planning and robotics, due to the presence of dynamic obsta-
cles, heterogeneous robots, and the complexity of describing
and tracking the displacement of material in the construc-
tion site. In this paper, we have outlined some of the result-
ing open challenges, with the aim to elicit a suitable prob-
lem formulation for practical applications. As a next step,
we will extend, simulate and compare discrete and continu-
ous formulations of the problem, and integrate them within
a modular architecture with a shared representation for per-
ception, planning, coordination and control.

References
Ahmed, M.; Haas, C.; and Haas, R. 2012. Using digital pho-
togrammetry for pipe-works progress tracking. Canadian J.
Civil Eng. 39(9): 1062–1071.

Bang, S.; Baek, F.; Park, S.; Kim, W.; and Kim, H. 2020.
Image augmentation to improve construction resource de-
tection using generative adversarial networks, cut-and-paste,
and image transformation techniques. Automat. Construct.
115: 103198. ISSN 0926-5805.

Cambon, S.; Alami, R.; and Gravot, F. 2009. A Hybrid Ap-
proach to Intricate Motion, Manipulation and Task Planning.
The Intern. J. Robot. Research 28: 104 – 126.

Chi, S.; and Caldas, C. H. 2012. Image-Based Safety As-
sessment: Automated Spatial Safety Risk Identification of
Earthmoving and Surface Mining Activities. J. Construc-
tion Eng. Manage. 138(3): 341–351.

Dadhich, S.; Bodin, U.; and Andersson, U. 2016. Key chal-
lenges in automation of earth-moving machines. Automat.
in Construction 68.
Davila Delgado, J. M.; Oyedele, L.; Ajayi, A.; Akanbi, L.;
Akinade, O.; Bilal, M.; and Owolabi, H. 2019. Robotics and
automated systems in construction: Understanding industry-
specific challenges for adoption. J. Build. Eng. 26: 100868.
Erdem, E.; Patoglu, V.; and Schüller, P. 2016. A system-
atic analysis of levels of integration between high-level task
planning and low-level feasibility checks. AI Commun. 29:
319–349.
Forte, P.; Mannucci, A.; Andreasson, H.; and Pecora, F.
2021. Online Task Assignment and Coordination in Multi-
Robot Fleets. IEEE Trans. Robot. Autom. 6: 4584–4591.
Gerkey, B. P.; and Matarić, M. J. 2004. A formal analysis
and taxonomy of task allocation in multi-robot systems. The
Intern. J. Robot. Research 23(9): 939–954.
Golparvar-Fard, M.; Heydarian, A.; and Niebles, J. C. 2013.
Vision-based action recognition of earthmoving equipment
using spatio-temporal features and support vector machine
classifiers. Adv. Eng. Inform. 27(4): 652–663. ISSN 1474-
0346.
Gupta, N.; and Nau, D. 1992. On the Complexity of Blocks-
World Planning. Artif. Intell. 56: 223–254.
Ha, Q.; Yen, L.; and Balaguer, C. 2019. Robotic autonomous
systems for earthmoving in military applications. Automat.
Construct. 107: 102934. ISSN 0926-5805.
Halbach, E.; and Halme, A. 2013. Job planning and supervi-
sory control for automated earthmoving using 3D graphical
tools. Automat. Construct. 32: 145–160. ISSN 0926-5805.
Hishimoto, T.; Yamada, M.; Yamauchi, G.; Nitta, Y.; and
Yuta, S. 2020. Proposal for Automation System Diagram
and Automation Levels for Earthmoving Machinery. In
Proc. 37th Int. Symp. Automat. Robot. CConstruct. (ISARC),
347–352. Kitakyushu, Japan: Int. Ass. Automat. & Robot.
Construct. (IAARC).
Jayaraj, A.; and Divakar, H. 2018. Robotics in Construction
Industry. IOP Conf. Materials Sci. & Eng. 376: 012114.
Junghanns, A.; and Schaeffer, J. 1997. Sokoban: A Chal-
lenging Single-Agent Search Problem. In IJCAI 1997.
Kim, H.; Bang, S.; Jeong, H.; Ham, Y.; and Kim, H. 2018.
Analyzing context and productivity of tunnel earthmoving
processes using imaging and simulation. Automat. Con-
struct. 92: 188–198. ISSN 0926-5805.
Kim, H.; Kim, K.; and Kim, H. 2016. Vision-Based Object-
Centric Safety Assessment Using Fuzzy Inference: Monitor-
ing Struck-By Accidents with Moving Objects. J. Comput-
ing Civ. Eng. 30(4): 04015075.
Kim, J.; and Chi, S. 2017. Adaptive Detector and Tracker on
Construction Sites Using Functional Integration and Online
Learning. J. Comput. Civ. Eng. 31(5): 04017026.
Kim, J.; Chi, S.; and Seo, J. 2018. Interaction analysis for
vision-based activity identification of earthmoving excava-
tors and dump trucks. Automat. in Construction 87: 297–
308. ISSN 0926-5805.

Lim, R.; La, H.; and Sheng, W. 2014. A Robotic Crack
Inspection and Mapping System for Bridge Deck Mainte-
nance. Trans. Automat. Sci. Eng. 11: 367–378.
Lozano-Perez, T.; and Kaelbling, L. 2014. A constraint-
based method for solving sequential manipulation planning
problems. 2014 IEEE/RSJ Int. Conf. Intell. Robots Syst.
3684–3691.
Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hönig, W.; Ku-
mar, T. K. S.; Uras, T.; Xu, H.; Tovey, C.; and Sharon, G.
2017. Overview: Generalizations of Multi-Agent Path Find-
ing to Real-World Scenarios. ArXiv abs/1702.05515.
Mansouri, M.; Lagriffoul, F.; and Pecora, F. 2017. Multi ve-
hicle routing with nonholonomic constraints and dense dy-
namic obstacles. In 2017 IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), 3522–3529.
Martinez, J. G.; Albeaino, G.; Gheisari, M.; Issa, R. R.; and
Alarcón, L. F. 2021. iSafeUAS: An unmanned aerial system
for construction safety inspection. Automat. in Construction
125: 103595. ISSN 0926-5805.
Morgenthal, G.; Hallermann, N.; Kersten, J.; Taraben, J.;
Debus, P.; Helmrich, M.; and Rodehorst, V. 2019. Frame-
work for automated UAS-based structural condition assess-
ment of bridges. Automat. in Construction 97: 77–95. ISSN
0926-5805.
Nam, C.; and Shell, D. A. 2015. Assignment algorithms for
modeling resource contention in multirobot task allocation.
IEEE Trans. Autom. Sci. Eng. 12(3): 889–900.
Park, J.; Kim, K.; and Cho, Y. K. 2017. Framework of
Automated Construction-Safety Monitoring Using Cloud-
Enabled BIM and BLE Mobile Tracking Sensors. J. Con-
struction Eng. Manage. 143(2): 05016019.
Park, M.-W.; and Brilakis, I. 2016. Continuous localiza-
tion of construction workers via integration of detection and
tracking. Automat. Construct. 72: 129–142. ISSN 0926-
5805.
Pecora, F.; Cirillo, M.; and Dimitrov, D. 2012. On Mission-
Dependent Coordination of Multiple Vehicles under Spatial
and Temporal Constraints. IEEE Int. Conf. Intell. Robots
Syst. .
Peurifoy, R.; Schexnayder, C.; Schmitt, R.; and Shapira, A.
2018. Construc. Plann. Equip. Meth. (9th Ed.).
Saarinen, J.; Andreasson, H.; Stoyanov, T.; and Lilienthal,
A. J. 2013. Normal distributions transform Monte-Carlo lo-
calization (NDT-MCL). In 2013 IEEE/RSJ Int. Conf. Intell.
Robots Syst., 382–389. IEEE.
Torok, M. M.; Golparvar-Fard, M.; and Kochersberger, K. B.
2014. Image-Based Automated 3D Crack Detection for
Post-disaster Building Assessment. J. Computing in Civil
Eng. 28(5): A4014004.
Xu, X.; and Garcı́a de Soto, B. 2020. On-site Autonomous
Construction Robots: A review of Research Areas, Tech-
nologies, and Suggestions for Advancement.
Zhu, Z.; Ren, X.; and Chen, Z. 2016. Visual Tracking of
Construction Jobsite Workforce and Equipment with Parti-
cle Filtering. J. Computing Civ. Eng. 30: 04016023.

Probabilistic Plan Legibility with Off-the-shelf Planners

Anonymous Authors

Abstract

Legible planning is the creation of plans that best disam-
biguate their goals from a set of other candidates from an
observer’s perspective. In this paper we propose a method
for legible planning for arbitrary PDDL domains, by extend-
ing previous research on legibility to classical planning with-
out requiring to construct ad-hoc planners. We also discuss
how the observer perspective may be estimated through a
second order theory of mind that connects the planner’s and
the observer’s task spaces. Our solution can for example be
deployed in human-robot teaming scenarios, where an au-
tonomous robot in a team can implicitly communicate its goal
by producing legible plans. We present benchmark results on
several PDDL planning domains. Our results generally show
that plan legibility is a trade-off with plan efficiency, how-
ever, not all planning domains allows to increase legibility in
the same way and a regularizing factor to balance legibility
and efficiency was proved necessary.

Introduction
A main effort in recent research in Artificial Intelligence is
to provide intelligent decision-making algorithms the ability
to produce explanations, and to make their decisions under-
standable. Three aspects have been identified as crucial to
allow understandability: their ability to produce trust, to al-
low interaction with their decisions, and to be transparent
in their decision making processes (Fox, Long, and Maga-
zzeni 2017). Even though such guidelines for Explainable
AI are mostly tailored for recommender systems, they can
be applied to most AI systems, and especially for algorithms
producing plans of actions, for example to execute on an em-
bodied agent such as a robot. In fact, a planner (robot) col-
laborating with humans should indeed propose useful plans,
allow to mediate such plans, and be transparent in its actions.
The concept understandable robots (Hellström and Bensch
2018) is often used in this context.

In this paper we focus on the transparency part of Ex-
plainable AI for planning algorithms, which broadly trans-
lates into the field of interpretable planning, i.e. the genera-
tion of plans that are understandable from a human point of
view (Chakraborti et al. 2017; 2019; MacNally et al. 2018;
Kulkarni, Srivastava, and Kambhampati 2019). Planning
while keeping a human observer perspective into consider-
ation is desired in most human-robot interaction, where the

collaboration with a robot may become difficult whenever its
observed actions and behaviors are not directly understand-
able by the human collaborator (Chakraborti et al. 2019).

A robot’s behavior can be hard to understand for reasons
such as model discrepancies (Chakraborti et al. 2017), where
the robot uses a task model different than the human’s, or an
asymmetry of information between human and robot, e.g.
differences in their beliefs. If not dealt with, such diver-
gencies may lead to decreased interpretability of the robot’s
behavior, ultimately leading to a loss of trust in the robotic
system (Hellström and Bensch 2018).

Interpretability in planning has been addressed using sev-
eral terms with subtle yet relevant differences, such as expli-
cable (Kulkarni et al. 2019; Zhang et al. 2017), predictable
(Zhang et al. 2017) and legible planning (Dragan, Lee, and
Srinivasa 2013; MacNally et al. 2018). In this paper we use
legibility, which focuses on reducing ambiguity over other
possible goals (Chakraborti et al. 2019). Legible planning
requires definition of optimality criteria for plans that are not
exclusively based on their execution cost, but rather on how
the plan’s goal can be successfully identified. In general,
this requires to explicitly model the observer as an agent per-
forming inference over the planner’s actions and weighting
the observations towards a set of possible goals.

The contributions in this paper extend the formalism for
plan legibility (especially (Dragan, Lee, and Srinivasa 2013;
Dragan and Srinivasa 2014)) to classical planning methods
such as PDDL (McDermott 1998) without requiring the con-
struction of ad-hoc planners. We further provide discussion
on how legible planning involves the creation of plans that
are legible inside the model used by the observer to evaluate
goals, hence requiring to take into account the differences
between this model and the task model being internally uti-
lized by the planner. This difference between models has
been addressed in adjacent topics such as model reconcili-
ation (Chakraborti et al. 2017), but has, to the best of our
knowledge, never been thoroughly put side-to-side with in-
terpretable planning methods where planner and observer
either share the same task model (e.g. trajectories in the
Cartesian space) or have a different observation space. We
argue that legible planning requires a second order theory
of mind, which allows the planner to evaluate its own plans
from a perspective of an observer that uses a possibly inac-
curate mental model of the planner. Theory of mind acts as

the glue that connects their two task spaces.
We further provide an algorithm to produce legible plans

using off-the-shelf PDDL planners, and measure its perfor-
mance over several standard domains. Since PDDL is easy
to use and fairly well known by the planning and robotics
communities, an algorithm for legible planning based on
PDDL can easily find practical implementations for robotic
scenarios, in fields such as human-robot interaction and
human-robot teaming, or for algorithms exploring theory of
mind in the domain of planning.

The rest of the paper is structured as follows. In Sec-
tion 2 we provide some brief relevant background on legible
planning. In Section 3 we introduce a working definition
of plan legibility in a probabilistic setting. Theory of mind
is contextualized as a function which transforms the plan-
ner domain to the observer’s perspective. In Section 4 we
propose a procedure to compute legible plans using off-the-
shelf PDDL planners. In Section 5 and 6 we provide an
illustrative example and performance measures over a set of
planning domains. In Section 7 we provide some conclusive
remarks.

Background
Plan legibility for robotic manipulators was investigated in
(Dragan, Lee, and Srinivasa 2013; Dragan and Srinivasa
2013; 2014). The authors proposed trajectories that are
skewed in a way that avoids ambiguity of goal locations.
The increased legibility of these trajectories was opposed to
optimality in terms of travelled distance. The observer and
the robot were respectively evaluating and producing legible
plans in the Cartesian space of the manipulator. The same
authors investigated how a manipulator’s legibility affects
human-robot interaction in a task where experimenters are
asked to act according to the robot’s predicted goal (Dragan
et al. 2015). Their results showed that legible trajectories
positively affected the perceived interpretability of the robot,
increased interaction fluency, and overall induced a greater
sense of collaboration during the interaction. They further
showed, through a user study, that there was a significant
preference for legible plans rather than functional trajecto-
ries (avoiding obstacles), or predictable ones (with minimal
cost).

In (MacNally et al. 2018), the authors use POMDPs
to model how the beliefs of an observer, in particular in-
ferred goals, are affected by different action selection poli-
cies. Since sequences of actions performed by an actor
(e.g. a robot) leads to inferred goal distributions in an ob-
server’s beliefs, the authors discuss how actions can be used
to communicate what the goal being pursued is, hence al-
lowing an implicit communication of the actor’s goal that
was highlighted as relevant whenever no explicit communi-
cation mechanisms between actor and observer exist. This
implicit communication of the goal by acting in a way rec-
ognizable by observers was named transparent planning,
which is equivalent to the notion of legible planning used
by other authors. Legibility as an implicit communication
mechanism is also explored in (Miura and Zilberstein 2020).
Through the utilization of Legible Markov Decision Pro-
cesses (MDPs) the authors show how it is possible to in-

tegrate an observer’s beliefs into the actor’s beliefs. An im-
portant point discussed by the authors is that legibility can be
arbitrarily increased through a trade-off with planning cost,
and a balance between the two is almost always required.
In both (MacNally et al. 2018) and (Miura and Zilberstein
2020) there is no disambiguation between the planner’s and
the observer’s task space, but rather they use the same un-
derlying MDP.

Plan legibility is similarly discussed as a planning prob-
lem with controlled observability. By controlling how obser-
vations are made, an observer can be made to recognize the
correct goal. Adversarial and cooperative observers could
be respectively misled or informed. For example, (Kulkarni,
Srivastava, and Kambhampati 2019) propose a controlled
observability planning algorithm that can create plans that
are more legible or obfuscating depending on the employed
heuristic to search the state space. The authors propose for
every goal to have a heuristic attracting the search, and by
averaging these heuristics with appropriate weights they ob-
tain plans that are more legible. The same authors extend
this line of research by allowing for both cooperative and
adversarial observers to be simultaneously present (Kulka-
rni, Srivastava, and Kambhampati 2020). In both papers,
planner and observer have different task spaces where the
ground truth observations, found by an observation model,
are respectively mapped.

Probabilistic Plan Legibility
We make the assumption that discrimination of goals is per-
formed by an observer while observing the planner perform-
ing a task. Hence, the legibility of a plan is based on the
observations that the plans lead to and prior beliefs over the
task, e.g. the state of the task prior to the attempt of recog-
nizing its goal. Therefore, legible planning should produce
observations in the observer perspective that, together with
prior beliefs, lead to the best discrimination of the plan’s true
goal.

Taking a probabilistic approach, at any moment there is a
set G = {ĝ, g0, g1, ..., gn} of possible goals the planner can
aspire to. To be legible, a plan must produce observations
that make its true goal ĝ easily discernible from the other
goals in G. Therefore, generating legible plans is equivalent
to finding the plan that minimizes the difference between the
true goal distribution that the planner has, and a goal distri-
bution that the observer infers from from the observations.
In this setting, the observer can be modeled as a probabilistic
model for goal recognition P (G|Π)P (Π), with Π being the
set of possible plans, P (Π) the prior probability distribution
of observing sequences of actions (plans) while P (G|Π) is
the distribution of the goals given observed plans. Hence,
the observer is modeled as estimating the planner’s goal dis-
tribution by observing its sequences of actions. For a goal
g ∈ G we define the legibility of a plan π in this plan space
as:

legibility(π, g) = H(Pg(G), P (G|π)P (π)), (1)

where H is a similarity function of two probability distribu-
tions. Pg(G) is the goal probability distribution for the goal,

with P (G = g) = 1 and P (G) = 0 for all other possible
goals.

The most legible plan is denoted πlegible and defined as
follows:

πlegible = argmax
π∈Πĝ

legibility(π, ĝ), (2)

where we consider only the plans Πĝ that achieve the true
goal ĝ from a given starting condition I which is the same for
every goal inG. Whether ĝ is effectively best discerned from
the other candidate goals is not assured, as it in some cases
may be impossible to generate sufficiently legible plans due
to constraints in the task space, or it might even be impossi-
ble to generate a plan at all.

Since Eq. 1 considers only complete plans, we further in-
troduce the notion of n-legibility, indicating the legibility of
a plan after n steps:

n-legibility(π, g) = legibility(π1..n, g) (3)
where π1..n is the plan comprising the n first steps of π.

We finally propose a generalized measure n̂-legibility as a
weighted average of the legibility of all of the plan prefixes
π1, π1..2, ..., π1..n:

n̂-legibility(π, g) =
∑
i∈1..n

wi · legibility(π1..i, g) =∑
i∈1..n

wi · H(Pg(G), P (G|π1..i)P (π1..i)),∑
i

wi = 1.

(4)

From this definition, the legibility of any step j can be ob-
tained by setting wj = 1. Other customized averages may,
for example, give a greater importance of legibility during
the early steps of plans.

Theory of Mind
Legible planning requires the planner to estimate the prob-
ability distribution over the possible goals, computed from
the observer’s perspective. While in previous discussion we
implicitly assumed that both planner and observer share the
same observation model, we now remove this assumption by
introducing a second-order theory of mind (Meijering et al.
2011; Devin and Alami 2016).

Theory of mind relates to the ability of agents to attribute
mental states and beliefs to themselves or other agents, and
of creating a point of view of a situation in terms of be-
liefs, goals and intentions that is different from their own
but rather belonging others. A first order theory of mind
is expressed in the sentence “Bob thinks that Alice thinks
X”, or in other words Bob has an estimate of Alice’s men-
tal state, believing she’s thinking X. Higher order theories
deepen these levels of reasoning by extending the thinking
chain. A second order reasoning would be “Carl thinks that
[Bob thinks that Alice thinks X]”—with parenthesis added
to highlight the recursion. In this case Carl holds an estimate
of Bob’s mental state. Arbitrary higher orders of reasoning
follow the same incremental structure.

Figure 1: Legible planning requires a second order theory of mind,
by which the planner, working e.g. on a mobile robot R, estimates
how the observer O interprets the robot’s actions by using a first
order theory of mind of the robot. Legibility of plans is computed
inside Ξ′

pl that is O’s model of R.

In this paper we propose that legible planning requires a
second order theory of mind as a model of how the observer
infers the planner’s goal. Consider the statement: “O thinks
that R’s goal is G”, where O is the observer, R is the robot, G
is the robot’s goal. The statement describes O’s first-order
theory of mind. At this level the belief about R’s goal be-
longs to O, and is not accessible by R. A second order chain
of reasoning can be described as “R thinks that [O thinks that
R’s goal is G]”, where at the first level O uses her first order
theory of mind, while at the second level the planner esti-
mates the result of this inference by using its second order
theory of mind. For R’s legible planning, the second order
reasoning can be reformulated as “R’s goal is that [O thinks
that R’s goal is G]”. The planner’s action are legible not in
the observer’s task model (as was also proposed in previous
literature), but rather inside the model that the observer uses
to evaluate the planner’s actions. This model, when imple-
mented by R, effectively allows it to access O’s beliefs about
him.

Following this reasoning in the setting of planning do-
mains we define a second order theory of mind as a function
T which allows to transform the plan instances Ξpl utilized
by the planner to the observer perspective of the same Ξ′pl:

T = Tpl ◦ Tobs : Ξpl → Ξobs → Ξ′pl (5)

such that for a specific instance Ξpl we can get a corre-
sponding instance as T (Ξpl) = Ξ′pl. T can also be seen as
the composition of the first order theories of mind Tpl and
Tobs, through which the planner makes an estimate of the
observer’s first order model, hence obtaining a second order
model. This procedure is illustrated in Figure 1.

In PDDL, T could transform domains from Ξpl by modi-
fying its operators and predicates with corresponding opera-
tors and predicates taken from Ξ′pl, and an associated prob-
lem instance by describing the initial and goal conditions in
terms of truth values from Ξ′pl. In this setting, plans pro-
duced in Ξpl induce corresponding plans in Ξ′pl.

To compute legibility the domains Ξ′pl are utilized, as
they model how the observer perceives and integrate in its

beliefs the produced observations in the form of a plan. No-
tice that this model is possessed locally by the planner by
its second order theory of mind, and once implemented does
not require additional external input to execute a task leg-
ibly. Nevertheless, even after deployment, if Ξpl and Ξ′pl
result being sufficiently different from one another the ob-
server can judge the plans as non legible. In these cases
it may be necessary for the robot to produce explanations
to make the domains compatible again (Chakraborti et al.
2017). Since model reconciliation is outside of the scope
of legible planning, we will not cover the cases in which
the two planning models require reconciliation, and to avoid
reconciliation scenarios we introduce the hypothesis that ev-
ery plan instance computed in Ξpl has exactly one valid de-
scription also in Ξ′pl.

Goal Recognition using PDDL
As previously discussed, we model the observer as a proba-
bilistic goal recognizer P (G|Π)P (Π) which infers the prob-
ability distribution over the possible goals given sequences
of observed actions, possibly also integrating the observa-
tions with contextual information from its beliefs.

Though it is possible to implement it in many ways, we re-
alized it by a probabilistic model based on the Planning Do-
main Description Language (PDDL). The provided formula-
tion for goal recognition is based on (Persiani and Hellström
2020), and is flexible in how observed actions can appear
in the plans ΠΞ′ , which, as we will later discuss, allows us
to easily define a set of theory of mind models as functions
which drop parts of the observations. In the following we
give some technical implementation details.

PDDL (McDermott 1998) is a standard language to spec-
ify planning domains for what is usually referred to as
classical planning. It is based on the STRIPS syntax and
uses predicate logic to describe the current task state. In
PDDL, a planning domain is specified by the tuple 〈P,A〉,
where P is the set of possible truth predicates describ-
ing a state and A a set of operators that allow to transi-
tion between states. Every operator is defined by the triple
〈pre(a), eff−(a), eff+(a)〉. pre(a) is a list of predicates
that must be true in a given state for applying a to it,
eff−(a) and eff+(a) are two lists of negative and positive
effects which describe how the state is modified by a. For
a specific planning domain 〈P,A〉, a derived planning in-
stance is obtained by specifying the tuple Ξ = 〈P,A, I,G〉.
Where I ⊆ P is the initial state, G ⊆ P is the target goal
state. The goal of a planner is to find a valid sequence of
operators π ∈ Π that from I reaches G while incurring the
least cost. From a planning domain 〈P,A〉 and a sequence
of observations π = {o0, ..., on} ∈ Π, goal recognition can
be performed by providing a model for

P (G|Π)P (Π) = βP (Π|G)P (G) (6)
Π is the set of valid partial plans inside Ξ, while P (G) is
the explicit prior probability of the goals. In this setting a
possible way to realize P (Π|G) is by computing, for ev-
ery goal being considered, the cost of two optimal plans ob-
tained from the planning instances Ξ = 〈P,A, I,G〉 and
Ξ′ = 〈P,A′, I,G′〉, where:

• A′ = A with action effects modified as:
∀a′ ∈ A′

– pre(a′) = pre(a) ∧ pa
– pa = ∧i(xai = argai) if argai is specified for action i
– eff+(a′) = eff+(a) ∧ e0 if a ∈ π and is the first of the

observations (i.e. n = 0)
– eff+(a′) = eff+(a) ∧ en−1 → en if a ∈ π and n ≥ 1

– eff+(a′) = eff+(a) otherwise.

• G′ = G ∪ en, where en is the effect predicate of the last
action in π.

The latter planning instance achieves G by producing a
plan πΞ′ which is constrained to contain the observations π,
the former instead achieves G by the means of an optimal
plan πΞ. These two instances are used to evaluate the degree
of rationalityR(π,G) that the observations have towards the
possible goals G, as computed by the formula:

R(π,G) =
|πΞ|
|πΞ′ |

(7)

|π′Ξ| is the cost of the optimal plan achieving G using Ξ′,
while |πΞ| is the cost of the optimal plan using Ξ. Given
the hypothesis that an optimal plan πΞ exists, the following
holds true:

|πΞ| ≤ |πΞ′ |, 0 ≤ |πΞ|
|πΞ′ |

≤ 1 (8)

All sequences of observations that induce plans with mini-
mum cost have R(π,G) = 1, while sub-optimal observation
sequences towards G have 0 ≤ R(π,G) < 1. Hence, the
lower R(π,G) is, the more sub-optimal it is to achieve that
goal while being consistent with the observations. R(π,G)
captures a measure of rationality of the observed actions in
the sense that it evaluates whether and how their investment
of resources is efficient towards the available goals. By this
definitions optimal plans are the also the most rationals (ra-
tionality is here equivalent as predictability in (Dragan and
Srinivasa 2013) if we implicitly assume that the observer
evaluates rational actions as predictable).

The probabilistic model for sequences of actions given the
possible goals, P (Π|G), can be finally obtained as a function
of R, such as through a Boltzmann distribution:

∀g ∈ G P (π|g) = αe
R(π,g)
τ (9)

where α is the normalizing factor which marginalizes over
all of the possible candidate goals, τ > 0 is the distribu-
tion’s temperature parameter. Given a sequence of observa-
tions, this model returns high probability for the goals that
are rational to pursue, low probability otherwise.

Production of legible plans with off-the-shelf
planners

As discussed in Section 3, legible planning means to find a
plan π such that its goal is easily discernible from a set of
other candidates in an observer perspective. This is obtained
by making the observer model P (G|Π)P (Π) to provide a

probability distribution over the goals as similar as possible
to the one of the real goal with P (G = ĝ) = 1. With the
introduction of the theory of mind T , Eq. 1 (and similarly
Eq. 3,4) can be rewritten as:

legibilityT (π, g) = H(Pg′(G
′), P (G′|π′)P (π′))

g′ = T (g), G′ = T (G), π′ = T (π)

{π,G} ∈ Ξpl, {π′, G′} ∈ Ξ′pl,

(10)

where now the goal recognition is done utilizing the plan-
ning instance Ξ′pl used by the observer to evaluate goals,
which is obtained by applying T to Ξpl. Once inside Ξ′pl
goal recognition can be performed as previously described
without further modifications. With a slight abuse of nota-
tion we use T to transform a planning instance in the broad
sense and in particular also the plans and goals it yields.

Since plan legibility is non-monotonic (i.e. n–
legibility(π, g) R (n + 1)–legibility(π, g)) in the general
case, n-legibility requires to exhaustively search the plan
space up to a depth of n to then compute the legibility at
that level. In order to leverage already existing planners,
we propose to utilize diverse planning techniques (Katz and
Sohrabi 2020). Diverse planning is the task of finding k
plans that achieve a target goal which are evaluated based
on their cost and diversity. We use diverse planning as an al-
ternative to search the plan space and use the parameter k to
define its size. After that, the n̂–legibility of a plan is found
by iteratively computing its i–legibility values for i = 1..n,
averaging the results to get the final value. Based on diverse
planning and Eq. 10, our proposed algorithm to find the leg-
ible plan is shown in Algorithm 1.

Algorithm 1 n̂-legible planning.
1: procedure LEGIBLE-PLANNING(Ξ, T,G, ĝ, γ, k)
2: Πĝ ← DIVERSE-PLAN(Ξ, ĝ, k)
3: Ξ′ ← T (Ξ)
4: ĝ′ ← T (ĝ)
5: G′ ← T (G)

6: π ← argmax
π∈Πĝ

ˆ|T (π)|–legibility− γ|π|

7: end procedure

Algorithm 1 performs three main operations: first it com-
putes the set of plans Πĝ achieving the target goal in the
planner’s perspective, then it transforms the planning in-
stance into its correspondings using the observer’s model
through the theory of mind T , finally, it finds the ˆ|π|-legible
plan also regularizing the result towards cheap plans, such
that the efficiency of the returned plan can also be main-
tained. Legibility is computed in the observer’s evaluated
plan space Π′ĝ , while the plan cost using the planner’s task
model.

Illustrative Example
To illustrate the production of legible plans we propose the
following example in the Human-Robot teaming scenario

s
g4

g0

g3

g2 g1

s

ĝ

Figure 2: Legible planning in the rescue scenario. Left side:
world grid that the commander believes the robot is planning
for. This plan instance is estimated internally by the robot
through a theory of mind, and doesn’t have any obstacles.
Right side: real world grid computed by the robot, which
has the real goal and contains detected obstacles.

shown in Figure 2. It is a rescue scenario where an au-
tonomous scout robot is moving in a dangerous environment
(e.g. a laboratory filled with toxic gases) searching for peo-
ple, while a commander supervisions the operations on its
computer interface from outside of the building. Both have
access to a map of the environment in the form of a grid-
world on which the robot’s position is being tracked. We
assume the commander doesn’t have direct access to the in-
ternal goal of the autonomous robot, nor of other map fea-
tures such as obstacles or rough terrain, which instead are
detectable by the robot through its sensors. When the mis-
sion starts the robot communicate its goal explicitly to the
commander through e.g. a speech interface, but in order
to continuously and implicitly better communicate its goal,
the autonomous robot estimates the commander’s other ex-
pected possible goals, and produce a legible plan such that
its true goal is best discriminated.

To make its plan more legible from the commander per-
spective, the robot should evaluate the possible candidate
goals that its actions might communicate to the comman-
der as being pursued (left side of Figure 2). In this case a
possible estimate is that the commander thinks that all of
the rooms of the building are candidate destinations for the
plans. In this setting, the right side of Figure 2 compares
the legible plan (green) with the optimal plan (red) for the
same true goal g3, computed in the robot perspective. The
legible plan is more expensive, as it passes over some obsta-
cles (purple), yet since it avoids as much as possible going
towards other candidates goals, it results being more legi-
ble by the commander. It better communicates that g3 is the
true pursued goal, and symmetrically, that the other candi-
date goals are not the ones being pursued.

The commander’s perspective is estimated by the scout
robot through its theory of mind. In this particular scenario
the robot estimates that the commander believes the robot
can move freely and that the environment is unobstructed,
which is plausible in this scenario as only the robot can map
the real environment. Since everything is computed locally
to the robot, the commander is not required to perform any
operation to communicate its mental state in the form of an

Domain |A| |P| |I| |G| |π|
intrusion 9.0 11.0 1.0 4.75 17.15
kitchen 29.0 23.0 2.0 1.0 10.6
satellite 5.0 12.0 62.8 6.8 16.55
campus 22.0 12.0 1.0 2.75 4.925

blocks-world 4.0 5.0 14.4 4.95 15.25
logistics 6.0 3.0 22.7 2.3 31.25

easy-ipc-grid 3.0 8.0 227.4 1.0 17.2
miconic 4.0 8.0 518.6 6.6 24.85

ferry 3.0 7.0 99.3 8.9 28.27

Table 1: Average instance measures over the tested planning
domains. The columns, from left to right are: number of
operators, number of predicates, size of the initial state, size
of the goal, length of optimal plan.

expected planning instance, such as through annotating the
map.

Evaluation
In order to benchmark our method on PDDL domains, we
run Algorithm 1 on the following planning domains: lo-
gistics, blocks-world, intrusion-detection, kitchen, campus,
satellite, easy-ipc-grid, miconic, ferry (Pereira, Oren, and
Meneguzzi 2017)1, selecting for every domain 10 random
planning instances. Table 1 shows average relevant metrics
of the instances. To compute plans and perform goal recog-
nition we utilize the Forbid-Iterative2 (Katz and Sohrabi
2020) planner which is based on Fast-Downward (Helmert
2006) and performs diverse planning by iteratively creat-
ing plan instances forbidding previously found plans. The
distance of the true goal distribution and the observer’s
predicted distribution is realized through the cross-entropy
function.

For every planning instance we applied Algorithm 1 by
the following procedure: we selected one goal randomly
chosen amongst a set of 4 candidates as true goal for
that instance, and used diverse planning to compute k =
50, 100, 200 plans toward it. For every plan its resulting leg-
ibility value is found by averaging the legibility values for
all of its steps.

In the general case, planner and observer have two disjoint
task models which makes their theory of mind non trivial
and for which a qualitative evaluation would require an ini-
tial learning phase and model reconciliation to align them.
However, since we want to test many PDDL domains, we
want to evaluate many possible theory of minds statistically
rather than qualitatively. In this setting we utilize a subset
of all of the possible theory of minds that is easy to ran-
domly sample. We focus more in particular on the theory
of minds which treat the transformation between planning
instances T as a function dropping parts of the actions or
parameters. This corresponds in estimating the observer as

1https://github.com/pucrs-automated-planning/goal-plan-
recognition-dataset. Accessed March 20, 2021.

2https://github.com/IBM/forbiditerative. Accessed March 20,
2021.

having strictly less or equal information as the planner when
inferring goals.

More precisely we don’t assume, in the inferred plans, for
the observations to appear in the exact succession in which
they were gathered, but other actions are allowed to appear
in between them. All of the observations must nevertheless
appear in the observed order in their corresponding inferred
plans. This simulates the observer not being able to recog-
nize all of the actions. Additionally, we allow for observa-
tions to be partially instantiated, i.e. not all of their param-
eters are required to be specified, with missing parameters
being rather inferred during plan recognition. This simulates
how the observer doesn’t have access to all of the informa-
tion contained in the observed actions and infers the missing
parts. Even though we find it plausible also in real imple-
mentations, we selected this family of theory of mind be-
cause it is easy to simulate and sample, which each sampled
T randomly dropping d% of the plans actions and parame-
ters. The tested values of d% are 0, 20, 40, 60, 80.

For every planning instance the main gathered measures
are the legibility gain and the cost gain. The legibility gain
Lgain corresponds to the ratio between the legibility of the
optimal plan π and the one of the most legible plan among
the k generated plans, πlegible.

Lgain =
n̂-legibility(πlegible)

n̂-legibility(π)
(11)

The legibility gain provides indication on how advanta-
geous it is, in terms of legibility, to follow a legible plan
rather than the optimal plan. The total legibility of a plan is
computed by averaging all of the legibilities of its steps with
equal weight. The other relevant indicator is the cost gain
Cgain, which instead indicates how costly (in plan length)
the legible plan is when compared with the optimal plan.

Cgain =
|πlegible|
|π|

(12)

These two measures together show the trade-off between
plan legibility and cost. Table 2 illustrates the measures
gathered on the tested domains. The obtained values for a
domain are the averages of all the 10 instances belonging to
it.

Discussion
Our measurements show a positive correlation between leg-
ibility and cost: it was always possible to increase legibility
in exchange of making plans more lengthy (see Table 3).
The measured gains seems however to be strongly depen-
dent on the tested domain. This is better highlighted in Fig-
ure 3, where legibility is compared with the percentage of
random items being dropped from the plans. For example,
in logistics the legibility peaks when none of the observa-
tions are dropped, while for intrusion-detection legibility in-
creases linearly in the opposite direction. Dropping parts
of observed plans relaxes plan recognition in the sense that
more possible plans fits the same observations, which trans-
lates in making the sequences of observations more probable

γ
0 0.001 0.01 0.1

d% domain Lgain Cgain Lgain Cgain Lgain Cgain Lgain Cgain

0

campus 1.32 1.1 1.31 1.1 1.26 1.1 1.08 1.03
kitchen 1.43 1.26 1.37 1.26 1.16 1.11 1.0 1.0
satellite 1.38 1.34 1.35 1.32 1.2 1.2 1.01 1.01
intrusion 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ferry 1.58 1.3 1.48 1.29 1.16 1.08 1.02 1.02
logistics 3.08 3.21 2.33 2.39 1.43 1.17 1.06 1.01
blocks 2.44 6.24 1.87 6.24 1.24 2.54 1.0 1.0
grid 1.03 1.35 1.02 1.29 1.0 1.22 1.0 1.0
miconic 1.08 1.2 1.07 1.13 1.04 1.05 1.01 1.0

20

campus 1.25 1.05 1.25 1.05 1.21 1.05 1.08 1.02
kitchen 1.58 1.13 1.52 1.11 1.29 1.06 1.02 1.05
satellite 1.28 1.29 1.26 1.26 1.15 1.19 1.01 1.01
intrusion 1.07 1.04 1.07 1.04 1.04 1.04 1.0 1.0
ferry 1.99 1.25 1.89 1.25 1.45 1.15 1.04 1.05
logistics 1.7 1.44 1.64 1.42 1.33 1.25 1.04 1.01
blocks 3.03 5.84 2.24 5.04 1.33 2.39 1.02 1.0
grid 1.05 1.41 1.04 1.38 1.02 1.27 1.0 1.0
miconic 1.13 1.16 1.12 1.16 1.07 1.03 1.02 1.0

40

campus 1.19 1.15 1.18 1.15 1.15 1.08 1.04 1.02
kitchen 1.51 1.11 1.47 1.08 1.28 1.06 1.02 1.05
satellite 1.19 1.3 1.17 1.24 1.1 1.13 1.01 1.0
intrusion 1.12 1.08 1.12 1.08 1.07 1.06 1.0 1.01
ferry 1.44 1.45 1.4 1.42 1.2 1.17 1.02 1.0
logistics 1.53 1.54 1.47 1.49 1.24 1.27 1.04 1.01
blocks 2.91 5.75 2.2 5.13 1.3 2.02 1.03 1.0
grid 1.09 1.5 1.08 1.5 1.04 1.3 1.0 1.0
miconic 1.12 1.19 1.11 1.19 1.07 1.03 1.02 1.0

60

campus 1.2 1.15 1.2 1.15 1.16 1.13 1.06 1.01
kitchen 1.63 1.16 1.59 1.16 1.36 1.11 1.05 1.05
satellite 1.14 1.25 1.13 1.19 1.08 1.13 1.01 1.0
intrusion 1.17 1.35 1.15 1.28 1.08 1.07 1.0 1.01
ferry 1.23 1.41 1.2 1.41 1.1 1.13 1.01 1.0
logistics 1.31 1.59 1.28 1.44 1.14 1.17 1.01 1.0
blocks 2.14 5.76 1.76 4.95 1.17 1.82 1.02 1.0
grid 1.11 1.87 1.1 1.82 1.04 1.49 1.0 1.0
miconic 1.06 1.19 1.05 1.16 1.03 1.02 1.01 1.0

80

campus 1.2 1.17 1.2 1.17 1.16 1.17 1.05 1.01
kitchen 1.47 1.15 1.44 1.15 1.3 1.11 1.05 1.05
satellite 1.1 1.27 1.09 1.27 1.05 1.08 1.01 1.0
intrusion 1.16 1.37 1.14 1.35 1.07 1.11 1.0 1.01
ferry 1.09 1.37 1.08 1.23 1.02 1.09 1.0 1.0
logistics 1.15 1.44 1.13 1.32 1.06 1.1 1.01 1.0
blocks 1.59 5.83 1.43 4.49 1.11 1.65 1.02 1.0
grid 1.12 2.59 1.1 2.31 1.04 1.47 1.0 1.0
miconic 1.06 1.15 1.05 1.14 1.03 1.0 1.01 1.0

Table 2: Computed plan legibility and cost measures. Lgain:
cost gain, Cgain: legibility gain, d%: percentage of dropped
observations, γ: regularization factor towards cheap plans.
Values are for k = 200.

toward all goals simultaneously. Our hypothesis is that plan-
ning domains with goal-specific actions will benefit more
from dropping part of the observations rather than domains
with universally applicable actions, as in the former case re-
laxed plans are still bound by the goal-specific actions. This
currently gathered data indicates that it is difficult to predict
a priori how legibility will behave in experiments on real
data.

The results further show that the regularization factor γ
plays an important role. In domains such as blocks-world or
logistics some action loops can arbitrarily increase the leg-
ibility towards the goals. This happens to the expense of a
huge drop of performance of the plans. In those domains,
without regularization legible plans could reach a length up
to 3-6 times higher than the optimal plans for the same in-
stances.

Conclusions
In this paper we proposed a procedure to compute legible
plans using off-the-shelf PDDL planners. Our formulation
is based on a probabilistic formulation of goal recognition

0 0.2 0.4 0.6 0.8

1

1.5

2

2.5

3

d%

L
g
a
in

campus kitchen satellite intrusion ferry

logistics blocks grid miconic

Figure 3: Legibility gain for various percentages of dropped pa-
rameters.

k 50 100 200

γ = 0
Lgain 1.31 1.43 1.54
Cgain 1.36 1.47 2.09

γ = 0.01
Lgain 1.13 1.18 1.16
Cgain 1.18 1.21 1.36

γ = 0.1
Lgain 1.01 1.02 1.01
Cgain 1 1 1

Table 3: Average over all of the domains of legibility and
cost gains for increasing values of k.

and models the observer’s task model as being estimated
by the planner. The integration of these two task models
is obtained by a procedure based on theory of mind which
transforms the planner’s task model into the same from the
observer’s perspective. The introduction of theory of mind
for legibility is crucial as it describes how planner and ob-
server tasks models are connected, and makes the planner to
know how its actions are perceived.

We further proposed an illustrative example based on a
rescue scenario with a robot and a human commander ex-
plaining how legibility behaves in this context. In Human-
Robot Teaming contexts we would like to highlight that
since legibility leverages the theory of mind owned by the
robot, it doesn’t require inputs by the commander such as
labeling of the scene. This is particularly interesting in the
context of highly autonomous robots. Additionally, a statis-
tical evaluation over several planning domains showed how
the proposed algorithm successfully generates plans that are
more legible than the optimal plans, also indicating how leg-
ibility is a trade-off with plan cost. Our investigations show
that this relation between legibility and cost is strongly de-
pendent on the domain and theory of mind being utilized. In
our statistical experiments we tested the family of theory of
minds that strictly reduce the amount of information for goal
recognition.

Apart from illustrating the broad possibility of increasing
legibility of plans, these current tests cannot reach further
conclusions a priori valid on every possible domain, which
rather require investigation on the specific domain and the-
ory of mind being utilized.

Future work regards the investigation of legibility as per-
ceived by humans in real scenarios. In particular on whether
the proposed model for plan legibility, which is based on the
concept of rationality, effectively capture human judgement
of legibility in domains specific for human-robot interaction.

References
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. arXiv preprint
arXiv:1701.08317.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? legibility? pre-
dictability? transparency? privacy? security? the emerging
landscape of interpretable agent behavior. In Proceedings
of the international conference on automated planning and
scheduling, volume 29, 86–96.
Devin, S., and Alami, R. 2016. An implemented theory of
mind to improve human-robot shared plans execution. In
2016 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), 319–326. IEEE.
Dragan, A., and Srinivasa, S. 2013. Generating legible mo-
tion.
Dragan, A., and Srinivasa, S. 2014. Integrating human ob-
server inferences into robot motion planning. Autonomous
Robots 37(4):351–368.
Dragan, A. D.; Bauman, S.; Forlizzi, J.; and Srinivasa, S. S.
2015. Effects of robot motion on human-robot collabora-
tion. In 2015 10th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 51–58. IEEE.
Dragan, A. D.; Lee, K. C.; and Srinivasa, S. S. 2013.
Legibility and predictability of robot motion. In 2013 8th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 301–308. IEEE.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.
Hellström, T., and Bensch, S. 2018. Understandable robots
- What, Why, and How. Paladyn, Journal of Behavioral
Robotics 9(1):110–123.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Katz, M., and Sohrabi, S. 2020. Reshaping diverse planning.
In AAAI, 9892–9899.
Kulkarni, A.; Zha, Y.; Chakraborti, T.; Vadlamudi, S. G.;
Zhang, Y.; and Kambhampati, S. 2019. Explicable planning
as minimizing distance from expected behavior. In AAMAS,
2075–2077.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
unified framework for planning in adversarial and coopera-
tive environments. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, 2479–2487.

Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2020.
Signaling friends and head-faking enemies simultaneously:
Balancing goal obfuscation and goal legibility. In Proceed-
ings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, 1889–1891.
MacNally, A. M.; Lipovetzky, N.; Ramirez, M.; and Pearce,
A. R. 2018. Action selection for transparent planning. In
AAMAS, 1327–1335.
McDermott, D. 1998. Pddl-the planning domain definition
language.
Meijering, B.; Van Rijn, H.; Taatgen, N.; and Verbrugge,
R. 2011. I do know what you think i think: Second-order
theory of mind in strategic games is not that difficult. In
Proceedings of the Annual Meeting of the Cognitive Science
Society, volume 33.
Miura, S., and Zilberstein, S. 2020. Maximizing plan legi-
bility in stochastic environments. In Proceedings of the 19th
International Conference on Autonomous Agents and Multi-
Agent Systems, 1931–1933.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Thirty-First AAAI
Conference on Artificial Intelligence.
Persiani, M., and Hellström, T. 2020. Intent recognition
from speech and plan recognition. In International Confer-
ence on Practical Applications of Agents and Multi-Agent
Systems, 212–223. Springer.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explicability
and predictability for robot task planning. In 2017 IEEE in-
ternational conference on robotics and automation (ICRA),
1313–1320. IEEE.

A Sampling-Based Optimization Approach to Handling Environmental
Uncertainty for a Planetary Lander

Connor Basich,1,2 Daniel Wang,1 Joseph A. Russino,1 Steve Chien,1 and Shlomo Zilberstein2

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, {firstname.lastname}@jpl.nasa.gov
2University of Massachusetts Amherst, Amherst, Massachusetts, {cbasich, shlomo}@cs.umass.edu

Abstract

Planning for autonomous operation in unknown environ-
ments poses a number of technical challenges. The agent
must ensure robustness to unknown phenomena, unpre-
dictable variation in execution, and uncertain resources, all
while maximizing its objective. These challenges are exac-
erbated in the context of space missions where uncertainty
is often higher, long communication delays necessitate ro-
bust autonomous execution, and severely constrained com-
putational resources limit the scope of planning techniques
that can be used. We examine this problem in the context of a
Europa Lander concept mission where an autonomous lander
must collect valuable data and communicate that data back to
Earth. We model the problem as a hierarchical task network,
framing it as a utility maximization problem constrained by
a monotonically decreasing energy resource. We propose a
novel deterministic planning framework that uses periodic re-
planning and sampling-based optimization to better handle
model uncertainty and execution variation, while remaining
computationally tractable. We demonstrate the efficacy of our
framework through simulations of a Europa Lander concept
mission in which our approach outperforms several baselines
in utility maximization and robustness.

Introduction
Planning in domains with large uncertainty and very low
margins for error has long been a challenge in the AI plan-
ning community. While numerous techniques have been de-
veloped over the years, many are rendered impractical or
infeasible by the technical constraints that many physical
robotic systems face. In space-based scenarios, the uncer-
tainty is often higher, the margins for error lower, and the
constraints more severe. Traditional approaches to planning
in space-based domains have consequently utilized deter-
ministic or sampling-based planning methods (Chi et al.
2019; Chi, Chien, and Agrawal 2020) which are fast and
computationally inexpensive, and can be very effective when
paired with a priori expert domain knowledge. Recent work
has investigated how periodic replanning, flexible execution,
and online model updates can be used in conjunction with
search-based deterministic planning to improve the efficacy
and robustness of the overall plans generated and executed
by a space-based robotic system (Wang et al. 2020).

©2021. All Rights Reserved.

Figure 1: An illustration of the Europa Lander concept mis-
sion in which an autonomous lander is tasked with perform-
ing in-situ analysis of sampled surface material and commu-
nicating the collected data to Earth.

While often effective in practice, these approaches do not
actively consider model uncertainty and off-nominal behav-
ior during plan generation, and are hence reactive in how
they handle the uncertainty faced by the system over its
environment. In this work, we propose a planning frame-
work that extends the algorithm from (Wang et al. 2020) by
proactively anticipating deviations from nominal execution
by incorporating domain uncertainty into the plan genera-
tion, creating plans that are more robust to these deviations
without sacrificing solution quality in the nominal case. We
examine the efficacy of our approach in the context of a pro-
posed concept mission in which a lander is tasked with ana-
lyzing surface material to acquire valuable scientific data by
performing in-situ analysis of samples excavated from the
surface of the Jovian moon Europa, and communicating that
data back to Earth (Hand 2017).

This concept mission entails several challenges that dif-
ferentiate it from prior missions. First, a priori knowledge of
the environment is severely limited and uncertain. Second,

the system’s battery supply is finite and non-repletable (i.e.
there is no possible power generation). Third, communica-
tion with Earth is constrained by two factors: (1) due to the
large distance to Earth, there are long communication delays
when communicating with Earth. As a result, ground-in-the-
loop operations cannot be relied on as the system will be
losing battery while waiting for communications and hence
the lander must be capable of operating fully autonomously.
And (2), due to Jovian occlusion, the lander will be faced
with long periodic communication blackouts (roughly 42 out
of every 84 hours) which constrain when the lander is capa-
ble of downlinking the data it has collected to Earth.

As utility is only assigned to data that is acquired and suc-
cessfully downlinked to Earth, and none for data collected
but not downlinked, in order for the Lander to be successful
it needs to carefully manage the trade-off between data ac-
quisition and communication. Furthermore, it must do this
while constrained by a finite and monotonically decreasing
battery supply, limited knowledge of its environment, and
limited communication with Earth. As a result, for the mis-
sion to be successful, the system requires an autonomous
planning and execution framework that is (1) computation-
ally efficient; (2) robust to unprecedented levels of uncer-
tainty; but still (3) capable of maximizing overall utility.

We model the problem as a hierarchical task network
(HTN) (Nau et al. 2003) due to the structured nature of
the tasks that the lander can perform, and consequently use
an anytime heuristic-search algorithm designed for solv-
ing HTNs (Wang et al. 2020) as the primary subroutine of
the proposed approach. Our approach is based on princi-
ples from Hindsight Optimization (HOP) (Chong, Givan,
and Chang 2000) and works by hypothesizing a set of sam-
pled scenarios that the system may face, planning for each
scenario, and evaluating each of the sampled plans’ per-
formances across all scenarios. The plan with the highest
weighted value is selected (this can be viewed as an ap-
proximation to maximizing expected utility). As the plan-
ner is deterministic, we also perform periodic replanning
to ensure that the system’s performance does not devi-
ate too far from expectation. This approach has similar-
ities with determinization-based methods that have been
highly successful in solving large Markov decision pro-
cesses (MDPs) (Yoon, Fern, and Givan 2007; Yoon et al.
2008; Pineda and Zilberstein 2014). While MDPs and other
stochastic sequential decision making models have been had
success in many settings, they are computational expensive
and ill-suited for domains with concurrent actions and con-
tinuous states such as that which is considered in this paper.

We empirically validate our approach in a simulated
Europa-like concept mission. The execution system we
use in our simulations is MEXEC, an integrated planner
and executive first built for NASA’s Europa Clipper mis-
sion (Verma et al. 2017), to better react to variations in
both environment and execution. Finally, to compensate for
both uncertain model priors and the deterministic nature of
the planner, the framework replans on a periodic basis. We
present empirical results against two base-line approaches
similar to those used in prior missions: a greedy planner
with replanning and an anytime heuristic-search based plan-

ner with replanning. We show that the proposed planning
framework, HTNSearch-PHRA, is more effective on aver-
age and more robust to uncertainty across five different mis-
sion scenarios. In addition, we analyze the effect of increas-
ing the size of the hypothesized scenario set by comparing
the performance of the algorithm with four different sets of
hypothesized scenarios.

Problem Description
Domain Overview
The primary goal of the Europa Lander concept mission is
to excavate and sample the moon’s surface, analyze the sam-
pled material for signs of biosignatures, and communicate
that data back to Earth (Hand 2017). Additionally, there are
secondary objectives to take panoramic imagery of the Eu-
ropan surface and collect seismographic data. Lander oper-
ations are therefore limited to primary objective tasks, sec-
ondary objective tasks, and data communication. This pro-
vides significant structure to the problem, since the concept
mission clearly defines the sequence of actions required to
achieve these goals. Figure 2 displays an example of a po-
tential execution trace of tasks that satisfies the minimum re-
quirements of the mission, and illustrates the inherent struc-
ture of the concept mission amongst the possible tasks.

As a minimum requirement, the lander should excavate
a trench in the Europan surface, collect three samples from
that site, analyze those samples, and communicate that data
to Earth. The basic requirements of a mission would require
only a single site to be excavated. However, there is value in
excavating additional sites, because the material at different
sites may possess different properties. In addition, the lander
may choose to resample the same location to, for example,
verify the discovery of a biosignature at that location. In the
baseline concept mission, all three of the lander’s samples
are chosen from the same target. Note that after the first site
is excavated, no further excavations are needed to sample
from that trench; all three sampling activities can share a sin-
gle excavation site. After excavation and sample collection,
samples must be transferred into scientific instruments that
analyze the material and produce data products. Then, for
a mission to achieve any actual utility, those data products
must be communicated back to Earth. Because communica-
tion is difficult and energy intensive, the lander may choose
to compress data lossily which reduces both the energy re-
quired to communicate the data and its utility, if the expected
utility of this action is higher.

In addition to sampling tasks, the lander may engage
in seismographic data collection and period panoramic im-
agery tasks. These are considered lesser goals, with lower
utility associated with their completion. As such, the data
products that these tasks generate are considered to have
lower value. However, these tasks also involve no surface
interaction, and have less uncertainty associated with them.

It is important to note that utility is only achieved when
data is downlinked back to Earth. This is true for both the
sampling and seismograph/panorama tasks. Some excava-
tion sites or sampling targets may provide more utility than
others if, for example, one of those targets has a positive

Figure 2: An illustration of a potential execution trace of an example task network for the Europa Lander concept mission that
satisfies the minimum requirements of the mission.

biosignature and the other does not. However, regardless of
the quality of the material that the lander samples, no util-
ity is achieved unless that data is communicated. This dy-
namic means that while potential utility is generated during
the sampling and analysis phases, it is only realized by com-
pleting relevant communication tasks.

The Europa Lander concept mission is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy
as efficiently as possible. Each task – including sleeping –
consumes energy from the battery, and the algorithm must
plan accordingly to maximize utility in the face of this con-
straint. In addition to this challenge, the surface character-
istics of Europa are uncertain, and any prior mission model
that is generated before landing are assumed to be inaccu-
rate. In particular, the energy consumption of the excava-
tion and sample collection tasks is largely unknown. There
is also significant variation in the utility of any given sam-
ple, since the value of sampling a given target on Europa
depends on whether the material is scientifically interesting,
e.g. whether a biosignature is present.

Problem Formulation
We model this problem using a hierarchical task network
(HTN) to compile the domain-specific knowledge of the de-
pendency structure into the task network. HTNs have been
used successfully in industrial and other real-world applica-
tions to improve the tractability of planning problems in sys-
tems such as SHOP2 (Nau et al. 2003) and SHOP3 (Gold-
man and Kuter 2019). In an HTN, hierarchical tasks are de-
composed into a set of subtasks. We refer to the higher-level
tasks as parent tasks, and refer to their children as subtasks.
Parent tasks may decompose into a number of different par-
tially ordered sets of subtasks; we refer to each of these

sets as a potential decomposition of that parent task. Finally,
we refer to tasks with no decompositions as primitive tasks.
These primitive tasks represent tasks that the lander can be
directly commanded to perform. Decompositions enable us
to significantly reduce the planning search space as we can
treat all subtasks of a parent task as a singular block during
the planning process; for example, the model treats “exca-
vate, sample, transfer, analyze” as a single unit and sched-
ules the subtasks accordingly.

Formally, an input to the problem is a set T =
{T1, ..., Tn} and a system state S. Each Ti is a task that is
represented by the tuple 〈pi, di, ei, ui, si, Ci,Wi, Di〉 where
pi is the priority of the task, di is the expected duration
of the task, ei is the expected rate of energy usage by the
task, ui is the expected utility of the task, si is the pre-
ferred start time of the task, Ci is the set of constraints
that must be satisfied for the task to be scheduled, Wi =
{[ti1, ti2], ..., [tin−1, tin]} is the set of time windows that the
task can be scheduled in, andDi = {Ti1, ..., Tim} is the par-
tially ordered set of decompositions of the task, which can
be empty if Ti is a primitive task. The state S is represented
by a collection of continuous and discrete features including
the remaining battery supply, the current data load, the cur-
rent time, and all features required to model task constraints.

There are four main parent task types in the mis-
sion model. The first is a Preamble which consists
of post-landing initialization and other one-time initial-
ization tasks, and must be executed immediately upon
landing. Second are data acquisition tasks which con-
sist of excavation, sample collection, sample
transfer, and sample analysis tasks. Excavation
can take place in one of three excavation sites, and may
be skipped if a site has previously been excavated. For col-
lection tasks, the lander may choose between one of sev-

eral collection targets at any given excavation site (repeated
sampling of the same target is allowed with no penalty).
The analysis task returns the dataload acquired from a
given sample upon completion; dataload represents the max-
imum potential utility that the acquired data provides upon
successful downlink to Earth. Third, there are Seismo-
graph/Panorama tasks which consist of seismographic
data collection and panoramic image data
collection; these tasks provide less data but are more
reliable in their execution. Fourth is the communication
task which decomposes into either a single, or a sequence
of two, communication(s), either of which can be of raw
data or compressed data. In this problem, we assign util-
ity solely to the successful completion of a communication
task, where communicating raw data provides greater utility
but consumes more energy than communicating compressed
data; note that both communication tasks consume the same
amount of dataload. Utility is assigned to tasks a priori but
we note that in practice may likely be updated online as new
information is obtained by the system.

Approach
The underlying planning method employed in this approach
relies on heuristic search. Search-based planning algorithms
have been popular for a number of years as they (1) do not
require that the full state space is evaluated to produce a so-
lution (Hansen and Zilberstein 2001), (2) are often anytime
algorithms that can return a solution at any point during run-
time (Zilberstein 1996), and (3) can easily leverage heuris-
tics to reduce the computational burden while still achieving
high performance (Bonet and Geffner 2001; Hoffmann and
Nebel 2001; Korf 1990). In this case, all three of these prop-
erties are highly desirable, and influenced our decision to
utilize a heuristic search-based planning algorithm.

Heuristic HTN Search
The main planning algorithm, Algorithm 1, relies on the
heuristic search approach for solving HTNs described
in (Wang et al. 2020) – which we henceforth refer to as
HTNSearch – as its primary subroutine. We offer a brief
discussion of their algorithm.
HTNSearch first performs a pre-processing step in

which all task decompositions are flattened into a single
layer so that parent tasks are simply linear chains of primi-
tive tasks. By flattening the decompositions, we can assign
specific utility and energy values to each parent task as there
is no ambiguity over which decomposition it is represented
by. Note that this step can be performed offline and only
needs to be performed once.

Next, HTNSearch initializes the search graph on the
newly flattened task network, where nodes hold partial plans
and edges hold (flattened) task decompositions or primitive
tasks. As the algorithm is deterministic, both the cost and
utility associated with any node is the sum over the tasks in
the partial plan for the respective value. Finally, the algo-
rithm performs a heuristic branch and bound search proce-
dure over the search graph where the search is bounded by
both the feasibility of partial plans (their total energy cost

cannot exceed the current battery supply, and the plan ad-
heres to inter-task constraints), and optional computational
constraints on the number of explorable nodes. For any plan
and decomposition pair, (P, d), a density based heuristic
value of utility(P) + utility(d)

cost(d) is used and ties are broken
in favor of lower cost.

The main limitation of this approach, which drives the
motivation for Algorithm 1, is that it is a deterministic al-
gorithm for a non-deterministic domain. In other words, the
plan that is produced assumes that the future will operate
exactly according to expectation. (Wang et al. 2020) ad-
dress this issue primarily through the use of online model
updates and frequent replanning to ‘course-correct’ the sys-
tem online. This idea is similar to that of determinization-
based approaches for solving very large Markov decision
processes, such as FF-Replan (Yoon, Fern, and Givan 2007),
which have been shown to perform well in the MDP set-
ting, particularly in the infinite horizon case, but are not
robust to dead-ends. Hence, we propose a planning algo-
rithm that proactively considers off-nominal behavior and
execution during plan time, rather than just reactively re-
sponding to off-nominal behavior and execution. We demon-
strate through empirical evaluations that our approach is in-
deed more robust to off-nominal scenarios than the standard
heuristic search, performing as well or better in both positive
and negative scenarios.

HTNSearch with Post Hoc Robustness Analysis
The proposed planning algorithm, the pseudocode for which
can been seen in Algorithm 1, is intuitively straightforward.
The algorithm takes in as input an instance of the Europa
Lander problem modeled as a hierarchical task network, T ,
and begins by producing a set of hypothesized scenarios via
the subroutine hypothesizeScenarios (line 3). The function
hypothesizeScenarios takes in the current task network that
is being planned on and the system’s current state, and re-
turns a set of hypothesized scenariosH. A scenario, h ∈ H,
is comprised of an initial state and an instantiation of the pa-
rameterized domain. This function is left general as its im-
plementation will be both domain and purpose specific. For
example, in our simulations we hypothesize multiple scenar-
ios where the current battery life of the lander is varied up or
down to represent the uncertainty over the “true” battery life
of the lander. However, other parameters may be varied such
as the time or energy to perform various tasks, the likelihood
of positive data from different samples, or the possibility of
excavated sites collapsing. These scenarios may be devel-
oped using expert knowledge a priori, or may be generated
online by drawing from distributions that parameterize the
domain model.

For each hypothesized scenario h ∈ H, the algorithm first
instantiates h by updating the relevant parameters of T , and
calls HTNSearch on the newly instantiated task network to
produce the best-found plan P (lines 5-7) within the com-
putational constraint. The plan P is evaluated on each sce-
nario h′ ∈ H by computing the expected utility following
P , V P(T , h′) (line 10) using a stochastic execution graph
subroutine. The observed expected utility is weighted by a

Figure 3: An illustration of the HTNSearch-PHRA algorithm. A tasknet, T , and a set of hypothesized scenarios, h1, ..., h|H|,
produce set of instantiated task networks, T1, ..., T|H|. Each Ti is comprised of the input task network with certain parameters
modified by the scenario; for instance the current state of the system or the cost and utility of various tasks. The planning
algorithm, HTNSearch, is ran on each Ti to produce a plan, Pi that is the best plan found for that instantiated task network.
Each plan, Pi is evaluated on all Ti to produce a cumulative score that is comprised of a weighted sum of expected utilities,
where the weights are determined by the likelihood of the hypothesized scenario. The plan that has the highest score, P∗, is
returned.

function getScenarioWeight and the weighted value is added
to the total score of the plan, µP (9-10). Finally, the plan that
had the highest total score is returned.

The function getScenarioWeight returns a real valued
number in [0, 1], given an HTN and a scenario. In our case,
we compute the Legendre-Gauss quadrature weights assum-
ing that the parameters relevant to the hypothesized scenar-
ios are normally distributed. In general we believe that any
relative likelihood-based weighting scheme will work, how-
ever we note that offline optimization of these weights may
be worthwhile particularly when the scenarios considered
are over multiple different task network parameters.

We compute the expected utility of the plan P using a
stochastic subroutine that builds the non-deterministic exe-
cution graph of P given the distributions which parameter-
ize the task network (energy cost, duration, data, and utility).
Computing the expected utility of a deterministic plan in a
stochastic domain is significantly cheaper than computing a
fully stochastic policy in the first place, and still allows us to
observe a more accurate evaluation of each plan.

Finally, as the HTN search algorithm dominates the other
subroutines in terms of runtime complexity, the runtime of
Algorithm 1 is ∼ |H| times the runtime of HTNSearch
when |H| is small. However, as |H| grows, the computation
spent evaluating plans grows at a rate of O(|H|2). Further-
more, there are diminishing returns to increasing the num-
ber of hypothesized scenarios considered, particularly when
adding very low likelihood scenarios to H. An analysis of
this can be found further in the paper. Ultimately, the prob-
lem of determining which, and how many, scenarios to in-
clude inH is an important element in balancing the trade off
between efficiency and effectiveness.

Algorithm 1: HTNSearch-PHRA
Input: A hierarchical task network T and state s
Result: A plan P∗

1 P∗ ← None
2 µ∗ ← −∞
3 H ← hypothesizeScenarios(T , s)
4 for h ∈ H do
5 T̂ ← instantiateScenario(T , h)
6 P ← HTNSearch(T̂)
7 µP ← 0
8 for h′ ∈ H do
9 γ ← getScenarioWeight(T , h′)

10 µP ← µP + γV P(T , h′)
11 end
12 if µP > µ∗ then
13 P∗ ← P
14 µ∗ ← µP ;
15 end
16 end
17 return P∗

Experiments
Experimental Setting
To evaluate the performance of Algorithm 1, we com-
pared against two baselines: HTNSearch and GREEDY. In
GREEDY, priorities were assigned a priori to each task de-
composition, and the planner greedily attempts to schedule
tasks in order of priority at each planning cycle, skipping
over tasks if they cannot be scheduled due to conflicts or vio-
lated constraints. Priorities are assigned offline using a com-

Figure 4: Utility achieved by each planning algorithm on all
five scenarios. Values shown are mean and standard error
over 10 trials.

bination of hard-coded domain knowledge (e.g. the Pream-
ble must have the highest priority) and Monte carlo trials on
sampled priority orderings across the input task.

The domain used for our simulations is described in Sec-
tion 2. We recall a few key points here. First, the system is
tasked with excavating the surface of the moon, collecting
samples to analyze which produces data, and then commu-
nicating that data back to Earth. Only data that has been suc-
cessfully communicated provides utility. Second, the agent’s
battery supply is consumptive and non-rechargeable, and the
system maintains a base Hotel load – a constant energy us-
age – even when sleeping. Third, communication with earth
is only possible in cycles due to Jovian occlusion (every
other 250 time units in our simulations). Consequently, the
system must be able to effectively manage a monotonically
decreasing battery supply and fixed time windows for com-
munication, while still performing tasks that produce data,
to actually receive any utility. Furthermore, it must execute
these tasks in a domain with large a priori uncertainty.

We therefore considered 5 different stochastic scenarios:
(1) Nominal, (2) Low Energy, (3) High Energy, (4) High
Consumption, (5) Low Consumption. In scenario (1) there
are no off-nominal, or unexpected, events or behaviors that
occur during simulation. In scenarios (2) and (3) there is a
sudden change (±20%) in remaining battery life that occurs
500 time units into the simulation as the battery recalibrates.
In scenarios (4) and (5) energy is stochastically drained or
added to the observed remaining battery supply at every
state update. In all scenarios, task parameters such as en-
ergy rates, duration, and data load are all drawn from low
variance Gaussians centered around pre-determined means
at runtime. Each scenario was simulated 10 times for each
planning algorithm to account for this execution variation.

In these experiments, we specifically focused on off-
nominal variations on remaining battery for three reasons.
The first is that, historically, battery measurements have
come with large uncertainty. The second is that battery is
the most valuable resource in this domain, as time only mat-

ters in that there is a constant minimum Hotel load, and zero
remaining battery supply is a terminal absorbing state. The
third reason is that deviations in battery supply or energy
consumption act as direct proxies for most other off-nominal
behavior (extra time to complete a task, getting stuck, failing
to perform a task requiring it to be repeated, etc.). However,
the algorithm presented is not relegated to such a constraint,
and in general can capture arbitrary scenarios.

Experimental Results
The main results of our experiments can be seen in
Figures 4 and 5. The first experiment compares the perfor-
mance of three algorithms: GREEDY, HTNSearch, and
HTNSearch-PHRA(3). The second experiment compares
the performance of four variations of HTNSearch-PHRA,
where the size of the hypothesized scenario set is increased:
HTNSearch-PHRA(1), HTNSearch-PHRA(3),
HTNSearch-PHRA(5), and HTNSearch-PHRA(7).

Cross-Method Comparison Figure 4 shows the mean and
standard error of the utility achieved by each planning al-
gorithm across the five planning scenarios. GREEDY per-
forms well when the scenario is an optimistic scenario as
the system ends up with enough battery to perform all of
the high priority tasks without issue; in particular this means
sampling more than the other approaches as GREEDY does
not perform the more conservative actions such as Seis/Pan
which produce less data but are more stable tasks. However,
in the pessimistic scenarios, where the battery supply ends
up being less than expected, GREEDY performs extremely
poorly, using up too much energy early on in the mission
sampling new targets to collect data, leaving insufficient en-
ergy to communicate all of the data back. This demonstrates
the brittleness of a greedy approach in the context of a do-
main with large uncertainty.
HTNSearch performs well overall, and notably better

than Greedy, as expected based on the results from Wang et
al. (Wang et al. 2020). However, because its plans are always
conditioned on nominal behavior and a lack of unexpected
events, it is always reacting to off-nominal deviations, lead-
ing to poorer results in both the Low Energy (LE) scenario
and the High Consumption (HC) scenario. Notably, the per-
formance is better in the High Consumption scenario, where
the negative impact on on the battery supply is constant but
small, than in the Low Energy scenario where the impact is
large, sudden, and unexpected. The former scenario allows
for constant reactive replanning to work as a viable strategy
for managing the off-nominal performance, but if too much
energy has been spent prior to encountering the sudden drop
in battery supply in the latter scenario, there is no recourse
for the system. The performance in the optimistic scenarios,
High Energy and Low Consumption, indicate that the sys-
tem is able to communicate an extra dataload on average in
the low consumption case. Similar to above, we believe that
the reason for this is that the system can constantly react to
the small increases in battery supply in the Low Consump-
tion scenario, but cannot plan to take advantage of the “ex-
cess” energy it encounters in the High Energy case.

On the other hand, HTNSearch-PHRA, which proac-

Figure 5: Utility achieved by Algorithm 1 with |H| = 3, 5,
and 7 respectively, on all five scenarios. Values shown are
mean and standard error over 10 trials.

tively selects plans that are robust to low-energy hypoth-
esized scenarios, is more robust to the negative condi-
tions, producing more utility on average in both the Low
Energy and High Consumption scenarios. The difference
here is more significant in the Low Energy scenario as
HTNSearch-PHRA can proactively plan for having less
energy, and does not just react to the latest observations and
state updates. However, the performance is still greater in
the High Consumption scenario because it can constantly
respond to the small off-nominal deviations in behavior,
and though it selects plans that are robust to high en-
ergy scenarios, it does not know that such a scenario will
occur until it has. In the optimistic scenarios where en-
ergy is more abundant than expected, both HTNSearch
and HTNSearch-PHRA perform comparably as they are
both able to make use of the excess battery supply, hav-
ing achieved higher utility than in the Nominal scenario.
As above, however, our algorithm performs better in the
High Energy case as it proactively creates plans robust
to similar situations. Finally, it is worth emphasizing that
HTNSearch-PHRA also performed comparably – up to
noise – to HTNSearch in the Nominal scenario where the
base task network that is used by HTNSearch is correct
(up to stochasticity). This means that our approach, although
sensitive to off-nominal scenarios, does not sacrifice perfor-
mance quality in the nominal case as well.

Overall, these results demonstrate that the proposed al-
gorithm performs comparably or better to each baseline ap-
proach in all scenarios tested, but the benefits are most no-
table in scenarios where the deviations are large and sud-
den, rather that small and frequent, as both search-based
algorithms have the ability to respond to the latter events
via replanning in order to “course correct”, and in pes-
simistic scenarios where off-nominal behavior hurts perfor-
mance rather than aids. This is because the reactive approach
can always benefit from extra battery supply as the excess
is observed, but can not always bounce back from energy
deficits. However, proactively producing plans that are sen-

sitive to both these scenarios ensures that the system fol-
lows a plan that never performs too poorly in any hypothe-
sized scenario, while also retaining the benefits of reactively
course-correcting.

Analysis of H on the Quality of HTNSearch-PHRA If
we consider the results from Figure 5, we observe that in-
creasing the size of the hypothesized scenario set can lead to
improved performance, but not always and not to a large ex-
tent (up to noise). We suggest that the reason for this is that
hypothetical scenarios with low likelihood – particularly in
this case where none of the scenarios consider critical fail-
ures – impact the score of each generated plan to a suffi-
ciently low degree that plans generated for low likelihood
scenarios are never actually selected to be scheduled. This
issue may be compounded by the fact that each hypothesized
scenario alters the same parameter, namely battery supply.

The reason that HTNSearch-PHRA(5) and
HTNSearch-PHRA(7) perform better than
HTNSearch-PHRA(3) in the energy based scenar-
ios compared to the consumption based scenarios is likely
that the ability to constantly course correct in response
to small observed deviations dominates the effect of
considering low-likelihood scenarios during the planning
phase. However, if we consider scenarios (N) and (HC),
HTNSearch-PHRA(5) and HTNSearch-PHRA(7)
actually perform worse than the other two. The reason
for this is that the plans selected are too conservative –
on account of being scored on low likelihood negative
outcomes – and end up costing utility over the course of the
full problem horizon.

In the future, we plan to analyze in greater depth whether
it is possible that using a more diverse portfolio of hypothet-
ical scenarios could lead to overall improved results, and if
so, whether only scenarios of sufficient likelihood need even
be included in H to have a meaningful impact. As the run-
time of the algorithm scales with the size of H, ensuring
that |H| is small while still covering a sufficient set of off-
nominal scenarios is important for an effective mission.

Related Work
Onboard planning and execution are of great interest to
the space domain. The Remote Agent was an architecture
for onboard planning and execution addressing remote au-
tonomous operation with deadlines, resource constraints,
and concurrent activities (Muscettola et al. 1998). The
Remote Agent flew for 48h in 1999 on the Deep Space
One spacecraft using a batch planner that took hours on a
RAD6000 CPU to generate a temporally flexible plan that
was then used by a reactive executive controller (Pell et al.
1997) to provide robust plan execution. The planner used
a refinement search paradigm (Jónsson et al. 2000) to con-
struct a temporally flexible plan but did not consider utility
in plan generation and did not perform continuous replan-
ning due to the computational expense and long planning
time (indeed the replans were scheduled in the prior plan).

The Earth Observing One (EO-1) spacecraft (Chien et al.
2005), which flew for over 12 years from 2004-2017, was
designed specifically to react to dynamic scientific events.

Planning was performed by the CASPER planning soft-
ware (Chien et al. 2000), which took on the order of 10s
of minutes to replan but did not produce temporally flexi-
ble plans. To address this, the onboard executive (SCL) was
able to flexibly interpret the execution of a plan to handle
minor execution runtime variations. The flight and ground
planners (Chien et al. 2010) both used a domain specific
search algorithm that enforced a strict priority model over
observations for limited model of utility. This scenario is
similar to that proposed in this paper, in which the lander
must react to dynamic events and observations in order to
maximize its utility, while still adhering to both mission and
spacecraft constraints. Recently, the Intelligent Payload Ex-
periment (IPEX) also successfully used the CASPER plan-
ning software to achieve its mission objective, further vali-
dating the efficacy of using onboard replanning to handle dy-
namic events and observations during operation even when
the plans are not temporally flexible (Chien et al. 2017).

The M2020 Perseverance rover also flies an onboard
planner (Rabideau and Benowitz 2017) to reduce lost
productivity from following fixed time conservative plans
(Gaines et al. 2016). The M2020 planning architecture re-
lies on rescheduling and flexible execution (Chi et al. 2018),
ground-based compilation (Chi et al. 2019), heuristics (Chi,
Chien, and Agrawal 2020), and very limited handling of
planning contingencies (Agrawal et al. 2019). However,
many characteristics of the M2020 mission are fundamen-
tally different from the concept mission we consider here,
such as the lack of reliable a priori model parameters, the
non-repletable battery, and the long communications black-
out time windows incentivizing greater mission autonomy.

Due to the presence of continuous state variables and
the necessity of modeling concurrent actions, we find that
stochastic planning models such as MDPs do not support
our problem domain well while still being efficient to solve.
Instead, as our problem has additional structure in how tasks
are conditioned, we represent our model as a hierarchical
task network (HTN). Hierarchical task networks have been
extensively studied over the last several years as efficient
models for planning in highly structured domains where
expert knowledge can be embedded directly into the plan-
ner (Kuter et al. 2009; Macedo and Cardoso 2004).

Several planning algorithms have been proposed for solv-
ing HTNs (Erol, Hendler, and Nau 1994; Nau et al. 2003;
Kuter et al. 2005). The subroutine that is used in Algo-
rithm 1, HTNSearch, is most similar to SHOP2 (Nau et al.
2003). However, while SHOP2 selects task nondeterministi-
cally from the available task at each iteration of the planning
loop, HTNSearch does not commit to a task but instead
heuristically searches the tree of (partial) plans and deter-
ministically selects the highest utility node found.

While the motivations and ideas of our approach are sim-
ilar to the area of robust optimization and uncertainty sets,
our work differs from prior work (Ben-Tal, El Ghaoui, and
Nemirovski 2009; Bertsimas and Brown 2009) in two key
aspects. First, robust optimization is a method for avoiding
solutions to convex optimization problems that end up be-
ing infeasible in practice due to the realizations of uncertain
parameters. However, as our problem is an indefinite plan-

ning problem (and replanning is not modeled as part of the
planning problem), formulating it as a convex optimization
problem is not straightforward. Second, uncertainty sets are
often built from sampled data in the absence of well-defined
priors; however, in our case, we assume the existence of
well-defined priors over the uncertain parameters (e.g. bat-
tery life). We do not use these distributions during planning
as full stochastic planning is intractable given the computa-
tional resources of the lander.

Conclusion
Planning and scheduling tasks in the presence of large a
priori uncertainty is a challenging problem for space-based
missions. The plans need to be robust and effective while not
risking compromising system safety or mission success even
in the face of domain uncertainty and severe computational
constraints. These issues are exacerbated in the context of
the Europa Lander concept mission where there is a mono-
tonically decreasing battery supply and large windows of
communication blackouts. In this work, we have presented
a deterministic planning algorithm – HTNSearch-PHRA
– that functions by creating a set of hypothesized scenar-
ios, running an efficient HTN heuristic search planner for
each scenario to produce a set of plans that are then each
evaluated across all hypothesized scenarios, and returning
the plan that performed the best overall. We validated the
approach empirically on a simulated Europa Lander do-
main where we compared it against existing baselines across
five different stochastic mission scenarios. We demonstrated
that the approach is more robust to off-nominal deviations
and unexpected scenarios than the existing baselines, hav-
ing consistently better performance while still being compu-
tationally efficient (running on the order of a few seconds).

There are several topics of consideration for future work.
So far, we have tested HTNSearch-PHRA only in the con-
text of varying a single scenario parameter: battery sup-
ply. The natural next step is to observe how our algorithm
performs when varying other parameters such as task fail-
ures, sample target data loads, communication efficiency,
task utilities, and catastrophic events. Second, we provided
empirical evidence that increasing the number of hypothe-
sized scenarios, at least when only a single parameter is var-
ied, has diminishing returns with respect to utility but grows
quickly in runtime. In the future, we would like to perform
a more rigorous analysis of the conditions under which in-
creasing the set of hypothesized scenarios will be beneficial,
or identify if there are conditions under which new hypoth-
esized scenarios will not impact the results of the algorithm.
Finally, we would like to perform more empirical evalua-
tions of our algorithm on a wider set of mission scenarios
where the system can perform online model updates as it
makes observations that enable it to update it model priors.

Acknowledgments
This research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004).

References
Agrawal, J.; Chi, W.; Chien, S.; Rabideau, G.; Kuhn, S.; and
Gaines, D. 2019. Enabling Limited Resource-Bounded Dis-
junction in Scheduling. In IWPSS.
Ben-Tal, A.; El Ghaoui, L.; and Nemirovski, A. 2009. Ro-
bust Optimization. Princeton University Press.
Bertsimas, D.; and Brown, D. B. 2009. Constructing Un-
certainty Sets for Robust Linear Optimization. Operations
Research .
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence .
Chi, W.; Agrawal, J.; Chien, S.; Fosse, E.; and Guduri, U.
2019. Optimizing Parameters for Uncertain Execution and
Rescheduling Robustness. In ICAPS.
Chi, W.; Chien, S.; and Agrawal, J. 2020. Scheduling with
Complex Consumptive Resources for a Planetary Rover. In
ICAPS.
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a Scheduler in Execution for a Planetary Rover. In
ICAPS.
Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.;
Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee,
E.; Stanton, E.; et al. 2017. Onboard autonomy on the in-
telligent payload experiment cubesat mission. Journal of
Aerospace Information Systems .
Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.;
Castano, R.; Davis, A.; Mandl, D.; Frye, S.; Trout, B.; et al.
2005. Using autonomy flight software to improve science
return on Earth Observing One. Journal of Aerospace Com-
puting, Information, and Communication .
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.;
and Frye, S. 2010. Timeline-based space operations schedul-
ing with external constraints. In ICAPS.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling. In ICAIPS.
Chong, E. K.; Givan, R. L.; and Chang, H. S. 2000. A frame-
work for simulation-based network control via hindsight op-
timization. In CDC. IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP: A
Sound and complete procedure for hierarchical task-network
planning. In ICAIPS.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016. Productivity challenges for Mars rover
operations. In ICAPS Workshop on Planning and Robotics.
London, UK.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: the case of SHOP3. In
European Lisp Symposium. Zenodo.
Hand, K. P. 2017. Report of the Europa Lander science def-
inition team. National Aeronautics and Space Administra-
tion.

Hansen, E. A.; and Zilberstein, S. 2001. LAO: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence .
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR .
Jónsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.; and
Smith, B. D. 2000. Planning in Interplanetary Space. In
ICAIPS.
Korf, R. E. 1990. Real-time heuristic search. Artificial in-
telligence .
Kuter, U.; Nau, D.; Pistore, M.; and Traverso, P. 2009. Task
decomposition on abstract states, for planning under nonde-
terminism. Artificial Intelligence .
Kuter, U.; Nau, D. S.; Pistore, M.; and Traverso, P. 2005.
A Hierarchical Task-Network Planner based on Symbolic
Model Checking. In ICAPS.
Macedo, L.; and Cardoso, A. 2004. Case-based, decision-
theoretic, HTN planning. In ECCBR. Springer.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no AI system has
gone before. Artificial intelligence .
Nau, D. S.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Plan-
ning System. JAIR .
Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1997. Robust periodic planning and execution for au-
tonomous spacecraft. In IJCAI.
Pineda, L. E.; and Zilberstein, S. 2014. Planning under un-
certainty using reduced models: Revisiting determinization.
In ICAPS.
Rabideau, G.; and Benowitz, E. 2017. Prototyping an On-
board Scheduler for the Mars 2020 Rover. In IWPSS.
Verma, V.; Gaines, D.; Rabideau, G.; Schaffer, S.; and Joshi,
R. 2017. Autonomous Science Restart for the Planned Eu-
ropa Mission with Lightweight Planning and Execution. In
IWPSS.
Wang, D.; Russino, J. A.; Basich, C.; and Chien, S. 2020.
Using Flexible Execution, Replanning, and Model Param-
eter Updates to Address Environmental Uncertainty for a
Planetary Lander. In I-SAIRAS.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In ICAPS.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic Planning via Determinization in Hind-
sight. In AAAI.
Zilberstein, S. 1996. Using anytime algorithms in intelligent
systems. AI magazine .

Real-time Planning and Execution for Industrial Operations

Filip Dvorak
Schlumberger

555 Industrial Blvd
Sugar Land, TX 77478, United States

fdvorak@slb.com

Abstract
Real-time planning systems in industrial environments are
faced with challenges of reasoning about how to find the op-
timal plan of actions to achieve a goal, dispatch and monitor
the execution of actions, act on state information, diagnose
failures and learn to adapt to unexpected events. In this paper,
we formalize planning and execution architecture that encap-
sulates hierarchical deliberative planning, reactive planning
and failure management within behavior trees, discussing ex-
perience from practical deployments of the architecture in the
oil and gas industry.

We are living in times of continuous evolution of automa-
tion, where a broad range of systems is becoming directly
connected to the internet, operational context of simple de-
vices grows wider and complexity of autonomous behav-
iors keeps increasing. The automation challenges consist of
having all actors in the system to connect, providing their
real-time operational data, which we need to collect, and
reason how to control the system to achieve the goals ef-
ficiently and reliably. Leaving aside the challenges of real-
time connectivity and data collection, reasoning about com-
plex dynamic systems requires capturing tacit and explicit
knowledge often spread a across multitude of sources in-
cluding different forms of documentation, historical opera-
tional data, human domain experts and models tailored for
certain configurations and subsystems.

This paper addresses the challenge of heterogeneously
spread domain knowledge in real-world problems with a hi-
erarchical autonomous control architecture, combining well-
known techniques from satisfiability theory, automated plan-
ning, automated diagnosis, constraint programming and be-
havior trees into a single formal model. In the following
sections we first build up representation and the necessary
reasoning techniques for planning and diagnosis. Then we
build an execution model on top of the behavior trees, which
will encapsulate the reasoning techniques into tree nodes,
and define semantics of composing execution models by at-
taching behavior trees to each other. Finally, we discuss the
experience from practical deployments of the architecture in
the field.

Representation
The representation of the world state consists of a set of first-
order variables, upon which we build quantified boolean for-

mulas.

Definition 1. For a finite set of objects C, a finite set of
types T = {Ti ⊆ C} and a set of m n-ary variables V =
{v(c1 ∈ T1, .., cn ∈ Tn)|dom(v) = {1, 0} ∨ dom(v) =
Z∨dom(v) = R}, αV = (u1, .., um) denotes an assignment
where ui ∈ dom(vi), sαV

denotes the state of the world and
SV denotes the state space as a set of states produced by all
possible assignments to variables V .

Given state representation enables capturing propositional
variables together with numeric variables and while it leads
to infinite state space, we are interested in practical (finite)
sizes of problems, and we will discretize the numeric vari-
ables with numeric comparison operators. The following
definition will enables us to capture structures in the states
space.

Definition 2. For a state sαV
, F is a formula grammar F →

1. ∀x(F)|∃x(F)|, where x ∈ Ti
2. (F)� (F)|, where � ∈ {∨,∧,⇒, ⇐⇒ }
3. vi � c|, where vi ∈ V, c ∈ R,� ∈ {<,>,=}
4. vi|¬vi, where vi ∈ V, dom(vi) = {0, 1}
For a formula f accepted by grammar F and a state sαV

,
f(sαV

) and f(s) denote a formula whose truth value is its
evaluation.

With regard to evaluation, formulas can be treated as a
quantified boolean formula (QBF) since line 3. of the gram-
mar collapses all numeric variables into boolean variables,
becoming equivalent to line 4. QBF can be evaluated us-
ing a simple recursive algorithm and while it is PSPACE-
hard in general, we restrict ourselves to easy instances rep-
resenting pieces of real-world knowledge, e.g. ∀d ∈ devices
(noise(d) < 60dB).

Diagnosis
Real-world systems naturally include scenarios when an un-
expected event leads to a failure that requires either auto-
mated or human-assisted recovery. A common approach to
model the consistency of a system is to define a set of con-
straints that encode the atomic pieces of knowledge about
the system - rules that need to be satisfied. Verifying that all
rules are satisfied, e.g. in CP or SAT, then tells us that the
system is consistent, however, an inconsistent system can

manifest an exponential number of conflicts causing the fail-
ure. We can gain more understanding of a failure by intro-
ducing minimal diagnosis and minimal conflict set.

Definition 3. For a state S and a set of formulas A =
{f1, .., fn}, we define:

• A conflict set C ⊆ A, where CS is inconsistent, and min-
imal conflict set CminS , where ¬∃x ∈ CminS : CminS \ x is
inconsistent.

• A diagnosis D ⊆ A, where AS \ DS is consistent, and
minimal diagnosis Dmin

S , where ¬∃ diagnosis Ds ⊆ A :
|DS | < Dmin

S .

We can compute the minimal conflict set using
the QuickXPlain algorithm (Junker 2004) requiring
O(|CminS |log(|S||CminS |)) consistency checks and the
minimal diagnosis requiring O(|Dmin

S |log(|S||Dmin
S |))

consistency checks. While the consistency check is
PSPACE-hard (formula is QBF), we can expand the for-
mulas into propositional formulas (exponential growth
in number of quantifiers), and consistency checking then
becomes NP-complete (constraint satisfaction problem).
The main advantage of expanding the formulas is to capture
finer diagnosis and conflict sets, e.g. invalidated ∀o ∈
operations ready(o) → prepared(o) after expansions tells
the exact operation causing the inconsistency.

Planning
Definitions above gave us the state of the world, formulas to
find structures in the world, capability to identify if the world
is inconsistent and how to explain the inconsistency. Now
we can start interacting with the world using a deliberative
process of choosing and organizing actions by their expected
outcomes - planning (Nau, Ghallab, and Traverso 2004).

Definition 4. For a state space S we define a temporal nu-
meric planning problem P = (S,O, si, sg), where:

• O is a set of operators o = (fc, fp, αe, d, p), where fc and
fp are formulas representing preconditions and persistent
conditions, αe represents effects as a partial parameter-
ized assignment, d : S → R is a parameterized duration
function and p is a set of type assignments to all free vari-
ables (parameters) in fc, fp, αe and d.

• si is an initial state of the world.
• sg is a partially assigned goal state.

For a planning problem P , π = {ao(b, pα)} is a set of ac-
tions, where o ∈ O is an operator, b ∈ R is the action
start and pα is an assignment of objects to free variables in
fc, fp, αe and d.
π is a plan for the planning problem P iff all the actions

can be started at their start times running for their duration,
all conditions and persistent conditions are satisfied, all ac-
tion effects are applied and after applying effects of the latest
actions, and we reach a state that satisfies the goal sg .

For a planning problem P , Π is the set of all possible
plans, and we say that π∗ ∈ Π is makespan-optimal iff there
does not exist a plan with a shorter duration between the
earliest action start and latest action end.

While classical propositional planning is PSPACE-hard
(Nau, Ghallab, and Traverso 2004), allowing temporal con-
current actions shifts the difficulty of finding a plan to
EXPSPACE-hardness (Rintanen 2007) and allowing nu-
meric effects makes the problem undecidable (Helmert
2002).

Execution Model
In this section, we focus on defining the building blocks of
a hierarchical execution model using the behavior trees and
within these blocks, we unify reactive and deliberative plan-
ning (Ghallab, Nau, and Traverso 2016).

Since we integrate multiple sources of knowledge and
models together, the capability to reflectively reason about
the execution and structure of the model itself becomes prac-
tical, and we capture it in reflective predicates following on
Definition 1.

Definition 5. For a set of objects C, types T , variables V
and a planning problem P = (S,O, si, sg), we define pred-
icates:

• b, e : O × N × R × T1 × .. × Tn → {0, 1}, where
b(o, i, t, c1, .., cn) represents the start of execution of ac-
tion specified by operator o(c1, .., cn) at time t, and
e(o, i, t, c1, .., cn) represents the end of execution of the
action, and i represents a unique identifier of the action
instance.

• a : N × N × Tj → {0, 1}, where a(v, n, c) represents
an assignment of value c to free variable v for a unique
instance of execution of behavior tree node n.

• x : N × N × R → 0, 1, where x(Dmin
s , Cmins , t) repre-

senting explanation of a diagnosed failure at time t.

Reflective predicates allow recording an actual schedule
of actions executions, passing of assignments to free vari-
ables between nodes of the behavior tree, and explanations
of diagnosed failures, assuming we have a mapping between
variable names and N and formulas and N.

Behavior Trees
A behavior tree is a directed acyclic graph with a single root
node and a single component. The execution of a behavior
tree is execution context passing concept, similar to finite
state machines, which naturally supports hierarchical com-
positions of trees.

The execution of a behavior tree starts from the root which
sends tick signal that passes execution context to a child.
When the execution context is passed to a node, it returns
to the parent status running if its execution has not finished
yet, success if it has achieved its goal, or failure otherwise.
When the execution context is passed to a node for the first
time, it will initialize and once it returns success of failure it
will reset. When a parent node passes the context to a child
for the first time, it updates the current state s with assign-
ments a(v, n, c) for all variable assignments it has done and
received with the identifier n of the child node. We further
assume that all the nodes have access to the current state of
the world s. We distinguish the following control nodes:

• Selector node executes the first child that does not fail. It
return success or running when one of its children returns
success or running and returns failure if all the children
failed.

• Sequence node executes the first child that has not yet suc-
ceeded. A sequence returns failure or running when one of
its children returns failure or running and returns success
if all of children succeeded.

• Flow node executes all its children in a sequence (even
if they previously succeeded) until all return success. It
returns the status of a first child in the sequence that does
not return success.

• Parallel node executes all its children and returns failure
if at least one child has failed. It returns running if at least
one child has returned running and none has returned fail-
ure. It returns success if all children have returned suc-
cess.

• Branch node is parameterized by formula f representing
the branching schema. When initialized, it finds all possi-
ble instantiations I of the free variables in f such that fs
is true for the current state s and then it duplicates each
of its children for each instantiation i ∈ I , assigning free
variables a in the created nodes according to i. The branch
node then behaves exactly the same as the Parallel node
and when reset, it removes all duplicate child nodes it has
created during initialization.
The children of selector and sequence nodes are totally or-

dered, which represents the priority of alternatives in selec-
tor node and progression in sequence nodes. We assume that
ordering of children in parallel node does not matter. Branch
node can be seen as a multi-threading pool that lunches in-
dependently in parallel its subtrees for a given formula, e.g.
o ∈ O : ready(o)∧¬done(o) will duplicate and execute its
subtrees for each operation that is ready but not done yet.

We assume that control nodes do not appear at the leaves
of the tree and we define four parameterized leaf nodes:
• Infer node is parameterized by a formula f . It returns suc-

cess if formula fs is true and failure otherwise. It never
returns running.

• Execute is parameterized by formulas f c, fp, fe and an
operator o. The node returns failure if f cs does not hold
when initialized or there is a time when fps does not
hold. When initialized, the node updates s with predicate
b(o, i, t, c1, .., cn) and it returns success if fes holds, oth-
erwise it returns running.

• Diagnose is parameterized by a set of formulas A, it re-
turn running until Dmin

s and Cmins are found. It returns
success if Dmin

s = ∅, otherwise it sets x(Dmin
s , Cmins , t)

and returns failure.
• Plan is parameterized by a temporal PDDL domain (Fox

and Long 2003) with numeric-fluents D and PDDL prob-
lem template P , where P is instantiated by current state s
and its free variables are assigned by predicate a for this
node, denoted as P is . When initialized, the node creates
a planning problem (D,P is) = (S,O, si, sg) and runs a
planner. It returns running while the planner is running

Figure 1: Depicts a behavior tree structure of a parallel node
followed by selector and flow nodes with insertion points p,
a and l

.

and returns failure if the planner does not find a plan or
runs out of time without finding a single plan. Once a
plan is found, the node starts to dispatch action ao(t, pα)
by setting predicate b(o, i, t, c1, .., cn) if f cs is satisfied and
all preceding actions in the plan have finished dispatching.
It finishes dispatching the action by setting the predicate
e(o, i, t, c1, .., cn) if fes . The node returns success if all
planned actions finished dispatching and it returns failure
if the persistent conditions fps did not hold for dispatching
of an action.

Infer node is performing a consistency check of (typi-
cally) simple formula, while diagnose node builds on infer
node and it can work with 105 simple formulas after expan-
sion providing the explanation of inconsistency. Diagnose
node is typically positioned just before the plan node to val-
idate that the whole system is consistent and the planner is
expected to find a plan or it can run in parallel with execution
and keep checking consistency of every state encountered.
Execute node can be seen as a dispatching of a single pa-
rameterized operator, while plan node finds and dispatches
hundreds of actions according to their partial ordering.

In the further text execution modelM represents a behav-
ior tree build from leaf and control nodes such that control
nodes have at least one child and leaf nodes have none.

Architecture
Encapsulating reasoning and action execution into nodes of
a behavior tree provides the grounds to define a global auto-
mated planning and execution system in terms of tree com-
position.

Composition
We assume that every execution modelM has the structure
depicted in Figure 1. For modelsM′ andMwe define com-
positions:

• M′ p−→ M attaches the root node ofM′ as child of root
node || inM.

• M′ a−→M attaches the root node ofM′ as a first child of
selector node ∨ inM, which allows to completely alter-
nate execution of subtree S.

• M′ l−→ M attaches the root node of M′ as a first child
of the flow node→ inM, which enforce the execution of
M′ to precede the execution of subtree S.

We can observe that the product of all execution model
compositions is an execution model and the composition tree
is a deterministic well-defined structure.

Orchestration
Orchestration is a process of discovering the execution do-
mains of its deployment, composing them into a single exe-
cution model and executing the model. We define a deploy-
ment as a set of domains D = {(R,M, C)}, where R is the
runtime sensory processing function that interprets raw ob-
servations of the world into the state space of variables SV ,
M is an execution model and C is a set of compositions
{M�M′|(R′,M′, C ′) ∈ D,� ∈ { p−→, a−→, l−→}}.

We say the deployment D is valid iff union of runtimes
does not have a conflict (assigning different values to the
same variable) and the compositions defined by the domains
form a composition tree. Then orchestration of a valid de-
ployment D provides autonomous control of the world in-
terpreted by the union of its runtimes and modeled by the
execution model composed from execution models of its do-
mains.

Application
For the last two years and as a continuous effort we have
been extending the coverage of automation by adding new
domains, extending execution models for heavy machinery,
and running end-to-end automation deployments in the field.
In this paper, we have formalized the high-level approach
for modeling and executing large autonomous systems, yet
the practical deployments had to be enabled by the work of
dozens of embedded software engineers hidden in lower-
level automation, e.g. deep learning classifiers for vibra-
tions, sound, and visual input, which is beyond the scope
of this paper.

A typical deployment has one top-level PDDL model with
externally provided goals, a proprietary temporal PDDL2.1
planner based on POPF (Coles et al. 2010) then finds close-
to-optimal plan with hundreds of actions spanning over sev-
eral days with a 10s timeout, which upon human review
starts to execute (we can imagine a review action whose
completion is tied to clicking a confirmation button in the
UI). Some actions of the top-level plan can be further de-
composed upon its start of execution into planning subprob-
lems, where the execution model has been provided by a
different domain. This hierarchical decomposition is con-
structed by attaching subproblem execution models with

p−→,
conditioned by an infer node that checks the actions start
through predicates b and e. Reactive and deliberative exe-
cution models are interchangeable with regard to execution,
where reactive models tend to be faster for development but
they do not provide a plan in advance, and the hierarchi-
cal decomposition during the execution can then be formed
from any combination of reactive and deliberative decompo-
sitions. Building up a prediction of a fully decomposed plan
is a topic for future work.

Execution of real-world deployments naturally manifests
many failures, which we divide into categories known, diag-
nosable, and unexpected. Known failures are typically tied

to a variable in the state-space and there is an execution
model to recover from them. Diagnosable failures are caught
by the automated diagnosis (typically hundreds of atomic
formulas) and they are addressed either from a transfer to
known failures, or they are fixed in the responsible domains.
Unexpected failures lead to a failure of the execution model
node, potentially leading to a failure of the execution of the
whole orchestrated execution tree. In practice, addressing
failures of the system is an iterative process of adding new
diagnostic formulas, and recovery models for known failures
and eliminating the long tail of unexpected failures. While
we have initially explicitly modeled individual failures in
the top-level PDDL, the recovery modeling and modeling
of combinations of failures impacted the maintainability of
PDDL (additional thousands of lines in the PDDL domain),
and we have shifted to model failures in a different execution
model. For this purpose, composition l−→ is particularly use-
ful, attaching reactive execution models to resolve failures,
e.g. execution model starting with infer node conditioned
with motor-failure can contain the necessary instructions for
recovering from failed motor.

Related Work
Deliberative and reactive planning has been interleaved
in systems such as autonomous underwater vehicles T-
Rex (Mcgann et al. 2008) and LAAS architecture for au-
tonomous satellite and rover control (Ghallab et al. 2001).
Task planning based on PDDL2.1 has also been integrated
into a popular robotic framework as ROSPlan (Cashmore
et al. 2015) - compared to which our architecture provides
hierarchical reasoning, where different branches of the hi-
erarchy can be implemented independently and composed
together during orchestration.

Failure management systems are a common part of au-
tonomous control systems and our current implementation is
simpler by looking only into the current state and history of
executed actions compared with failure management such as
HyDe (Frank 2019), which diagnoses the whole evolution of
state variables. Behavior trees are commonly used to capture
reactive behaviors and they can also be constructed to cap-
ture deliberative behavior (Colledanchise and Ögren 2017) -
The Plan node could be equivalently implemented by find-
ing a plan and generating a behavior tree representing the
plan.

Manually building execution models, be it reactive or
deliberative modeling, has been a critical and demanding
part of the automation development. While some approaches
learn directly from observed action sequences (action traces)
(Cresswell and Gregory 2011) or snapshots of the state of
the world (state traces) (Bonet and Geffner 2019), learn-
ing on top of an imperfect model has been explored (Zhuo,
Kambhampati, and Nguyen 2012) and recently deep rein-
forcement learning has shown capabilities to learn without a
model (François-Lavet et al. 2018).

Conclusions
This paper formalizes a hierarchical scalable autonomous
control architecture for real-time problems with heteroge-

neously spread domain knowledge, practically applied in an
increasing number of unique field deployments in the oil
and gas industry. The architecture interleaves well-known
reasoning techniques, discussing the intricacies of work-
ing within hard (undecidable) problem spaces, and provides
support for independent parallel development of different
domains (PDDL modeling, reactive planning, or other cus-
tom types of behaviors).

References
Bolton, W. 2015. Preface. In Bolton, W., ed., Pro-
grammable Logic Controllers (Sixth Edition), ix – xii.
Boston: Newnes, sixth edition edition. ISBN 978-0-12-
802929-9. doi:https://doi.org/10.1016/B978-0-12-802929-
9.09990-8. URL http://www.sciencedirect.com/science/
article/pii/B9780128029299099908.

Bonet, B.; and Geffner, H. 2019. Learning First-Order Sym-
bolic Planning Representations from Plain Graphs. CoRR
abs/1909.05546. URL http://arxiv.org/abs/1909.05546.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. Pro-
ceedings International Conference on Automated Planning
and Scheduling, ICAPS 2015: 333–341.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. 42–49.

Colledanchise, M.; and Ögren, P. 2017. Behavior Trees in
Robotics and AI: An Introduction. CoRR abs/1709.00084.
URL http://arxiv.org/abs/1709.00084.

Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR) 20: 61–124. doi:10.1613/jair.1129.

Frank, J. 2019. Artificial Intelligence: Powering Human Ex-
ploration of the Moon and Mars.

François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare,
M. G.; and Pineau, J. 2018. An Introduction to Deep Rein-
forcement Learning. Foundations and Trends R© in Machine
Learning 11(3-4): 219–354. ISSN 1935-8245. doi:10.1561/
2200000071. URL http://dx.doi.org/10.1561/2200000071.

Ghallab, M.; Ingrand, F.; Solange, L.-C.; and Py, F. 2001.
Architecture and Tools for Autonomy in Space.

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. USA: Cambridge University Press,
1st edition. ISBN 1107037271.

Guarnieri, M. 2010. The Roots of Automation Before
Mechatronics. Industrial Electronics Magazine, IEEE 4: 42
– 43. doi:10.1109/MIE.2010.936772.

Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Proceed-
ings of the Sixth International Conference on Artificial In-
telligence Planning Systems, AIPS’02, 44–53. AAAI Press.
ISBN 1577351428.

Junker, U. 2004. QUICKXPLAIN: Preferred Explana-
tions and Relaxations for over-Constrained Problems. In
Proceedings of the 19th National Conference on Artifi-
cal Intelligence, AAAI’04, 167–172. AAAI Press. ISBN
0262511835.
Mcgann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008. T-REX: A model-based architecture
for AUV control .
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. ISBN 1558608567.
Rintanen, J. 2007. Complexity of Concurrent Temporal
Planning. 280–287.
Warndorf, P. 2011. Resources. URL https://www.mtconnect.
org/resources.
Zhuo, H. H.; Kambhampati, S.; and Nguyen, T. 2012.
Model-Lite Case-Based Planning.

Multi-Objective Path-Based D* Lite

Zhongqiang Ren1, Sivakumar Rathinam2, Howie Choset1

1 Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.
2 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123.

zhongqir@andrew.cmu.edu, choset@andrew.cmu.edu, srathinam@tamu.edu

Abstract

Incremental graph search algorithms, such as D* Lite, reuse
previous search efforts to speed up subsequent similar path
planning tasks. These algorithms have demonstrated their ef-
ficiency in comparison with search from scratch, and have
been leveraged in many applications such as navigation in
unknown terrain. On the other hand, path planning typi-
cally involves optimizing multiple conflicting objectives si-
multaneously, such as travel risk, arrival time, etc. Multi-
objective path planning is challenging as the number of
“Pareto-optimal” solutions can grow exponentially with re-
spect to the size of the graph, which makes it computation-
ally burdensome to plan from scratch each time when similar
planning tasks needs to be solved. This article presents a new
multi-objective incremental search algorithm called Multi-
Objective Path-Based D* Lite (MOPBD*) which reuses pre-
vious search efforts to speed up subsequent planning tasks
while optimizing multiple objectives. Numerical results show
that MOPBD* is more efficient than search from scratch and
runs an order of magnitude faster than existing incremental
method for multi-objective path planning.

Introduction
Given a graph with non-negative scalar edge costs, the
shortest path problem (SPP) (Hart, Nilsson, and Raphael
1968) aims to compute a minimum-cost path connect-
ing the given start and destination nodes in the graph.
Incremental search algorithms, such as lifelong planning
A* (Koenig, Likhachev, and Furcy 2004), D* Lite (Koenig
and Likhachev 2002) etc., generalize these computations to
a dynamic setting that allows for cost changes in the edges
of the graph. When edge costs change, these algorithms
reuse previous search efforts to speed up similar planning
tasks which makes them very efficient in comparison to
planning paths from scratch. Such efficiency makes incre-
mental search a popular technique in many robotic appli-
cations such as navigation in unknown terrain (Koenig and
Likhachev 2005; Urmson et al. 2008).

In many real-world applications, such as hazardous mate-
rial transportation (Bronfman et al. 2015), UAV path plan-
ning for search and rescue (Hayat et al. 2017), robot rout-
ing in urban waterways (Shan et al. 2020), the path plan-
ning problem may involve optimizing multiple (conflicting)
objectives such as minimizing travel risk, fuel usage, ar-
rival time, to name a few. It may not be possible to convert

these objectives into a single, weighted objective because the
choice of weights are difficult to obtain (Roijers et al. 2013).
This leads us to addressing the multi-objective shortest path
problem (MO-SPP) (Loui 1983). MO-SPP generalizes the
conventional SPP by associating each edge with a cost vec-
tor (of constant length) where each component of the vector
corresponds to an objective to be minimized.

In the presence of multiple conflicting objectives, there
is no single solution path that optimizes all objectives in
general. Therefore, the goal of MO-SPP is to find a Pareto-
optimal set (of solution paths), whose cost vectors form the
so-called Pareto-optimal front. A path is Pareto-optimal (or
non-dominated) if no objective can be improved without de-
teriorating at least one of the other objectives. MO-SPP is
NP-hard, even with two objectives (Hansen 1980; Ehrgott
2005), as the size of the Pareto-optimal front can grow ex-
ponentially with respect to the number of nodes in the graph.
To solve MO-SPP, there are several A*-like multi-objective
planners (Stewart and White 1991; Mandow and De La Cruz
2008; Ulloa et al. 2020; Goldin and Salzman 2021) which
compute the exact or an approximated Pareto-optimal front.

In this work, we consider the dynamic version of the
MO-SPP where the costs of the edges can change. After
an event when some edge costs change, we aim to de-
velop an incremental search algorithm that reuses previous
search efforts to speed up similar planning tasks. Incremen-
tal search is important as a naive approach that computes
Pareto-optimal front from scratch after every event can be
computationally expensive for MO-SPP. To our knowledge,
the only existing work that considers a similar problem is
MOD* (Oral and Polat 2015), which combines D* Lite and
MOA* (Stewart and White 1991) to reuse previous search
efforts. However, MOA* has been shown (Mandow and
De La Cruz 2008) to be inefficient due to its “node-based”
expansion strategy during the search and is outperformed by
NAMOA* (Mandow and De La Cruz 2008) which employs
a “path-based” expansion strategy.3

This work aims to leverage both D* Lite and the path-

3In MO-SPP, there are multiple Pareto-optimal partial solution
paths from the start to some node. The node-based expansion strat-
egy selects nodes for expansion and extends (or re-extends) all par-
tial solution paths at that node. The path-based expansion strategy
selects a partial solution path for expansion and extends only the
selected path. More detail can be found in the Preliminary section.

based expansion in NAMOA* to create a novel incremental
multi-objective algorithm to plan paths in a dynamic envi-
ronment. Fusing D* Lite and NAMOA* is challenging. D*
Lite defines local consistency between adjacent nodes and
keeps expanding nodes that are locally inconsistent until an
optimal path is found. It’s non-trivial to fuse local consis-
tency between nodes with a path-based expansion strategy
in a harmonic way.

To achieve this goal, we propose a new type of lo-
cal consistency in multi-objective settings that is suitable
for path-based methods. With that in hand, we develop
a new algorithm named Multi-Objective Path-Based D*
Lite (MOPBD*). We analyze and show that MOPBD* is
able to compute all Pareto-optimal solutions in a dynamic
graph. Next, we verify the proposed algorithm with exten-
sive numerical simulations in several dynamic graphs with
two objectives, and demonstrate its efficiency by compar-
ing with running NAMOA* from scratch and the existing
node-based incremental method (MOD*). Our results show
that MOPBD* is more efficient than search from scratch
(NAMOA*) and runs an order of magnitude faster than
MOD*.

Related Work
Applications such as navigation in unknown terrain requires
the planner to solve a series of similar planning tasks effi-
ciently. To achieve this goal, rather than naively searching
from scratch each time, incremental search algorithms such
as D* (Stentz 1995), LPA* (Koenig, Likhachev, and Furcy
2004), D* Lite (Koenig and Likhachev 2002) reuse previ-
ous search efforts, namely a search tree that stores the iden-
tified partial solution paths, to speed up the current search
without losing optimality guarantees. D* Lite has been im-
proved and extended in many ways (Likhachev et al. 2005;
Aine and Likhachev 2013). However, all those algorithms
optimize a single-objective: minimizing the sum of edge cost
values along the planned path.

On the other hand, multi-objective shortest path problem
(MO-SPP) extends the shortest path problem by associating
a cost vector to each edge and aims to find all paths with
Pareto-optimal cost vectors. Developing efficient algorithms
for MO-SPP has a long history (Loui 1983) and remains an
active research topic (Stewart and White 1991; Mandow and
De La Cruz 2008; Ulloa et al. 2020; Goldin and Salzman
2021). To solve the problem, seminal works MOA* (Stewart
and White 1991) and NAMOA* (Mandow and De La Cruz
2008) both extend A* to handle multiple objectives but
with different strategies. MOA* uses a node-based selec-
tion and expansion strategy while NAMOA* adopts a path-
based one and outperforms MOA* in general (Mandow and
De La Cruz 2008).

This work focuses on multi-objective incremental search
algorithms, which reuse previous search efforts to speed up
the current multi-objective search. To our limited knowl-
edge, the only known work that considers a similar prob-
lem is MOD* (Oral and Polat 2015), which is an incremen-
tal node-based multi-objective search algorithm combining
both MOA* and D* Lite. However, we learn from (Oral and
Polat 2015) that NAMOA* is not used as a baseline to verify

MOD* and the property of MOD* is not shown. Based on
the existing analysis of MOA* and NAMOA* (Mandow and
De La Cruz 2008), we take the view that an incremental al-
gorithm with path-based expansion can possibly improve the
computational efficiency over node-based approaches. Our
contribution in this work is a novel algorithm named Multi-
objective Path-based D* Lite (MOPBD*), which leverages
both path-based expansion in NAMOA* and incremental
search in D* Lite. We compared the proposed MOPBD*
with both MOD*, a node-based incremental method (base-
line 1), and running NAMOA* to search from scratch each
time (baseline 2). The numerical results show that MOPBD*
outperforms both baselines.

Problem Description
Let G = (U , E) denote a directed graph representing the
workspace of the robot, where the node set U denotes the set
of possible locations for the robot and the directed edge (arc)
set E = U ×U denotes the set of actions that move the robot
between any two nodes in U . In addition, let pred(u) and
succ(u) denote the set of predecessors and successors of a
node u ∈ U . We use uo, ud ∈ U to denote the initial and des-
tination node of the robot respectively and let uc represent
the current node of the robot during the navigation. Note that
before the navigation starts, uc = uo. An edge from w to u,
w, u ∈ U , is denoted as (w, u) ∈ E and the cost of an edge
e ∈ E is a non-negative cost vector ~c(w, u) ∈ (R+)M with
M being a positive integer.

In this work, let π(u1, u`) represent a path connecting
u1, u` ∈ U via a sequence of nodes (u1, u2, . . . , u`) in G,
where uk and uk+1 are connected by an edge (uk, uk+1) ∈
E , for k = 1, 2, . . . , ` − 1. Let ~g(π(u1, u`)) denote the cost
vector corresponding to the path, which is the sum of the cost
vector of all edges present in the path, i.e. ~g(π(u1, u`)) =
Σk=1,2,...,`−1~c(uk, uk+1).

To compare any two paths, we compare the cost vec-
tor associated with them using the dominance relation-
ship (Ehrgott 2005):

Definition 1 (Dominance) Given two vectors a and b of
length M , a dominates b (referred as a � b) if and only
if a(m) ≤ b(m) ∀m ∈ {1, 2, . . . ,M}, and there exists
m ∈ {1, 2, . . . ,M} such that a(m) < b(m).

If a does not dominate b, this non-dominance is denoted
as a � b. Any two paths π1(uc, ud), π2(uc, ud) are non-
dominated (to each other) if the corresponding cost vectors
do not dominate each other. The set of all the non-dominated
paths between uc and ud is called the Pareto-optimal set.
An maximal subset of the Pareto-optimal set, where any
two paths in this subset do not have the same cost vector,
is called a cost-unique Pareto-optimal set and is denoted as
S∗(uc, ud). To simply notation, we denote S∗(uc, ud) sim-
ply as S∗.

In this work, we aim to compute an S∗ when robot moves
in a dynamic environment, i.e. the cost vector of edges in G
can change. Note that S∗ is computed repetitively as (1) uc
changes as robot moves and (2) the cost vector of edges can
change during the navigation.

Preliminary
D* Lite
D* Lite (Koenig and Likhachev 2002) is an incremental al-
gorithm based on A* (Hart, Nilsson, and Raphael 1968),
and aims to reuse previous search efforts to speed up the
subsequent search when edge costs (scalar values) change.
D* Lite searches backwards from the destination ud to the
current node uc so that the constructed search tree, which
stores partial solution paths, can be reused as uc changes.
To make the presentation consistent, for the rest of the work,
we present all the method by searching backwards from ud
to uc.

At any time of the search, D* Lite maintains two types
of cost-to-come at a node u ∈ U : the g-value g(u) and v-
value v(u).4 Value v(u) stores the cost of the best path found
from ud to uc during its last expansion, while g(u) is com-
puted from the v-values of succ(u) (note that we are search-
ing backwards), and thus, is potentially better informed than
v(u). Formally,

g(u) =

{
0 if u = ud
minu′∈succ(u) v(u′) + c(u, u′) otherwise

(1)

Based on the g- and v-values, a node u is consistent if
v(u) = g(u), and inconsistent otherwise. An inconsistent
node u is either under-consistent (v(u) > g(u)) or over-
consistent (v(u) < g(u)). To initialize, g-values of all nodes
but ud are set to∞ and v-values of all nodes are set to∞.
Clearly, ud is the only inconsistent node at intialization.

Let h(u) denote the cost-to-go, which underestimates the
cost of paths from u to uc, and define f(u) := g(u) + h(u).
Based on that, D* Lite defines the key of nodes as key(u) =
[k1(u), k2(u)] with

k1(u) = min{v(u), g(u)}+ h(u)

k2(u) = min{v(u), g(u)}

Let OPEN denote the priority queue containing all candidate
nodes to be expanded, where the nodes are prioritized by
comparing their keys in lexicographic order. In other word,
key(u) < key(w), u, w ∈ U if k1(u) < k1(w) or both
k1(u) = k1(w) and k2(u) < k2(w). The OPEN in D* Lite
always contains all inconsistent nodes, and in each search
iteration, the node with the minimum key is selected for ex-
pansion. To expand an inconsistent node u, v(u) is made
equal to g(u), which makes u consistent, and for every node
w ∈ pred(u), g(w) is updated based on Equation (1). Addi-
tionally, a parent pointer parent(u) is maintained at node u
when u is expanded so that a path from ud to u can be eas-
ily reconstructed by iteratively following the parent pointers.
D* Lite terminates when no candidate node in OPEN has a
smaller key than key(uc), which guarantees that v(uc) has
reaches the minimum and an optimal solution path from ud
to uc can be reconstructed.

When computing the initial solution path π(ud, uo) (note
that uc = uo), D* Lite is equivalent to (backwards) A*
search. After the generation of π(ud, uo), if edge costs

4We follow the convention in (Aine and Likhachev 2013),
where g- and v-values are introduced.

change, D* Lite recomputes the g-values of nodes that are
immediately affected by those edges. Among those nodes,
inconsistent ones are inserted into OPEN with updated keys.
Then, D* Lite runs in the same manner by iteratively ex-
panding inconsistent nodes until all remaining nodes in
OPEN have keys no less than key(uc).

MOA*

The basic difference between MO-SPP and SPP is that there
are multiple non-dominated partial solution paths between
any pair of nodes in the graph in general. Consequently, dif-
ferent from A* where g, h, f -values are computed for each
node, MOA* (Stewart and White 1991) introduces G,H,F
sets. The G(u),∀u ∈ U is a set of non-dominated cost vec-
tors, each of which represents a non-dominated path from
ud to u. Similarly, H(u) is a set of heuristic vectors, each of
which underestimates the cost of a non-dominated path from
u to uc. The F -set is defined as F (u) := ND{~g + ~h |~g ∈
G(u),~h ∈ H(u)}, where ND(·) is an operator that takes
a set of vectors (denoted as B) as input and computes the
non-dominated subset of it (denoted as ND(B)), i.e. for any
a, b ∈ ND(B), a and b are non-dominated. To simplify
the presentation without losing generality, we consider the
case where H(u) of a node u contains only a single heuris-
tic vector ~h(u) that (component-wise) under-estimates the
cost vector of all paths from u to uc.

As MOA* aims to find all cost-unique non-dominated
paths S∗, let S denote the set of non-dominated cost vectors
of the solutions found during the search. In every search it-
eration, MOA* selects a node u from OPEN so that there
exists ~f ∈ F (u) that is non-dominated by any vector
f ′ ∈ F (u′) for any other node u′ ∈ OPEN, u′ 6= u,
and expand node u by extending all partial solutions rep-
resented by vectors in G(u). For every w ∈ pred(u), a
set of new partial solution paths represented by cost vec-
tors Gu,w = {~g(u) + ~c(w, u) |~g(u) ∈ G(u)} is computed
and G(w) ← ND(G(w)

⋃
Gu,w) so that G(w) contains

all non-dominated cost vectors at w after expanding u. In
addition, F (w) is updated and node w is added to OPEN
for future expansion if there exists ~f ∈ F (w) that is non-
domianted by cost vectors of paths in S.

There are two important features of MOA* (node-based)
that distinguish it from NAMOA* (path-based), which is
presented in the next section:

• when a new non-dominated partial solution is found at
node u during the search, node u is (re-) inserted into
OPEN;

• when a node u is selected from OPEN for expansion, all
non-dominated partial solutions at u are extended.

These two features show that MOA* takes a node-based
expansion strategy. As one can expect, MOA* can lead to
a lot of re-expansion of nodes as there are multiple non-
dominated partial solutions at each node for a MO-SPP. In
addition, node expansion can be computational demanding
as all partial solutions at this node need to be extended.

MOD*
D* Lite and MOA* can be combined as MOD* algorithm5

by introducing V -set at each node, which resembles the
v-value of a node in D* Lite, and stores the set of non-
dominated cost vectors during its last expansion. Formally,
it has the following relationship with the G-set.

G(u) =

{
~0 if u = ud
ND(

⋃
w∈succ(u) V (w) + ~c(u,w)) otherwise

(2)

Correspondingly, a node u is consistent if G(u) = V (u)
(two sets are exactly the same) and inconsistent otherwise.
Similar to D* Lite, the OPEN in MOD* contains incon-
sistent nodes. MOD* iteratively selects inconsistent node u
from OPEN for expansion until all vectors in F (u) of any
inconsistent nodes u in OPEN are dominated by the cost
of some path in S. This termination condition guarantees
that all cost-unique Pareto-optimal paths from ud to uc are
found.

When the cost vector of an edge changes, MOD* first re-
computes the G-set of each node u that are immediately af-
fected and inserts u into OPEN if u is inconsistent. Then
MOD* searches in the same manner by keep expanding in-
consistent nodes until all Pareto-optimal paths are found.

NAMOA*
Both MOA* and MOD* expand nodes. As aforementioned,
this node-based expansion may incur a lot of re-expansions
and the expansion of a node can be computationally expen-
sive. In NAMOA* (Mandow and De La Cruz 2008), a path-
based expansion is developed to mitigate the drawbacks of
the node-based expansion.

Let s = (u,~g) denote a state, a tuple of a node u and
a cost vector ~g, which represents a specific partial solution
path from ud to u with cost ~g. Additionally, ~g is said to be at
node u and state s is said to contain ~g and u. Let u(s) and
~g(s) denote the node and cost vector contained in s. For each
state s, the f -vector of s is defined as ~f(s) := ~g + ~h(u(s)).
Different from MOA*, where nodes are stored as candidates
in OPEN, NAMOA* stores states as candidates in OPEN. In
every search iteration, NAMOA* expands a non-dominated
state s in OPEN, i.e. ~f(s) is non-dominated by the f -vector
of any other states in OPEN. To expand s, the partial solution
path represented by s is extended to each predecessor w ∈
pred(u(s)), where a new state sw = (w,~gw) is generated.
Cost vector ~gw is then compared with both the cost vector of
other partial solution paths at w and the cost vector of any
paths in S . If ~gw is non-dominated, sw is added to OPEN for
future expansion.

As every state represents a partial solution path, expand-
ing a state is essentially expanding a path. This path-based
strategy employed by NAMOA* avoids the large number of
re-expansion of nodes as in MOA*. In addition, path expan-
sion is computationlly much cheaper than node expansion.

5The MOD* algorithm presented in this section simplifies the
method in (Oral and Polat 2015) to highlight the key idea. Readers
can refer to (Oral and Polat 2015) for more details.

MOPBD*
Algorithm Overview
MOPBD* inherits the notions ofG,H,F -sets at nodes from
MOA*, the concept of V -sets from MOD*, and the defini-
tion of states from NAMOA*. In addition, we introduce a
new concept of inconsistent state as follows, which differs
from the inconsistent node in MOD*.

Definition 2 (consistent state) A state s, with ~g(s) ∈
G(u(s)), is consistent if ~g ∈ V (u(s)), and inconsistent if
~g /∈ V (u(s)).

As shown in Algorithm 1, MOPBD* initializes (line 1-
3) by inserting a zero vector into G(ud) and creates an ini-
tial state sd. Since V (ud) = ∅ at initialization, state sd is
an inconsistent state by Def. 2 and is inserted into OPEN
for expansion. In MOPBD*, OPEN is a list containing all
inconsistent states at any time of the search (Invariant-1).
Then MOPBD* starts its first planning task to compute S∗
via ComputePath procedure, as shown in Algorithm 2. If the
robot has not yet reached its destination, MOPBD* keeps re-
ceiving updating information about the cost vector of edges,
finds all inconsistent states caused by changes in edge costs
(ProcessEdge procedure) and re-computes S∗. If there is no
change in edge costs, the robot navigates towards the desti-
nation along planned paths.

Algorithm 1 MOPBD*

1: G(ud)={~0}
2: sd ← (ud, h(ud))
3: add sd into OPEN
4: S ← ComputePath()
5: while uc 6= ud and S 6= ∅ do
6: E ′ ← the set of edges with updated cost vectors.
7: if E ′ 6= ∅ then
8: for all (w, u) ∈ E′ do
9: ProcessEdge(w, u)

10: Uptate S based on V (uc)
11: S ← ComputePath()
12: else
13: FollowPath(S)

Compute Pareto-optimal Paths
As shown in Algorithm 2, in each search iteration, an incon-
sistent state s, with a non-dominated ~f(s) is popped.

• If u(s) = uc, a new solution path with cost vector ~g(s) is
found from ud to uc and is added to S. In addition, ~g(s) is
used to filter OPEN, which removes any candidate states
s′ ∈ OPEN with ~g(s) � ~f(s′) or ~g(s) = ~f(s′) (note that
~g(s) = ~f(s) as ~h(s) = 0), since the partial solution path
represented by s′ can not lead to a cost-unique Pareto-
optimal solution.

• If u(s) 6= uc, ~g(s) is added to V (u(s)), which makes state
s a consistent state by Def. 2. Then, state s is expanded as
follows.

To expand a state s (line 7), for each w ∈ pred(u(s)), a
partial solution that reaches w from u(s) is generated and
represented by state sw with u(sw) = w and~g(sw) = ~g(s)+
~c(w, u). For the rest of the work, to make the presentation
easier, we introduce an additional notation s(~g) to denote
the state that contains ~g during the search. Note that, at each
node u ∈ U , for each cost vector ~g in G(u) or V (u), there is
a unique state s(~g) generated during the search that contains
~g.

After a state sw is generated, ~g(sw) is compared with
each vector in G(w) (line 9). If no vector in G(w) domi-
nates or is equal to ~g(sw), ~g(sw) is then added to G(w) and
is used to filter G(w): all vectors in G(w) that are domi-
nated by or equal to ~g(sw) are deleted (line 10-12). Specif-
ically, to delete a vector ~a from G(w), all descendant states
of s(~a) and s(~a) itself are deleted via a recursive procedure,
as shown in Algorithm 3. Here, the Delete procedure is in-
voked recursively for each children state of s(~a) until all
descendant states of s(~a) are removed. Similar to the parent
pointer parent(s), let children(s) denote a set of children
pointers, each of which represents a children state that is
reached from s. Finally, if the cost vector being deleted is at
uc, it means a solution path from ud to uc is invalidated and
thus this solution is also removed from S.

Algorithm 2 ComputePath

1: while not ShouldTerminate() do
2: s = (u,~g) is popped from OPEN
3: if u = uc then
4: add ~g to S
5: filter OPEN with ~g
6: add ~g to V (u)
7: for all w ∈ pred(u) do
8: ~gw ← ~g + c(w, u)
9: if ~a � ~gw and ~a 6= ~gw ∀~a ∈ G(u) then

10: for all ~a ∈ G(u) do
11: if ~gw � ~a then
12: Delete(w, ~a)
13: sw ← (w,~gw)
14: parent(sw)← s
15: add sw to children(s)
16: add ~gw into G(w)
17: add sw into OPEN

With the Delete procedure, it is guaranteed that, at any
time of the search, V (u),∀u ∈ U contains all cost vec-
tors that represent non-dominated partial solutions from ud
to u (Invariant-2). This invariant is important for the fol-
lowing reason. Intuitively, if V (u) at some node u con-
tains invalid cost vectors (whose ancestors are deleted), then
G(w), w ∈ pred(u) may also contain invalid cost vectors by
Equation (2). As a result, dominance check can potentially
use those invalid vectors inG(w) to prune other cost vectors
generated at w and the algorithm may fail to compute an S∗
correctly.

The search process continues until the termination condi-
tion is met: either OPEN is empty or for each (inconsistent)
state s ∈ OPEN, ~g(s) is domianted by (or equal to) the cost

of some path in S. Clearly, when the termination condition is
satisfied, all remaining states in OPEN, if any, cannot be part
of a cost-unique Pareto-optimal solution and the computed
S is a cost-unique Pareto-optimal set S∗.

Algorithm 3 Delete(u, ~a)

A← ∅
for all~b ∈ children(~a) do

v ← the node at which~b locates
A← A

⋃
Delete(v,~b)

remove ~a from R(u).
remove ~a from G(u) if G(u) contains ~a.
remove ~a from children(parent(~a)).
if u = vc and ~a ∈ S then

remove ~a from S
Return A

Process Edge Change
After the initial computation of S∗, Algorithm 1 either fol-
lows the planned paths or finds changes in edge costs. When
the cost vector of an edge changes, the algorithm needs to
pre-process before ComputePath is invoked again.

As shown in Algorithm 4, when the cost vector of an edge
(w, u) changes, for each ~g ∈ G(w), if the corresponding
state s(~g) represents a partial solution via u, then this partial
solution is affected by the change of the cost vector (line
2-5). Cost vector ~g and all descandent states of s(~g) are
thus deleted by invoking the Delete procedure (line 6). In
the meanwhile, let set A record all nodes u, at which V (u)
changes. As V (ua),∀ua ∈ A changes, the G-sets at the pre-
decessors of ua need to be re-computed correspondingly by
Def. 2 (line 7-8). During the recomputation of G-sets, if a
new inconsistent state is generated, the state is are added to
OPEN (line 9-11).

Algorithm 4 ProcessEdge(w, u)

1: A← ∅ . set of nodes affected
2: for all ~g ∈ G(w) do
3: sp = parent(s(~g))
4: if u(sp) = u then
5: A← A

⋃
Delete(w, g)

6: for all ua ∈ A do
7: for all u′a ∈ pred(ua) do
8: G′ ← ND(

⋃
uk∈succ(u′

a)
V (uk) + c(u′a, uk))

9: for all ~a ∈ G′\G(u′a) do
10: s′a ← (u′a,~a)
11: Add s′a to OPEN
12: G(u′a)← G′

By invoking ProcessEdge for each edge whose cost vec-
tor changes, both Invariant-1 and Invariant-2 are maintained.
After processing the changed cost vectors, S is made an
empty set at first and then updated by reconstructing the
paths represented by the states {sc = (uc, ~gc),∀~gc ∈

V (uc)} (line 10 in Algorithm 1). By doing so, S now rep-
resents the set of solutions that have been found in the pre-
vious search and are still valid after cost changes. Finally,
Algorithm 1 invokes ComputePath procedure to continue
the search until the aforementioned termination condition is
met.

Discussion
There is a big difference between (single-objective) D* Lite
and the proposed MOPBD*. D* Lite only modifies the
nodes that are immediately affected by the edge cost changes
and lets the search process to “propagate” the inconsistency
across the graph. However, MOPBD* recursively finds all
states that are affected in ProcessEdge all at once. There
are three reasons behind this approach: (1) MOPBD* uses
S to filter candidates in OPEN and S should always contain
valid non-dominated solutions; (2) MOPBD* uses G(u) at
node u to prune any newly generated cost vectors at u and
G(u) should not contain invalid cost vectors so that incor-
rect pruning is avoided; (3) In multi-objective settings, the
g-vectors of two partial solutions can be in-comparable (i.e.
non-dominated) to each other. This makes it hard to intro-
duce a “key” of a state similar to the key used in D* Lite, so
that all inconsistent states are expanded in an order (based on
the key of states), where incorrect pruning can be avoided.

Analysis
We show that MOPBD* is able to compute all cost-unique
Pareto-optimal solutions by leveraging the aforementioned
Invariant-1, Invariant-2 and Equation (2). For the first plan-
ning task (uc = uo), MOPBD* searches in the same manner
as NAMOA* does and the computed S contains all cost-
unique Pareto-optimal solutions. When edge costs change,
by invoking ProcessEdge procedure, all invalid cost vectors
at nodes are removed, which maintains Invariant-2. In ad-
dition, G-sets of affected nodes are re-computed by Equa-
tion (2), where inconsistent states are identified and inserted
into OPEN, which maintains Invariant-1. With Invariant-1,
all inconsistent states to be expanded are contained in OPEN
at any time of the search. In each search iteration, MOPBD*
selects an inconsistent state from OPEN and makes it consis-
tent. During the search, with Invariant-2, all non-dominated
partial solutions at each node is stored in the V -set of that
node. MOPBD* terminates only when no candidate states
in OPEN can lead to a unique-cost non-dominated solution.
Therefore, when MOPBD* terminates, S = V (uc) and con-
tains all cost-unique Pareto-optimal solutions from ud to uc.

Theorem 1 MOPBD* computes all cost-unique Pareto-
optimal paths from ud to uc.

Numerical Results
Simulation Settings
We selected maps (grids) of different categories from a on-
line data set (Stern et al. 2019) and generated a graph G by
making each grid four-connected bi-directionally. To assign
cost vectors to edges in G, we assigned every edge in the
graph a random integer vector of lengthM with components

Figure 1: An illustration of the simulator. On the left, initial
planning is finished and the robot is following a selected path
(Step-1, Step-2). In the middle, a new obstacle is added in
front of the robot and paths are replanned (Step-3,Step-4).
On the right, the simulator keeps running after adding three
obstacles.

randomly sampled from [1, 10]. To test a planning algorithm,
which is called a “planner” hereafter, in a dynamic graph, we
implemented the following simulator (Fig. 1). For each test
instance, the simulator does the following steps in order.

• (Step-1) The planner computes the initial cost-unique
Pareto-optimal set S∗ (note that uc = uo).

• (Step-2) The simulator randomly selects a solution from
S∗ for the robot to follow.

• (Step-3) After every k (k = 7 in our tests) moves of the
robot, the simulator adds an obstacle in front of the robot
along the selected path.

• (Step-4) The simulator invokes the planner to re-compute
S∗ (note that uc 6= uo) and jumps back to Step-2.

The simulation terminates either when the robot arrives at
ud (i.e. uc = ud), or when the computed S = ∅, which
means the added obstacle in Step-3 eliminates all feasible
solutions.

In this work, we implemented MOD*, NAMOA* and
MOPBD* in Python. All algorithms use the same heuristic:
~h(u), u ∈ U is a unit vector scaled by the Manhattan dis-
tance between u and uc. MOD* is a node-based approach
that searches by reusing previous efforts and NAMOA* is
a path-based approach that searches from scratch for each
planning task. Both MOD* and NAMOA* serve as base-
lines to corroborate MOPBD*.

Node-based and Path-based
We summarized the test results in Table 1, where Exp. stands
for the average number of expansions (either node expansion
or path expansion, based on the algorithm), R.T. stands for
the average run time and Sol. stands for the average num-
ber of solutions computed, and all averages are taken over

all subsequent planning tasks of all test instances. From Ta-
ble 1, in terms of incremental search, MOPBD* (path-based)
runs faster than MOD* (node-based) by roughly an order of
magnitude. Note that, the number of expansions cannot be
directly compared between MOPBD* and MOD* as they
conduct node expansion and path expansion respectively. It
is also worthwhile to note that for the last map (a game map
of size 65 × 81), the average number of solutions found by
MOD* is smaller than the other two algorithms. The reason
is that MOD* times out in some planning tasks.

Grids Algorithm Exp. R.T. Sol.
NAMOA* 111.8 0.03 3.0
MOD* 39.1 0.35 3.0

(16x16) MOPBD* 3.9 0.06 3.0
NAMOA* 1556.6 0.55 10.5
MOD* 92.1 3.15 10.5

(32x32) MOPBD* 19.7 0.17 10.5
NAMOA* 829.5 0.22 4.9
MOD* 311.0 3.51 4.9

(32x32) MOPBD* 35.0 0.12 4.9
NAMOA* 5923.3 2.85 16.3
MOD* 208.4 12.6 12.3

(65x81) MOPBD* 28.0 2.43 16.3

Table 1: Numerical results of the proposed MOPBD*
(path-based incremental search) compared with baselines:
NAMOA* (path-based from-scratch search) and MOD*
(node-based incremental search).

Incremental Search and Search from Scratch
As shown in Table. 1, another comparison is between
NAMOA* and MOPBD*, both of which conducts path-
based expansion but NAMOA* computes from scratch
while MOPBD* reuses previous search efforts. In terms of
number of expansions, MOPBD* outperforms NAMOA*
over all maps. In terms of run time, MOPBD* outperforms
NAMOA* in general. However, as we observed in the 16×
16 empty map, MOPBD* runs slower than NAMOA* on av-
erage, which indicates that search from scratch (NAMOA*)
is even more efficient than reusing previous search efforts
(MOPBD*). The possible reason is that the ProcessEdge
procedure in MOPBD* is expensive when cost vectors
change, as it requires all affected states to be deleted and
requires recomputing the G-sets of all affected nodes over
the entire graph.

Detailed Run Time Comparison
To further investigate the performance of MOPBD*, we vi-
sualized the run time of planning tasks for all instances in
various maps as follows. Given a test instance, let lk denote
the average length of the Pareto-optimal paths computed in
the k-th planning task in the instance. Note that when k = 0,
l0 denote the average length of the Pareto-optimal paths
from the initial start to the destination. Additionally, the ratio
lk/l0 provides an estimate of the distance to the destination

for the k-th planning task. In Fig. 2, the horizontal axis rep-
resents the ratio lk/l0 within range [0, 1] and the vertical axis
represents the run time of planning tasks in all instances for
a grid. Here, green dots correspond to running NAMOA*
from scratch for every planning task and stars correspond
to MOPBD*. Red stars mean that MOPBD* is slower than
NAMOA*, while the blue stars mean MOPBD* is faster.
The digits on the upper left corner of each plot count the
number of blue and red stars.

From Fig. 2, we can observe that, most of the red stars
lie on the left half of the plot. This indicates that, when the
robot is “close” to the destination, running NAMOA* from
scratch is more efficient than using MOPBD*. The possi-
ble reason is that the ProcessEdge procedure in MOPBD*
is less efficient when the robot moves close to its destina-
tion: Modifying all affected paths and re-computing G-sets
at nodes can be more computationally demanding than sim-
ply searching from scratch. It’s also worthwhile to mention
that the result in Fig. 2 provides a practical guideline about
using MOPBD* in practice. One can compute lk during the
navigation process. When the robot is far away from the
destination, (i.e. the estimated ratio lk

l0
is larger than a pre-

defined threshold), MOPBD* is invoked to reuse previous
search efforts. When the robot is close to the destination (i.e.
the ratio is below the threshold), running NAMOA* from
scratch can potentially be more efficient.

Conclusion and Future Work
A new incremental multi-objective path planning algorithm
MOPBD* is presented. We show that MOPBD* is able to
compute all cost-unique Pareto-optimal solutions. The nu-
merical results demonstrate the efficiency of MOPBD* with
two objectives over two baseline approaches. For future
work, one can consider incorporating other multi-objective
or incremental search techniques into the algorithm to fur-
ther improve the performance. One can also consider in-
cremental approximation algorithms that can efficiently ap-
proximate the set of Pareto-optimal solutions.

References
Aine, S.; and Likhachev, M. 2013. Anytime truncated D*:
Anytime replanning with truncation. In Sixth Annual Sym-
posium on Combinatorial Search.

Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Lüer-
Villagra, A. 2015. The maximin HAZMAT routing problem.
European Journal of Operational Research 241(1): 15–27.

Ehrgott, M. 2005. Multicriteria optimization, volume 491.
Springer Science & Business Media.

Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-
Optimal Frontier. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 31,
149–158.

Hansen, P. 1980. Bicriterion path problems. In Multiple
criteria decision making theory and application, 109–127.
Springer.

Figure 2: A detailed comparison between MOPBD* and search from scratch using NAMOA*. Green dots correspond to running
NAMOA* from scratch for every planning task and stars correspond to MOPBD*. Red stars indicate that MOPBD* runs slower
than NAMOA* while the blue stars mean MOPBD* is faster. The digits on the upper left corner of each plot count the numbers
of blue and red stars.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.

Hayat, S.; Yanmaz, E.; Brown, T. X.; and Bettstetter, C.
2017. Multi-objective UAV path planning for search and
rescue. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), 5569–5574. IEEE.

Koenig, S.; and Likhachev, M. 2002. D* lite. AAAI/IAAI 15.

Koenig, S.; and Likhachev, M. 2005. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics 21(3): 354–363.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A*. Artificial Intelligence 155(1-2): 93–146.

Likhachev, M.; Ferguson, D. I.; Gordon, G. J.; Stentz, A.;
and Thrun, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In Proceedings of the 15th Interna-
tional Conference on Automated Planning and Scheduling,
volume 5, 262–271.

Loui, R. P. 1983. Optimal paths in graphs with stochastic
or multidimensional weights. Communications of the ACM
26(9): 670–676.

Mandow, L.; and De La Cruz, J. L. P. 2008. Multiobjective
A* search with consistent heuristics. Journal of the ACM
(JACM) 57(5): 1–25.

Oral, T.; and Polat, F. 2015. MOD* Lite: an incremental
path planning algorithm taking care of multiple objectives.
IEEE Transactions on Cybernetics 46(1): 245–257.

Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley,
R. 2013. A survey of multi-objective sequential decision-
making. Journal of Artificial Intelligence Research 48: 67–
113.

Shan, T.; Wang, W.; Englot, B.; Ratti, C.; and Rus, D.
2020. A Receding Horizon Multi-Objective Planner for Au-
tonomous Surface Vehicles in Urban Waterways. In 2020
59th IEEE Conference on Decision and Control (CDC),
4085–4092. IEEE.

Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, volume 95, 1652–
1659.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. In Symposium on Combinatorial Search,
151–158.
Stewart, B. S.; and White, C. C. 1991. Multiobjective A*.
Journal of the ACM (JACM) 38(4): 775–814.
Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A Simple and Fast Bi-Objective Search
Algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, 143–
151.
Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.;
Clark, M.; Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.;
et al. 2008. Autonomous driving in urban environments:
Boss and the urban challenge. Journal of Field Robotics
25(8): 425–466.

MarsExplorer: Exploration of Unknown Terrains via Deep Reinforcement
Learning and Procedurally Generated Environments

Dimitrios I. Koutras 1,2, Athanasios Ch. Kapoutsis 2, Angelos A. Amanatiadis 3, Elias B.
Kosmatopoulos 1,2

1Department of Electrical and Computer Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece
2Information Technologies Institute, The Centre for Research & Technology, Hellas, 570 01 Thessaloniki, Greece

3Department of Production and Management Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece
{dkoutras, athakapo, kosmatop}@iti.gr, aamanat@pme.duth.gr

Abstract

This paper is an initial endeavor to bridge the gap between
powerful Deep Reinforcement Learning methodologies and
the problem of exploration/coverage of unknown terrains.
Within this scope, MarsExplorer, an openai-gym compati-
ble environment tailored to exploration/coverage of unknown
areas, is presented. MarsExplorer translates the original
robotics problem into a Reinforcement Learning setup that
various off-the-shelf algorithms can tackle. Any learned pol-
icy can be straightforwardly applied to a robotic platform
without an elaborate simulation model of the robot’s dynam-
ics to apply a different learning/adaptation phase. One of its
core features is the controllable multi-dimensional procedural
generation of terrains, which is the key for producing policies
with strong generalization capabilities. Four different state-
of-the-art RL algorithms (A3C, PPO, Rainbow, and SAC)
are trained on the MarsExplorer environment, and a proper
evaluation of their results compared to the average human-
level performance is reported. In the follow-up experimen-
tal analysis, the effect of the multi-dimensional difficulty set-
ting on the learning capabilities of the best-performing algo-
rithm (PPO) is analyzed. A milestone result is the genera-
tion of an exploration policy that follows the Hilbert curve
without providing this information to the environment or re-
warding directly or indirectly Hilbert-curve-like trajectories.
The experimental analysis is concluded by comparing PPO
learned policy results with frontier-based exploration context
for extended terrain sizes. The source code can be found at:
https://github.com/dimikout3/GeneralExplorationPolicy.

Introduction
At this very moment, three different uncrewed spaceships,
PERSEVERANCE (USA), HOPE (UAE), TIANWEN-1
(China), are heading towards Mars. Never before will such
a diverse array of scientific gear have arrived at a foreign
planet at the same time, and with such broad ambitions
[Witze et al.2020]. On top of that, several lunar missions
have been arranged for this year to enable extensive exper-
imentation, investigation, and testing on an extraterrestrial
body [Smith et al.2020]. In this exponentially growing field
of extraterrestrial missions, a task of paramount importance

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Initial timestep (b) 30% progress

(c) 65% progress (d) Final timestep

Figure 1: Indicative example: Trained RL agent executes explo-
ration/coverage task in previously unknown and cluttered terrain
utilizing MarsExplorer environment.

is the autonomous exploration/coverage of previously un-
known areas. The effectiveness and efficiency of such au-
tonomous explorers may significantly impact the timely ac-
complishment of crucial tasks (e.g., before the fuel deple-
tion) and, ultimately, the success (or not) of the overall mis-
sion.

Exploration/coverage of unknown territories is translated
into the online design of the path for the robot, taking
as input the sensory information and having as objec-
tive to map the whole area in the minimum possible time
[Shrestha et al.2019] [Kapoutsis et al.2016]. This setup
shares the same properties and objectives with the well-
known NP-complete setup of Traveling Salesman Problem
(TSP), with the even more restrictive property that the area
to be covered is discovered incrementally during the opera-
tion.

Related Work
The well-established family of approaches incorporates the
concept of next best pose process, i.e. a turn-based,
greedy selection of the next best position (also known as
frontier-cell) to acquire measurement, based on heuristic
strategy (e.g., [Koutras et al.2020], [Renzaglia et al.2019,
Simmons et al.2000], [Basilico and Amigoni2011]). Al-
though this family of approaches has been extensively
studied, some inherent drawbacks significantly constrain
its broader applicability. For example, every deadlock
that may arise during the previously described optimiza-
tion scheme should have been predicted, and a correspond-
ing mitigation plan should have been already in place
[Palacios-Gasós et al.2016]; otherwise, the robot is going to
be stuck in this locally optimal configuration. On top of that,
to engineer a multi-term strategy that reflects the task at hand
is not always trivial [Popov et al.2017].

The recent breakthroughs in Reinforcement Learning
(RL), in terms of both algorithms and hardware acceler-
ation, have spawned methodologies capable of achieving
above human-level performance in high-dimensional, non-
linear setups, such as the game of Go [Silver et al.2016],
Atari games [Mnih et al.2015a], Multi-agent collaboration
[Baker et al.2019]. A milestone in the RL community was
the standardization of several key problems under a common
framework, namely openai-gym [Brockman et al.2016].
Such release eased the evaluation among different method-
ologies and ultimately led to the generation of a whole
new series of RL frameworks with standardized algorithms
(e.g., [Dhariwal et al.2017], [Liang et al.2018]), all tuned to
tackle openai-gym compatible setups.

These breakthroughs motivated the appliance of RL
methodologies in the path-planning/exploration robotic
tasks. Initially, the problem of navigating a single robot
in previously unknown areas to reach a destination, while
simultaneously avoiding catastrophic collisions, was tack-
led with RL methods [Lei et al.2018] [Wen et al.2020]
[Zhang et al.2018]. The first RL methodology solely de-
veloped for exploration of unknown areas was developed
in [Niroui et al.2019], and has successfully presented the
potential benefits of RL. Recently, there have been pro-
posed RL methodologies that seek to leverage the deploy-
ment of multi-robot systems to cover an operational area
[Luis et al.2021].

However, [Luis et al.2021] assumes only a single geome-
try for the environment to be covered, and thus being prone
to overfit, rather than being able to generalize in different
environments. [Niroui et al.2019] mitigates this drawback
by introducing a learning scheme with 30 different environ-
ments during the training phase. Although such a method-
ology can adequately tackle the generalization problem, the
RL agent’s performance is still bounded to the diversity of
the human-imported environments.

Contributions
The main contribution of this work is to provide a frame-
work for learning exploration/coverage policies that possess
strong generalization abilities due to the procedurally gen-

erated terrain diversity. The intuition behind such an ap-
proach to exploration tasks is the fact that most areas ex-
hibit some kind of structure in their terrain topology, e.g.,
city blocks, trees in a forest, containers in ports, office com-
plexes. Thereby, by training multiple times in such corre-
lated and procedurally generated environments, the robot
will grasp/understand the underlining structure and leverage
it to efficiently complete its goal, even in areas that it has
never been exposed to.

Within this scope, a novel openai-gym compatible envi-
ronment for exploration/coverage of unknown terrains has
been developed and is presented. All the core elements
that govern a real exploration/coverage setup have been
included. MarsExplorer is one of the few RL environ-
ments where any learned policy can be transferred to real-
world robotic platforms, providing that a proper translation
between the proprioceptive/exteroceptive sensors’ readings
and the generation of 2D perception (occupancy map), as
depicted in figure 2, and also an integration with the existing
robotic systems (e.g., PID low level control, safety mecha-
nisms, etc.) are implemented.

Four state-of-the-art RL algorithms, namely A3C
[Mnih et al.2016], PPO [Schulman et al.2017], Rainbow
[Hessel et al.2018] and SAC [Haarnoja et al.2018], have
been evaluated on MarsExplorer environment. To better
comprehend these evaluation results, the average human-
level performance in the MarsExplorer environment is also
reported. A follow-up analysis utilizing the best-performing
algorithm (PPO) is conducted with respect to the different
levels of difficulty. The visualization of the produced trajec-
tories revealed that the PPO algorithm had learned to apply
the famous space-filling Hilbert curve, with the additional
capability of avoiding on-the-fly obstacles that might appear
on the terrain. The analysis is concluded with a sclability
study and a comparison with non-learning methodologies.

It should be highlighted that the objective is not to pro-
vide another highly realistic simulator but a framework upon
which RL methods (and also non-learning approaches) will
be efficiently benchmarked in exploration/coverage tasks.
Although there are available several wrappers for high-
fidelity simulators (e.g. Gazebo [Zamora et al.2016], ROS
[Lopez et al.2019]) that could be tuned to formulate an ex-
ploration coverage setup, in practice the required execution
time for each episode severely limits the type of algorithms
that can be used (for example PPO usually needs several mil-
lions of steps to environment interactions to converge). To
the best of our knowledge, this is the first openai-gym com-
patible framework oriented for robotic exploration/coverage
of unknown areas.

Figure 1 presents 4 sample snapshots that illustrate the
performance of a trained RL robot inside the MarsExplorer
environment. Figure 1a demonstrates the robot’s entry in-
side the unknown terrain, which is annotated with black
color. Figure 1b illustrates all the so-far gained “knowl-
edge”, which is either depicted with Martian soil or brown
boxes to denote free space or obstructed positions, respec-
tively. An attractive trait is depicted in figure 1c, where the
robot chose to perform a dexterous maneuver between two
obstacles to be as efficient as possible in terms of numbers

of timesteps for the coverage task. Note that any collision
with an obstacle would have resulted in a termination of the
episode and, as a result, an acquisition of an extreme nega-
tive reward. Figure 1d illustrates the robot’s final position,
along with all the gained information for the terrain (non-
black region) during the episode.

Environment
This section identifies the fundamental elements that govern
the family of setups that fall into the coverage/exploration
class and translates them to the openai gym framework
[Brockman et al.2016]. In principle, the objective of
the robot is to cover an area of interest in the mini-
mum possible time while avoiding any non-traversable ob-
jects, the position of which gets revealed only when the
robot’s position is in close proximity [Kapoutsis et al.2019],
[Burgard et al.2000].

Setup
Let us assume that area to be covered is constrained within
a square, which has been discretized into n = rows × cols
identical grid cells:

G = {(x, y) : x ∈ [1, rows], y ∈ [1, cols]} (1)

The robot cannot move freely inside this grid, as some
grid cells are occupied by non-traversable objects (obsta-
cles). Therefore, the map of the terrain is defined as follows:

M (q) =

{
0.3 free space
1 obstacle q = (x, y) ∈ G (2)

The values of M correspond to the morphology of the
unknown terrain and are considered a priori unknown.

Action space
Keeping in mind that the movement capabilities of the robot
mainly impose the discretization of the area into grid cells,
the action space is defined in the same grid context as well.
The position of the robot is denoted by the corresponding
x, y cell of the grid, i.e. pa(t) = [xa(t), ya(t)]. Then, the
possible next actions are simply given by the Von Neumann
neighborhood [Gray et al.2003], i.e.

Apa
= {(x, y) : |x− xa|+ |y − ya| ≤ 1} (3)

In the openai-gym framework, the formulation above is
realized by a discrete space of size 4 (North, East, South,
West).

State space
With each movement, the robot may acquire some informa-
tion related to the formation of the environment that lies in-
side its sensing capabilities, according to the following lidar-
like model:

yq(t) =

1 if ‖pa(t)− q‖ ≤ d AND
∃ line-of-sight between
pa(t) and q

0 otherwise

∀q ∈ G (4)

where d denotes the maximum scanning distance.

An auxiliary boolean matrix D(t) is introduced to denote
all the cells that have been discovered from the beginning
till t timestep. D(t) annotates with one all cells that have
been sensed and with zero all the others. Starting from a
zero matrix rows× cols, its values are updated as follows:

Dq(t) = Dq(t− 1) ∨ yq(t), ∀q ∈ G (5)

where ∨ denotes the logical OR operator. The state is
simply an aggregation of the acquired information over all
past measurements of the robot (4). Having updated (5),
the state s(tk) is a matrix of the same size as the grid to be
explored (1), where its values are given by:

sq(t) =

{
Mq if Dq(t)
0 (= undefined) otherwise ∀q ∈ G (6)

Finally, the robot’s position is declared by making
the value of the corresponding cell equal to 0.6, i.e.
sq=pa(t)(t) = 0.6. Overall, state s(t) is defined as a 2D
matrix, that takes values from the following discrete set:
{0, 0.3, 0.6, 1}. Figure 2 presents an illustrative example of
a registration between the graphical environment (figure 2a)
and the corresponding state representation (figure 2b).

(a) Graphical environment (b) State s(t) representation

Figure 2: State encoding

Reward function
Having in mind that the ultimate objective is to discover all
grid cells, the instantaneous core reward, at each timestep t,
is defined as the number of newly explored cells, i.e.

rexplor(t) =
∑
q∈G

Dq(t)−
∑
q∈G

Dq(t− 1) (7)

Intuitively, if
∑T

k=0 rexplor(k) → n , then the robot has
explored the whole grid (1) in T timesteps.

To force robot to explore the whole area (7), while avoid-
ing unnecessary movements, an additional penalty rmove =
0.5 per timestep is applied. In essence, this negative reward
aims to distinguish among policies that lead to the same
number of discovered cells but needed a different number of
exploration steps. Please note that the value of rmove should
be less than 1, to have less priority than the exploration of a
single cell.

The action space, as defined previously, may include in-
valid next movements for the robot, i.e., out of the op-
erational area (1) or crashing into a discovered obstacle.

Thus, apart from the problem at hand, the robot should be
able to recognize these undesirable states and avoid them
at all costs. Towards that direction, an additional penalty
rinvalid = n is introduced for the cases where the next
robot’s movement leads to an invalid state. Along with such
a reward, the episode is marked as “done”, indicating that a
new episode should be initiated.

At the other side of the spectrum, a completion bonus
rbonus = n is given to the robot when more than β% (e.g.,
95%) of the cells have been explored. Similar to the previous
case, this is also considered a terminal state.

Putting everything together, the reward is defined as:

r(t) =

−rinvalid if next state

is invalid
rexplor(t)− rmove+{
rbonus if

∑
q∈G D(t)

n ≥ β
0 otherwise

otherwise

(8)

Key RL Attributes
MarsExplorer was designed as an initial endeavor to bridge
the gap between powerful existing RL algorithms and the
problem of autonomous exploration/coverage of a previ-
ously unknown, cluttered terrain. This subsection presents
the build-in key attributes of the designed framework.

Straightforward applicability. One of the fundamental
attributes of MarsExplorer is that any learned policy can be
straightforwardly applied to an appropriate robotic platform
with little effort required. This can be achieved by the fact
that the policy calculates a high-level exploration path based
on the perception of the environment (6). Thus, assuming
that a smooth integration with the sensor’s readings (for ex-
ample, using a Kalman filter), can be used to represent the
environment as in (6), no elaborate simulation model of the
robot’s dynamics is required to adjust the RL algorithm into
the specifics of the robotic platform.

Terrain Diversity. For each episode, the general dynam-
ics are determined by a specific automated process that has
different levels of variation. These levels correspond to the
randomness in the number, size, and positioning of obsta-
cles, the terrain scalability (size), the percentage of the ter-
rain that the robot must explore to consider the problem
solved, and the bonus reward it will receive in that case. This
procedural generation [Cobbe et al.2020] of terrains allows
training in multiple/diverse layouts, forcing, ultimately, the
RL algorithm to enable generalization capabilities, which
are of paramount importance in real-life applications where
unforeseen cases may appear.

Partial Observability. Due to the nature of the explo-
ration/coverage setup, at each timestep, the robot is only
aware of the location of the obstacles that have been sensed
from the beginning of the episode (5). Therefore, any long-
term plan should be agile enough to be adjusted on the fly,
based on future information about the unknown obstacles’
positions. Such a property renders the acquisition of a global
exploration strategy quite tricky.

Fast Evaluation. Disregarding the environment from any
irrelevant physics dynamics and focusing only on the explo-

ration/coverage aspect (1)-(8), MarsExplorer allows rapid
execution of timesteps. This feature can be of paramount
importance in the RL ecosystem, where the algorithms usu-
ally need millions of timesteps to converge, as it can enable
fast experimental pipelines and prototyping.

Performance Evaluation
This section presents an experimental evaluation of the Mar-
sExplorer environment. The analysis begins with all the
implementation details that are important for realizing the
MarsExplorer experimental setup. For the first evaluation
iteration, 4 state-of-art RL algorithms are applied and evalu-
ated in a challenging version of MarsExplorer that requires
the development of strong generalization capabilities in a
highly randomized scenario, where the underlying structure
is almost absent. Having identified the best performing al-
gorithm, a follow-up analysis is performed with respect to
the difficulty vector values. The learned patterns and ex-
ploration policies for different evaluation instances are fur-
ther investigated and graphically presented. The analysis
is concluded with a scale-up study in two larger terrains
and a comparison between the trained robot and two well-
established frontier-based approaches.

Implementation details
Aside from the standardization as an openai-gym environ-
ment, MarsExplorer provides an API that allows manually
controlled experiments, translating commands from key-
board arrows to next movements. Such a feature can assess
human-level performance in the exploration/coverage prob-
lem and reveal important traits by comparing human and
machine-made strategies.

Ray/RLlib framework [Liang et al.2017] was utilized to
perform all the experiments. The fact that RLlib is a well-
documented, highly-robust library also eases the build-on
developments (e.g., apply a different RL pipeline), as it fol-
lows a common framework. Furthermore, such an exper-
imental setup may also leverage the interoperability with
other powerful frameworks from the Ray ecosystem, e.g.,
Ray/Tune for hyperparameters’ tuning.

Figure 3: Overview of the experimental architecture

Table 1 summarizes all the fixed parameters used for all
the performed experiments. MarsExplorer admits the dis-
tinguishing property of stochastically deploying the obsta-

Table 1: Implementation parameters

Parameter Value Equation
Grid size [21× 21] (1)

Sensor radius d = 6 grid cells (4)
Considered done β = 99% (8)

cles at the beginning of each episode. This stochasticity
can be controlled and ultimately determines the difficulty
level of the MarsExplorer setup. The state-space of MarsEx-
plorer has a strong resemblance to thoroughly studied 2D
environments, e.g., ALE [Bellemare et al.2013], only with
the key difference that the image is generated incrementally
and based on the robot’s actions. Therefore, as it has been
standardized from the DQN algorithm’s application domain
[Mnih et al.2015b], a vision-inspired neural network archi-
tecture is incorporated as a first stage. Figure 3 illustrates the
architecture of this pre-processor, which is comprised of 2
convolutional layers followed by a fully connected one. The
vectorized output of the fully connected layer is forwarded
to a “controller” architecture dependent on the RL algorithm
enabled.

State-of-the-art RL algorithms comparison
Apart from the details described in the previous subsec-
tion, for the comparison study, at the beginning of each
episode, the formation (position and shape) of obstacles was
set randomly. This choice was made to force RL algo-
rithms to develop novel generalization strategies to tackle
such a challenging setup. The list of studied RL algorithms
is comprised by the following model-free approaches: PPO
[Schulman et al.2017], DQN-Rainbow [Hessel et al.2018],
A3C [Mnih et al.2016] and SAC [Haarnoja et al.2018]. All
hyperparameters of these algorithms are reported in the Ap-
pendix.

Figure 4 presents a comparison study among the ap-
proaches mentioned above. For each RL agent, the thick
colored lines stand for the episode’s total reward, while the
transparent surfaces around them correspond to the standard
deviation. Moreover, the episode’s reward (score) is normal-
ized in such a way that 0 stands for an initial invalid action
by the robot, rinvalid in (8), while 1 correspond to the theo-
retical maximum reward, which is the rbonus in (8) plus the
number of cells.

To increase the qualitative comprehension of the produced
results, the average human-level performance is also intro-
duced. To approximate this value, 10 players were drawn
from the pool of CERTH/ConvCAO employees to partici-
pate in the evaluation process. Each player had an initial
warm-up phase of 15 episodes (non-ranked), and after that,
they were evaluated on 30 episodes. The average achieved
score of the 300 human-controlled experiments is depicted
with a green dashed line.

A clear-cut outcome is that the PPO algorithm achieves
the highest average episodic reward, reaching an impres-
sive 85.8% of the human-level performance. DQN-Rainbow
achieves the second-best performance; however, the average
is 50.04% and 42.73% of the PPO and human-level perfor-

Figure 4: Learning curves for MarsExplorer with randomly chosen
obstacles.

mance, respectively.

Multi-dimensional difficulty
Having defined the best performing RL algorithm (PPO),
now the focus is shifted on producing some preliminary re-
sults, related with the difficulty settings of MarsExplorer. As
mentioned in the definition section, MarsExplorer allows for
setting the elements of difficulty vector independently. More
specifically, the difficulty vector comprised of 3 elements
[dt, dm, db], where:

• dt denotes the topology stochasticity, which defines
the obstacles’ placement on the field. The fundamental po-
sitions of the obstacles are equally arranged in a 3 columns
– 3 rows format. dt controls the radius of deviation around
these fundamental positions. As the value of dt increases,
the obstacles’ topology has more unstructured formation. dt
takes values from {1, 2, 3} discrete set.

• dm denotes the morphology stochasticity, which de-
fines the obstacles’ shape on the field. dm controls the area
that might be occupied from each obstacle. The bigger the
value of dm, the larger the compound areas of obstacles that
might appear on the MarsExplorer terrain. dm takes values
from {1, 2} discrete set.

• db denotes the bonus rewards, that are assigned for the
completion (rbonus) and failure (rinvalid) of the mission (8).
For this factor only two values are allowed {1, 2}, that cor-
respond to cases of providing and not-providing the bonus
rewards, respectively.

Higher values in the elements of the difficulty vector cor-
respond to less structured behavior in the obstacles forma-
tion. Thus, a trained agent that has been successfully trained
in greater difficulty setups may exhibit increased generaliza-
tion abilities. Overall, the aggregation of the aforementioned
elements’ domain generates 12 combinations of difficulty
levels. Figure 5 shows the total average return of the evo-
lution of the average episodic reward for each one of the 12
levels during the training of the PPO algorithm. To improve
the readability of the graphs, the results are organized into 3

(a) Topology stochasticity level dt = 1 (b) Topology stochasticity level dt = 2 (c) Topology stochasticity level dt = 3

Figure 5: The sensitivity of PPO algorithm learning curves with respect to the different levels of multi-dimensional difficulty vector.

graphs, one for each level of dt, with 4 plot lines each.
A study on the learning curves reveals that dm has the

largest effect on the learned policy. Blue and red lines (cases
where dm = 1), in all three figures, demonstrate a similar
convergence rate and also the highest-performance policies.
However, a serious degradation in the results is observed in
purple and gray lines (dm = 2). As it was expected, when
dm = 2 and also dt = 3 (purple and gray lines in figure
5c) the final achieved performance reached only a little bit
above 0.6 in the normalized scale. db seems that does not
affect much the overall performance, at least until this vector
of difficulty, apart from the convergence rate depicted in the
gray line of figure 5c.

Learned policy evaluation
This section is devoted to the characteristics of the learned
policy from the PPO algorithm. For each of the 12 levels
of difficulty defined in the previous section, the best PPO
policy was extracted and evaluated in a series of 100 exper-
iments with randomly (controlled by the difficulty setting)
generated obstacles. Figure 6 presents one heat map for each
difficulty level. Blue colormap corresponds to the frequency
of the robot visiting a specific cell of the terrain. Green col-
ormap corresponds to the number of detected obstacles in
each position during the robot’s exploration.

A critical remark is that, for each scenario, the arrange-
ment of discovered obstacles matches the drawn distribution
as described in the previous subsection, implying that the
learned policy does not have any “blind spots”.

Examining the heatmap of the trajectories in each sce-
nario, it is crystal clear that the same family of trajectories
has been generated in all cases and with great confidence.
The important conclusion here is that this pattern is the first
order of the Hilbert curve that has been utilized extensively
in the space-filling domain (e.g., [Kapoutsis et al.2017],
[Sadat et al.2015]). Please highlight that such a pattern
has not been imported to the simulator or rewarded when
achieved from the RL algorithm; however, the algorithm
learned that this is the most effective strategy by interacting
with the environment.

It would be an omission not to mention the learned pol-
icy’s ability to adapt to changes in the obstacles’ distribution

and, ultimately, find the most efficient obstacle-free route.
This trait can be observed more clearly in subfigures 6k and
6l, where the policy needed to be extremely dexterous and
delicate to avoid obstacles’ encounters.

Comparison with frontier-based methodologies for
varying terrain sizes
The analysis is concluded with a scalability study and
comparison to non-learning methodologies. Two terrains
with sizes [42 × 42] and [84 × 84] were used. The
difficulty level was set to [dt, dm, db] = [2, 2, 1], while
100 experiments were conducted for each scenario. Util-
ity and cost-based frontier cell exploration methodologies
[Basilico and Amigoni2011] were enabled for positioning
the achieved PPO policy in the context of non-learning ap-
proaches. In these frontier-based approaches, the explo-
ration policy is divided into two categories based on the met-
ric to be optimized:

• Cost: the next action is chosen based on the distance
from the nearest frontier cell.

• Utility: the decision-making is governed by frequently
updated information potential field.

Figure 7 summarizes the result of such evaluation study
by presenting the average exploration time for each algo-
rithm (PPO, cost frontier-based, utility frontier-based) over
100 procedurally generated runs. A direct outcome is that
the learning-based approach requires the robot to travel less
distance to explore the same percentage of terrain as the
non-learning approaches. The final remark is devoted to the
“knee” that can be observed in almost all the final stages
of the non-learning approaches. Such behavior is attributed
to having several distant sub-parts of the terrain unexplored,
the exploration of which requires this extra effort. On the
contrary, the learning-based approach (PPO) seems to han-
dle this situation quite well, not leaving these expensive-to-
revisit regions along its exploration path.

Conclusions
A new openai-gym environment called MarsExplorer that
bridges the gap between reinforcement learning and the
real-life exploration/coverage in the robotics domain is
presented. The environment transforms the well-known

(a) level-[1,1,1] (b) level-[1,1,2] (c) level-[1,2,1] (d) level-[1,2,2] (e) level-[2,1,1] (f) level-[2,1,2]

(g) level-[2,2,1] (h) level-[2,2,2] (i) level-[3,1,1] (j) level-[3,1,2] (k) level-[3,2,1] (l) level-[3,2,2]

Figure 6: Heatmap of the evaluation results of the learned PPO policy. For each of the 12 difficulty levels, 100 experiments were performed,
with the randomness in obstacles’ formation as imposed by the corresponding level. Blue colormap corresponds to the frequency of cell
visitations by the RL agent, while green colormap corresponds to the location of the encountered obstacles for all the evaluations.

Figure 7: Comparison between 3 exploration methodologies, de-
picting the average and standard deviation over 100 procedurally
generated environments. Red and blue colors correspond to the
non-learning approaches, while purple color corresponds to the
performance of the PPO trained policy. Line type (solid or dashed)
denotes the terrain size (422 or 842).

robotics problem of exploration/coverage of a completely
unknown region into a reinforcement learning setup that can
be tackled by a wide range of off-the-shelf, model-free RL
algorithms. An essential feature of the whole solution is that
trained policies can be straightforwardly applied to real-life
robotic platforms without being trained/tuned to the robot’s
dynamics. To achieve that, the same level of information
abstraction between the robotic system and the MarsEx-
plorer is required. A detailed experimental evaluation was
also conducted and presented. 4 state-of-the-art RL algo-
rithms, namely A3C, PPO, Rainbow, and SAC, were eval-
uated in a challenging version of MarsExplorer, and their
training results were also compared with the human-level
performance for the task at hand. PPO algorithm achieved
the best score, which was also 85.8% of the human-level

performance. Then, the PPO algorithm was utilized to study
the effect of the multi-dimensional difficulty vector changes
in the overall performance. The visualization of the paths
for all these difficulty levels revealed a quite important trait.
The PPO learned policy has learned to perform a Hilbert
curve with the extra ability to avoid any encountered obsta-
cle. Lastly, a scalability study clearly indicates the ability
of RL approaches to be extended in larger terrains, where
the achieved performance is validated with non-learning,
frontier-based explorations strategies.

Table 2: PPO Hyperparameters

Parameter Value Comments
γ 0.95 Discount factor of the MDP
λ 5e-5 Learning rate

Critic True Used a critic as a baseline
GAE l 0.95 GAE (lambda) parameter

KL coeff 0.2 Initial coefficient for KL divergence
Clip 0.3 PPO clip parameter

Table 3: DQN-Rainbow Hyperparameters

Parameter Value Comments
γ 0.95 Discount factor of the MDP
λ 5e-4 Learning rate

Noisy Net True Used a noisy network
Noisy σ 0.5 initial value of noisy nets

Dueling Net True Used dueling DQN
Double dueling True Used double DQN

ε-greedy [1.0, 0.02] Epsilon greedy for exploration.
Buffer size 50000 Size of the replay buffer

Priorited Replay True Prioritized replay buffer used

Table 4: SAC Hyperparameters

Parameter Value Comments
γ 0.95 Discount factor of the MDP
λ 3e-4 Learning rate

Twin Q True Use two Q-networks
Q hidden [256, 256] Hidden layer activation

Policy hidden [256, 256] Hidden layer activation
Buffer size 1e6 Size of the replay buffer

Priorited Replay True Prioritized replay buffer used

Table 5: A3C Hyperparameters

Parameter Value Comments
γ 0.95 Discount factor of the MDP
λ 1e-4 Learning rate

Critic True Used a critic as a baseline
GAE True General Advantage Estimation

GAE l 0.99 GAE(lambda) parameter
Value loss 0.5 Value Function Loss coefficient

Entropy coef 0.01 Entropy coefficient

Acknowledgments
This project has received funding from the European Com-
mission under the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement
no 833464 (CREST). Also, we gratefully acknowledge the
support of NVIDIA Corporation with the donation of GPUs
used for this research.

References
[Baker et al.2019] Bowen Baker, Ingmar Kanitscheider,

Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent au-
tocurricula. arXiv preprint arXiv:1909.07528, 2019.

[Basilico and Amigoni2011] Nicola Basilico and
Francesco Amigoni. Exploration strategies based
on multi-criteria decision making for searching envi-
ronments in rescue operations. Autonomous Robots,
31(4):401–417, 2011.

[Bellemare et al.2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Ar-
tificial Intelligence Research, 47:253–279, Jun 2013.

[Brockman et al.2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[Burgard et al.2000] Wolfram Burgard, Mark Moors, Di-
eter Fox, Reid Simmons, and Sebastian Thrun. Col-
laborative multi-robot exploration. In Proceedings 2000
ICRA. Millennium Conference. IEEE International Con-
ference on Robotics and Automation. Symposia Proceed-
ings (Cat. No. 00CH37065), volume 1, pages 476–481.
IEEE, 2000.

[Cobbe et al.2020] Karl Cobbe, Chris Hesse, Jacob Hilton,
and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International con-
ference on machine learning, pages 2048–2056. PMLR,
2020.

[Dhariwal et al.2017] Prafulla Dhariwal, Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai
Wu, and Peter Zhokhov. Openai baselines, 2017.

[Gray et al.2003] Lawrence Gray, A New, et al. A mathe-
matician looks at wolfram’s new kind of science. In No-
tices of the American Mathematical Society 50 (2)(2003)
200–211. Citeseer, 2003.

[Haarnoja et al.2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning
with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

[Hessel et al.2018] Matteo Hessel, Joseph Modayil, Hado
Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Sil-
ver. Rainbow: Combining improvements in deep rein-
forcement learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

[Kapoutsis et al.2016] Athanasios Ch Kapoutsis, Sav-
vas A Chatzichristofis, Lefteris Doitsidis, Joao Borges
de Sousa, Jose Pinto, Jose Braga, and Elias B Kos-
matopoulos. Real-time adaptive multi-robot exploration
with application to underwater map construction. Au-
tonomous robots, 40(6):987–1015, 2016.

[Kapoutsis et al.2017] Athanasios Ch Kapoutsis, Savvas A
Chatzichristofis, and Elias B Kosmatopoulos. Darp: di-
vide areas algorithm for optimal multi-robot coverage
path planning. Journal of Intelligent & Robotic Systems,
86(3-4):663–680, 2017.

[Kapoutsis et al.2019] Athanasios Ch Kapoutsis, Savvas A
Chatzichristofis, and Elias B Kosmatopoulos. A dis-
tributed, plug-n-play algorithm for multi-robot appli-
cations with a priori non-computable objective func-
tions. The International Journal of Robotics Research,
38(7):813–832, 2019.

[Koutras et al.2020] Dimitrios I Koutras, Athanasios Ch
Kapoutsis, and Elias B Kosmatopoulos. Autonomous and
cooperative design of the monitor positions for a team of
uavs to maximize the quantity and quality of detected ob-
jects. IEEE Robotics and Automation Letters, 5(3):4986–
4993, 2020.

[Lei et al.2018] Xiaoyun Lei, Zhian Zhang, and Peifang
Dong. Dynamic path planning of unknown environ-
ment based on deep reinforcement learning. Journal of
Robotics, 2018, 2018.

[Liang et al.2017] Eric Liang, Richard Liaw, Robert Nishi-
hara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken
Goldberg, and Ion Stoica. Ray rllib: A composable and
scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381, page 85, 2017.

[Liang et al.2018] Eric Liang, Richard Liaw, Robert Nishi-
hara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Ab-
stractions for distributed reinforcement learning. In Inter-
national Conference on Machine Learning, pages 3053–
3062. PMLR, 2018.

[Lopez et al.2019] Nestor Gonzalez Lopez, Yue Leire Erro
Nuin, Elias Barba Moral, Lander Usategui San Juan, Ale-
jandro Solano Rueda, Victor Mayoral Vilches, and Risto
Kojcev. gym-gazebo2, a toolkit for reinforcement learn-
ing using ROS 2 and gazebo. CoRR, abs/1903.06278,
2019.

[Luis et al.2021] Samuel Yanes Luis, Daniel Gutiérrez
Reina, and Sergio L Toral Marı́n. A multiagent deep re-
inforcement learning approach for path planning in au-
tonomous surface vehicles: The ypacarac-lake patrolling
case. IEEE Access, 2021.

[Mnih et al.2015a] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level con-
trol through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[Mnih et al.2015b] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beat-
tie, Amir Sadik, Ioannis Antonoglou, Helen King, Dhar-
shan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, February
2015.

[Mnih et al.2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages
1928–1937, 2016.

[Niroui et al.2019] Farzad Niroui, Kaicheng Zhang, Zendai
Kashino, and Goldie Nejat. Deep reinforcement learn-
ing robot for search and rescue applications: Exploration
in unknown cluttered environments. IEEE Robotics and
Automation Letters, 4(2):610–617, 2019.

[Palacios-Gasós et al.2016] José Manuel Palacios-Gasós,
Eduardo Montijano, Carlos Sagüés, and Sergio Llorente.
Distributed coverage estimation and control for multi-
robot persistent tasks. IEEE transactions on Robotics,
32(6):1444–1460, 2016.

[Popov et al.2017] Ivaylo Popov, Nicolas Heess, Timothy
Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej
Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and
Martin Riedmiller. Data-efficient deep reinforcement
learning for dexterous manipulation. arXiv preprint
arXiv:1704.03073, 2017.

[Renzaglia et al.2019] Alessandro Renzaglia, Jilles Diban-
goye, Vincent Le Doze, and Olivier Simonin. Combin-

ing stochastic optimization and frontiers for aerial multi-
robot exploration of 3d terrains. In IROS, pages 4121–
4126, 2019.

[Sadat et al.2015] Seyed Abbas Sadat, Jens Wawerla, and
Richard Vaughan. Fractal trajectories for online non-
uniform aerial coverage. In 2015 IEEE international con-
ference on robotics and automation (ICRA), pages 2971–
2976. IEEE, 2015.

[Schulman et al.2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Shrestha et al.2019] Rakesh Shrestha, Fei-Peng Tian, Wei
Feng, Ping Tan, and Richard Vaughan. Learned map pre-
diction for enhanced mobile robot exploration. In 2019
International Conference on Robotics and Automation
(ICRA), pages 1197–1204. IEEE, 2019.

[Silver et al.2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[Simmons et al.2000] Reid Simmons, David Apfelbaum,
Wolfram Burgard, Dieter Fox, Mark Moors, Sebastian
Thrun, and Håkan Younes. Coordination for multi-robot
exploration and mapping. In Aaai/Iaai, pages 852–858,
2000.

[Smith et al.2020] Marshall Smith, Douglas Craig, Nicole
Herrmann, Erin Mahoney, Jonathan Krezel, Nate McIn-
tyre, and Kandyce Goodliff. The artemis program: An
overview of nasa’s activities to return humans to the
moon. In 2020 IEEE Aerospace Conference, pages 1–10.
IEEE, 2020.

[Wen et al.2020] Shuhuan Wen, Yanfang Zhao, Xiao Yuan,
Zongtao Wang, Dan Zhang, and Luigi Manfredi. Path
planning for active slam based on deep reinforcement
learning under unknown environments. Intelligent Ser-
vice Robotics, pages 1–10, 2020.

[Witze et al.2020] Alexandra Witze, Smriti Mallapaty, and
Elizabeth Gibney. All aboard to mars, 2020.

[Zamora et al.2016] Iker Zamora, Nestor Gonzalez Lopez,
Victor Mayoral Vilches, and Alejandro Hernandez
Cordero. Extending the openai gym for robotics: a toolkit
for reinforcement learning using ros and gazebo. arXiv
preprint arXiv:1608.05742, 2016.

[Zhang et al.2018] Kaichena Zhang, Farzad Niroui, Mau-
rizio Ficocelli, and Goldie Nejat. Robot navigation of
environments with unknown rough terrain using deep re-
inforcement learning. In 2018 IEEE International Sym-
posium on Safety, Security, and Rescue Robotics (SSRR),
pages 1–7. IEEE, 2018.

Extended Task and Motion Planning of
Long-horizon Robot Manipulation

Tianyu Ren, Georgia Chalvatzaki, Jan Peters
Department of Computer Science, Technische Universität Darmstadt

Email: tianyu@robot-learning.de

Abstract—Task and Motion Planning (TAMP) requires the
integration of symbolic reasoning with metric motion planning
that accounts for the robot’s actions’ geometric feasibility. This
hierarchical structure inevitably prevents the symbolic planners
from accessing the environment’s low-level geometric description,
vital to the problem’s solution. Most TAMP approaches fail to
provide feasible solutions when there is missing knowledge about
the environment at the symbolic level. The incapability of devising
alternative high-level plans leads existing planners to a dead end.
We propose a novel approach for decision-making on extended
decision spaces over plan skeletons and action parameters. We
integrate top-k planning for constructing an explicit skeleton
space, where a skeleton planner generates a variety of candidate
skeleton plans. Moreover, we effectively combine this skeleton
space with the resultant motion parameter spaces into a single
extended decision space. Accordingly, we use Monte-Carlo Tree
Search (MCTS) to ensure an exploration-exploitation balance at
each decision node and optimize globally to produce minimum-
cost solutions. The proposed seamless combination of symbolic
top-k planning with streams, with the proved optimality of
MCTS, leads to a powerful planning algorithm that can handle
the combinatorial complexity of long-horizon manipulation tasks.
We empirically evaluate our proposed algorithm in challenging
manipulation tasks with different domains that require multi-
stage decisions and show how our method can overcome dead-
ends through its effective alternate plans compared to its most
competitive baseline method.

I. INTRODUCTION

The intelligent robots of the future should perform multiple
tasks in unstructured environments, like houses, hospitals, etc.
Among the most critical features in robotics is the need for rea-
soning and acting for achieving multi-stage long-horizon tasks
that require manipulation and mobility. Traditional approaches
considered long-horizon manipulation as a strict decomposi-
tion of sub-tasks, either hard-coded or addressed as individual
sub-problems to be solved independently. Inspired by advances
in symbolic Artificial Intelligence (AI) planning, the previous
strict hierarchical approach is now getting automated by a
single solution for Task and Motion Planning (TAMP) [1, 2].
With a typical TAMP solver, in the high level, a task planner
reasons over a sequence of symbolic actions for reaching a
symbolic goal state; in the low level, a set of motion planners
search for metric decisions to make each action geometrically
feasible w.r.t. the environment.

TAMP hierarchical structure makes it suitable for solving
long-horizon tasks; however, it brings some major issues in co-
ordinating the two levels of symbolic reasoning and geometric
planning. Since the task planner is mostly uninformed about

(a) 1-body scenario

(b) 2-body scenario

Fig. 1: Example task: transportation of body1 from region1 to
region2. Bodies can only be grasped from the top. Though the 1-body
scenario is trivial to most TAMP algorithms, the 2-body scenario is
more challenging: the taller red body must be relocated before the
green one can be reached without collisions.

detailed constraints of the environment, it tends to generate
symbolic plans that are geometrically infeasible. Existing
TAMP algorithms generally start with only one symbolic plan
that is considered ”optimal”. Sometimes such a plan may be
enough (Fig. 1a). However, in more challenging scenarios, e.g.,
Fig. 1b, this single plan fails quickly. This issue is commonly
described as an incomplete domain description [3, 4] in the
sense that the task planner does not have enough domain
knowledge to generate absolutely correct results.

Like AI planning, TAMP is an intrinsic offline process that
relies heavily on the associated domain description. Research
has delivered significant advancements, especially with the
introduction of integrated TAMP methods [1, 2, 5, 6, 7],
however particular domain specifications and assumptions
hinder their application in real-world general settings.

This paper proposes a novel framework for general-purpose
TAMP with extended decision spaces (eTAMP). Our proposed
method generates diverse alternate symbolic plans (skeletons)
for an extended decision space, optimizing both the skeleton
selection and the actions’ parameters’ concrete bindings. We
propose using a top-k skeleton planner to produce diverse
skeletons, guaranteeing that no better solution exists under
a current domain description [8]. Moreover, we augment the
skeleton planner with streams [6, 9], a sampling procedure that

uses black-box conditional generators of action parameters in
the task planning domain, as additional operators for symbolic
AI planning. Streams address the hybrid discrete-continuous
planning domains like those in PDDLStream [9, 6]. We
integrate the decision over skeletons as an ”additional stream”
for sampling alternate skeletons in the TAMP’s symbolic
subspace. Notably, we propose using Monte-Carlo Tree Search
(MCTS) to solve this stochastic decision-making problem over
skeletons and concrete bindings of the action parameters. The
main contribution of this work is twofold:

• we reformulate the TAMP framework by transforming
the problem of skeleton planning with incomplete domain
description into a series of generic planning problems that
are tractable to any off-the-shelf top-k planner;

• we propose a tree-structured search algorithm for solving
the resultant stochastic decision-making problem in the
extended decision space.

We evaluate our proposed framework on challenging robotic
tasks defined in various domains and long-horizon tasks with
increasing difficulty, using both a 7-degrees-of-freedom (dof)
manipulator and a 10-dof mobile manipulator robot. Our
empirical results prove the ability of the proposed eTAMP
method to find feasible plans in challenging manipulation
scenarios by producing alternate skeletons and the decision
of motion parameters of the actions compared to the state-
of-the-art, thus taking one more step towards the creation of
general-purpose robotic TAMPs.

II. RELATED WORK

Incomplete domain specification is ubiquitous in TAMP
applications. This incomplete domain fails to capture sev-
eral environmental constraints crucial to the feasibility of
the generated skeletons. A robust TAMP algorithm should
search for alternate skeletons. Recent methods can discover
new skeletons using replanning or reattempting mechanisms
[9, 6, 10], and those are, in the best case, patched versions of
the original infeasible plans. Therefore, most of the space of
alternate skeletons will remain unexplored.

In particular, for robot TAMP, the developed algorithmic
solutions vouched for performance instead of completeness
and generality of the proposed planners [5]. A comprehensive
review over integrated TAMP approaches can be found in
[7]. Research for TAMP has been frequently approached as
an optimization problem using logic geometric programming
[11], or multi-modal motion planning with motion-modes
switches for various tasks [12]. However, these methods are
designed for particular manipulation problems and are not
applicable across different domains.

We are concerned with TAMP problem formulations that
use the Planning Domain Definition Language (PDDL) [13]
for the task domain description. PDDL is used to symbolize
the original planning domain to individual actions with pre-
conditions and effects. Early works for TAMP used semantic
attachments in PDDL for querying motion planners over the
feasibility of task actions [14]. However, this method requires
a pre-specification of sets of discrete parameters like object

TABLE I: The stream set Streams0 of the transportation problem.

Stream Description
Sample-pose(?body, ?region)

→?pose

Generate a collision-free ?pose

for ?body on ?region.
Plan-motion

(?body, ?pose from, ?pose to)

→?traj

Generate a collision-free ?traj

that transports ?body

from ?pose from to ?pose to.

poses, grasps, and robot configurations. Several methods con-
sider finding constraint-satisfying states as in [5] to search
for feasible task plans given some geometric constraints. [15]
directly samples feasible regions for actions using conditional
samplers.

The need for alternate skeletons remains an open research
problem for generalization over different domains. Notably, in
[10] the authors try to explicitly generate alternate skeletons
through incremental solving. If the motion planner fails to
refine a skeleton, they add additional feasibility constraints to
the task planner. Similarly, in [2], the authors use an interface
layer that generates logical facts that capture the failure of
current skeletons and update the high-level state description.
This heuristic treatment makes this decision process highly
sub-optimal for new domains, ending up performing similarly
to reattempting methods.

The robustness of TAMP and the quality of its solution will
be improved by an extended optimal search in the skeleton
space in addition to the search in the action parameter space.
Top-k planning is one way of obtaining such a set, by finding a
group of diverse solutions of size k. With a variety of candidate
skeletons, it is possible to make a detour to avoid infeasible
selections. Based on a Fast Downward [16, 17], [18] presents
a complete top-k planner, the SYM-K, that scales efficiently
to large sizes of k.

For searching for concrete bindings in a given decision
space, MCTS methods (see App. ??), such as UCT [19, 20],
provides a probabilistically optimal solution by performing
a sample-based tree search. [21] uses Voronoi partitioning
with MCTS for achieving higher efficiency in robot planning,
however, it is restricted to deterministic planning problems and
therefore are not applicable to TAMP problems with stochastic
transition functions.

III. PRELIMINARIES

Robotic motion planning and AI planning. Motion planning
demands a continuous state-space formulation, and sample-
based methods have satisfactorily solved it (e.g., the rapidly
exploring dense tree family [22]). Within AI planning, logic-
based formulations (e.g., STRIPS and PDDL) have been
conveniently used to compactly represent enormous discrete
state spaces and produce outputs that logically explain the
steps involved in arriving at some goal state.
PDDLStream. A PDDL task is a tuple T =
〈Objects, S,G,Actions〉. It is about finding a sequence
of actions from set Actions that when applied in succession
will transform the world from the initial state S into one in
which all literals of G are true. Objects is a finite set of

objects associated to the task. Let us consider the planning
task of Fig. 1a. The initial state, goal state, and available
actions for this scenario are

S0 = {On(body1, region1) } (1)
G0 = {On(body1, region2) } (2)
Actions0 = {Pick-place(?body, ?from, ?to, ?traj) } (3)

PDDLStream [6] attempts to increase the universality of
PDDL by incorporating streams into PDDL operators in
addition to actions. A PDDLStream task can be represented
as a tuple Tstream = 〈Objects, S,G,Actions, Streams〉.
Streams give out new objects during planning as black-box
generators of any kind. This kind of operators is crucial to
a general-purpose TAMP system for easily integrating state-
of-the-art sub-task solvers. Let us assume the streams for the
transportation problem, as shown in Table I. Then, the planner
can start with a set of undemanding objects

Objects0 = {body1, pose11, region1, region2} (4)

where pose11 is the initial pose of body1 in region1, and it is
easily accessed. A skeleton plan πs composed of both actions
and streams can be found as

〈Sample(body1, region2)→ #pose12,

Plan-motion(body1, pose11,#pose12)→ #traj112,

Pick-place(body1, region1, region2,#traj112)〉. (5)

where the objects generated by streams are marked by #
and they demand further bindings to concrete values before
the plan can be executed by the robot. These symbolized
outputs are optimistic in the sense that they may not ever
find their concrete counterparts under the search constraints.
Thus, not all skeletons can be instantiated to concrete plans.
The optimistic object introduced by PDDLStream is essential
to the decomposition of the original manipulation planning
problem into sub-problems of symbolic task planning and
metric motion planning [23].

IV. TOP-K SKELETON PLANNING

Most TAMP systems satisfy their symbolic goals based on
a single “best” skeleton. However, such a skeleton is usually
vulnerable to the partially described environment during task
planning. Let PT be the set of all symbolic plans (possibly
infinite) for a planning task T . The objective of top-k planning
is to determine a set of k different plans {π1, π2, ..., πk} =
P ⊆ PT with the lowest costs for a given AI planning task
[18]. We call a top-k algorithm complete iff it could find the
set of all plans as required. A standard top-k planner can be
described as P = TOP-K(Objects, S,G,Actions, k).

Skeleton planning starts with (i) optimistic enrichment of
the initial object set and the initial state set such that (ii) a
variety of action plans can be found by a top-k symbolic
planner. Streams are ignored during top-k planning since their
presences are not accountable to the diversity of the final plans.
(iii) Next, a skeleton is recovered from each action plan by
retracing all supportive streams. And finally we have top-k
skeletons produced.

A. Graph expansion for optimistic object generation

Algorithm 1: OPTMS-EXPD

Input: Objects, S, Streams, level
#Objects = copy(Objects)
#S = copy(S)
for i ∈ [1, 2, ..., level] do

#Objects,#S =
NEXT-LAYER(#Objects, S, Streams)

return #Objects,#S

We use forward graph expansion with all streams, denoted
S0, as operators to enrich the initial object set while limiting
the level of the planning graph. In the graph expansion, the first
layer consists of the original objects (e.g., (4)), and the second
layer is made-up of applicable streams whose preconditions
are satisfied by the previous layer. Unique optimistic values
are generated by the streams of the second layer, and are listed
in the third layer. The expansion goes on until the maximum
level is reached. This optimistic expansion is summarized in
Alg. 1, where Objects and #Objects denote the initial object
set and the optimistically expanded set, respectively. Streams
are the set of all available streams in the task, e.g., Table I.
As new objects are generated, the original initial set S will
be expanded to #S. The operation NEXT-LAYER expands
the graph by one level. For example, after applying Alg. 1 to
Objects0 in (4) with level = 2, we get

#Objects0 = {body1, pose11, region1, region2,
#pose11a,#pose12a,#traj111a,

#traj112a,#traj112b,#pose11b,

#pose12b}. (6)

B. Searching top-k action plans

Here we are only interested in the diversity of the actions’
arrangement. Starting from the expanded sets, #Objects and
#S, we formulate the top-k planning problem with only
actions as PDDL operators

Pa = TOP-K(#Objects,#S,G,Actions, k) (7)

where G and Actions are with the original problem de-
scription as in (2) and (3), and k = |Pa|. The planning
subroutine TOP-K can be any complete and sound symbolic
top-k planner. Here we choose the SYM-K algorithm [18].

C. Building top-k skeletons

Now we need to recovery the top-k skeletons Ps from the
action plans Pa. A skeleton plan πs must build on only un-
demanding PDDL conditions, e.g., S0 from (1) and Objects0
from (4). For a action plan πa, we retrace streams that are
responsible for the optimistic objects #Objects0 \ Objects0
consumed by the actions of πa, and include them into a

skeleton plan. We formalize this stream-retracing procedure
as another symbolic planning problem and solve it as follows

πs = TOP-K(Objects, S,Gs(πa, G),

Actions ∪ Streams, 1)
(8)

Objects, S, and G are from the original task description.
Actions and Streams constitute the operator set of this
planning problem. Informally, by setting k = 1, the top-k
algorithm reduces to a classical PDDL planner. To ensure that
all member actions have the same presence in πs, as in πa, we
must add extra constraints to the goal state. Here, we make the
goal state a function of πa. Assuming πa = 〈a1, a2, ..., an〉,
we have

Gs(πa, G) = {(a1 ≺ a2), ..., (an−1 ≺ an)} ∪G, (9)

where (a1 ≺ a2) denotes a literal asserting that a1 must be
the predecessor of a2.

D. The top-k skeleton planning algorithm

An overview of our proposed skeleton planning algorithm
is shown in Alg. 2. The inputs of the algorithm include the
original initial state S, goal state G, available Streams and
Actions, and a desired number of skeletons k. The output Ps

is the list of the top k skeletons, if it is found under a preset
level limit max-level in the optimistic expansion of Alg. 1.
The size of #Objects ramps up quickly with increasing
level. To address this, in Alg. 2 we regulate the number of
optimistic objects by progressively increasing the level during
the searching process.

Property 1: Probabilistic completeness in skeleton plan-
ning. Given a complete top-k planner, any potentially feasible
skeleton will be contained by the result set of Alg. 2 as k goes
to infinity.
We choose SYM-K [18] as our planning subroutine in this
study. Due to its proved completeness and soundness, the
property mentioned previously is well maintained. For the
simple 2-body transportation task of Fig. 1b, the robot should
relocate the taller red body, for accessing and relocating
the green one. Applying our proposed Alg. 2 to the task
Tstream,1-body = 〈(4),(1),(2),(3),Table I〉, with (8) we get a
feasible skeleton as:

〈Sample-pose(body2,region1)→ #pose21a,

Plan-motion(body2,pose21,#pose21a)→ #traj211a,

Pick-place(body2,region1,region1,#traj211a),
Sample-pose(body1,region2)→ #pose12a,

Plan-motion(body1,pose11,#pose12a)→ #traj112a,

Pick-place(body1,region1,region2,#traj112a)〉. (10)

V. TREE SEARCH IN THE EXTENDED DECISION SPACE

A skeleton πs describes a symbolically feasible path to
the goal state. Its geometric feasibility must be evaluated
along with the sequential bindings of its optimistic objects
to concrete values. For example, there are 4 bindings to be

Algorithm 2: TOP-K-SKELETON

Input: Objs, S,G,Actions, Streams, k
for level ∈ [0, 1, ...,max-level] do

#Objs,#S =
OPTMS-EXPD(Objs, S, Streams, level), see
Alg. 1
Pa = TOP-K(#Objs,#S,G,Actions, k), see

(7)
if |Pa| < k then

continue for
Ps = { }
for πa ∈ Pa do

Operators = Actions ∪ Streams
#G = Gs(πa, G), see (9)
πs = TOP-K(Objs, S,#G,Operators, 1), see
(8)
Ps ← {πs} ∪ Ps

return Ps

TABLE II: Nodes of the binding tree model of the skeleton in (10)

Node Member operators
decision1 Sample-pose(body2,region1) → #pose21a

transition1 Plan-motion(body2,pose21,#pose21a) → #traj211a
Pick-place(body2,region1,region1,#traj211a)

decision2 Sample-pose(body1,region2) → #pose12a

transition2 Plan-motion(body1,pose11,#pose12a) → #traj211a
Pick-place(body1,region1,region2,#traj112a)

decided in (10). As the decisions of the bindings are causally
related to each other, and they extend to large sizes as the task
horizon increases, we propose using an MCTS-like approach
that can systematically explore this broad decision space.

A. The extended decision tree

We pose the decision over multiple skeletons as a multi-
armed bandit problem, and it can be satisfactorily solved
by UCB1 as shown in (??). In particular, we use UCT to
make optimal sequential decisions for the binding list of each
selected skeleton. In practice, not all optimistic objects of a
skeleton necessarily belong to its binding list. Following [24],
we can group the operators of (10) into two distinct and alter-
nating types of nodes (see Table II and Fig. 2), the transition
and the decision nodes. Operators like ”Plan-motion” (with
random outputs by RRT planners [22]) and ”Pick-place” (with
possibly positioning error–not implemented in this work) in
(10) are modeled as stochastic transition systems. On the other
hand, ”Sample-pose” is completely depended on the task, and
considers for example decision over different placement poses
pose21a and pose12a, hence making it a decision node.

For simplicity, we pack successive transitional operators into
a single transition node in Table II, e.g., ”Plan-motion” and
”Pick-place” belong to the same transition node. Finally, we
can formulate the skeleton-selection and the binding search
with a single model, based on the observation that skeleton-
selection is just an extended decision node at the root of a
decision tree. As a result, an extended decision tree can be
built, as shown Fig. 2.

Fig. 2: An example of an extended decision tree for solving the
2-body transportation task of Fig. 1b

B. Binding search in the extended decision tree

Starting from the extended root, a robot must make se-
quential decisions along the tree until a terminal state is
encountered. A terminal state indicates that the state of the
current node is infeasible to the task, and binding search
must stop here (e.g., state1.2 and state1.3 in Fig. 2). Then
it will receive a reward r ∈ R. The robot’s objective is to
find a sequence of decisions with a planning horizon Hi that
maximizes the final reward. Hi = 1 + depthi where depthi
is the number of decision nodes inside the selected skeleton
πs,i. In our study, we use a reward function defined as

r = 0.1

(
depthend
depthi

+
1

motionCostend

)
+ rsuccess (11)

where depthend is the depth in the decision tree in which
the current node is terminated, and motionCostend is propor-
tional to the swept volume of the robot from its initial state to
the terminal state. The first term in (11) is a normalized depth
that encourages the robot to avoid branches where bindings
have already failed earlier. The second term makes the robot
prefer branches with motions that have less occupation in the
workspace. For the third term, rsuccess = 1 when all bindings
are successfully found, otherwise rsuccess = 0. This reward
design is effective for solving an array of robot manipulation
problems, as we show in Sec.VI, and it can be specialized for
better performance in specific tasks.

By now, we have a classical finite-horizon stochastic optimal
search problem, and it can be described as a Markov Decision
Process (MDP). With the UCT formulation, episodic MDP
is repeated during the search loop, and information from the
previous episodes is used for reaching optimal decisions in
the subsequent episodes. The information, in this case, refers
to the value V and the visit number M of a tree node. Since
we have continuous bindings to decide on (e.g., #pose12a in
Fig. 2), we employ a UCT variant with progressive widening
(PW) techniques [25, 24, 26]. The basic idea is to limit the
number of visits for existing nodes artificially. When the value
of the existing nodes is estimated sufficiently well, new nodes
will be created to explore the unreached regions of the decision
spaces. The original PW criterion, however, assumes that the
new decisions are always available, while it is not the case
when decisions at a node are discrete and enumerable. To
counteract this restriction, we define a new PW law with
Alg. 3, that supports streams with both continuous and dis-
crete outputs for versatile robotic applications. The argument

Algorithm 3: EXPAND-TEST

Input: node
if node is a decision node then

s = streamFromNode(node)
if s.output is continuous then

return PW-LAW(node)
else

if s.outputSpace ⊆ {node.decisionHistory} then
return False

else
return True

else
return PW-LAW(node)

Algorithm 4: CHILD-SELECT

Input: node
if node is a decision node then

child node = UCB-SELECT(node)
else

child node = LEAST-SELECT(node)
return child node

Algorithm 5: NEW-CHILD

Input: node
if node is a decision node then

new node = NEW-DECISION(node)
else

new node = NEW-TRANSITION(node)

node.addChild(new node)
return new node

False = EXPAND-TEST(node) means that new edges cannot

be created from node at the time. In this case, an existing edge
connecting to an established child of node must be selected.
For decision nodes, we use the UCB-SELECT(node) strategy
to select the child of node with the maximum UCB score.
For transition nodes, the strategy of LEAST-SELECT(node)
is used to simply select the least-visited child of node. The
overall child selection strategy is in Alg. 4.

If True = EXPAND-TEST(node), new edges leading from
node to a new child node must be created. For decision nodes,
we use the NEW-DECISION(node) strategy to sample a new
decision and create the resultant child node. With this strategy,
node with discrete stream outputs will randomly select an
unvisited decision; node with continuous stream outputs will
use Voronoi sampling to choose the next concrete binding for
rapid exploration of the decision space. For the transition node,
we define a subroutine called NEW-TRANSITION(node) that
directs the environment to a new state on which a new child
node is built. At last, we can summarize our extended tree
search algorithm in Alg. 6. Its inputs include the top-k skeleton
set Ps generated by Alg. 2 and a user-defined time budget
tts. The output of Alg. 6 is a single concrete plan πc that is
optimized under given tts. On RECEIVE-VISIT(node), node

Algorithm 6: EXTENDED-TREE-SEARCH

Input: Ps, tts
extened root = buildExtendedRoot(Ps)
node← extened root
while timeCost() < tts do

while node is not terminated do
RECEIVE-VISIT(node)
if EXPAND-TEST(node) then

node← NEW-CHILD(node), see Alg. 5
else

node← CHILD-SELECT(node), see
Alg. 4

backupRewardFrom(node)

node← extened root
πc = highestValueBranchFrom(extened root)
return πc

Algorithm 7: eTAMP

Input: Tstream, k, tb
Ps = TOP-K-SKELETON(Tstream, k), see Alg. 2
tts = tb− timeCost()
πc = EXTENDED-TREE-SEARCH(Ps, tts), see Alg. 6
return πc

will increase its visit number by 1. Meanwhile, all actions
ahead of node in the skeleton will be effectuated to update
the environment to which state node is initially built on. By
complying with Alg. 4 and Alg. 3, a global convergence of the
output πc to the optimal plan is guaranteed. We refer to [24]
for the detailed proof.

Property 2: Probabilistic completeness in the extended tree
search. Alg. 6 is structured in line with the PW-UCT frame-
work, and it retains all the convergence property. The optimal
concrete plan within the extended decision space (implied by
Ps) can be found after tts goes infinite.

C. The eTAMP algorithm

A serial combination of Alg. 2 and Alg. 6 gives
out the overall eTAMP algorithm, as summarized in
Alg. 7. It takes as input a standard PDDLStream task
Tstream = 〈Objects, S,G,Actions, Streams〉, and two
hyper-parameters: k and tb, allocating computational
resources to the planner. Its dependencies include a set of
black-box generators for streams, and a robotic simulator.

VI. EMPIRICAL EVALUATION

We evaluate the proposed eTAMP algorithm in three multi-
stage robot manipulation tasks: transportation, cooking, and
regrasping. None of them can be solved by a whole-piece
motion planner, or a standalone AI planner. The Adaptive
algorithm from [6] represents the best performance of existing
PDDLStream methods, and it serves as a baseline in these
evaluation tasks. The two general-purpose TAMP algorithms,
adaptive PDDLStream, and eTAMP, share one internal simu-
lator that is implemented with PyBullet [27] for hosting the
environment state. Both planners are terminated after a 700-
second timeout for each of the three tasks. For eTAMP we set
k = 50, and it is shown enough for the considered tasks. The
performance of each algorithm is evaluated over 100 random
instances of each task. Whenever a feasible concrete plan is
found, the algorithm is stopped and the computation time is
calculated. It is noteworthy that both algorithms employ the
same stream generators for decision nodes, which have zero
built-in heuristics.

A. The transportation task

This task comes from the motivation example of Fig. 1. For
the 1-body scenario, Adaptive PDDLStream and eTAMP can
solve the problem respectively in 0.44 s and 3.94 s on average.
The larger time cost of eTAMP is due to the extra effort
of its top-k planner in finding all the k alternatives, which
in this case are somewhat ”unnecessary”. When more than
one body is involved, the problem becomes challenging since
the symbolic planners at high hierarchies are unaware of the
geometric constraints, as imposed by the taller red body in
Fig. 1b. With the help of top-k backup plans, eTAMP solves
the 2-body problem in 11.95 s on average. However, Adaptive
PDDLStream is unable to find a feasible plan within the time
budget of 700s. To further evaluate the algorithms, we propose
a 3-body scenario, where two bodies must be relocated before
the target one can be reached. eTAMP solves this harder
problem in 157.70 s while Adaptive PDDLStream still fails
to give a solution.

Fig. 3: The cooking task: Given an initial number of bodies to be
cooked, the mobile manipulator should cook by first placing the body
on the sink for cleaning, and then place it on the stove for washing.

Fig. 4: The regrasping task: The only way the robot could move the
cuboid body from the drawer to the shelf is by regrasping it with a
different direction after taking it from the drawer.

B. The cooking task

This task evaluates the TAMP algorithms’ scalability to
mobile manipulation. As shown in Fig. 3, this task aims to
transport a given number of bodies initially placed on the
table to the stove for cooking. Before cooking, a body must
be once placed on the sink for washing. The cooking task
features long-horizon robot manipulation. For example, a task
instance with 5 bodies involved requires at least 10 free-hand
movements plus 10 hold-body movements. The main difficulty
of this task lies in the tight target region, where several
bodies need to be placed. As both Adaptive PDDLStream
and eTAMP are uninformed about this potential congestion
beforehand, they must identify this constraint through trial and
error. During binding search, the consistent value estimation
of each decision is critical for this delayed-reward case. Fig. 5
shows the time consumption of Adaptive PDDLStream and
eTAMP in solving the cooking task. With problems with
fewer bodies, eTAMP costs slightly more time than Adaptive.
On larger numbers of bodies, eTAMP outperforms Adaptive
PDDLStream by using optimal tree search, especially when
the feasible space gets tighter (see Fig. 3 (iv)).

C. The regrasping task

In this task, the robot should transport a cuboid body from
the drawer to the shelf. To realize a real-world setting, we
consider a fixed camera that has to be queried for object pose
before it can be grasped. The robot can choose between 5
grasping directions to the body: along the normal vectors of
the top surface and four side surfaces. The cuboid body at

1 2 3 4 5
0

200

400

600

800

2.43 4.76 17.94

700 700

3.94 7.28 26.04

109.25

689.84

bodies

Adaptive
eTAMP

Fig. 5: Average planning cost (seconds) of Adaptive PDDLStream
and eTAMP in the cooking task. A time cost of 700 means none
solutions are found within the time budget.

its initial pose is limited to top grasping by its surroundings,
while it must be grasped from the side while being placed
on the shelf, as depicted in Fig. 4. This task is challenging
for skeleton planning since a regrasping behavior must be
composed by planners based on only elemental operators.
Otherwise, the problem cannot be solved. Moreover, this task
is geometrically difficult. Even if a correct skeleton is given,
the planner must search the hybrid decision space (discrete
grasping directions and continuous body poses) for feasible
bindings. The average time cost of eTAMP for solving this task
is 235.63 s. In comparison, Adaptive PDDLStream is unable
to find any solution within the time budget.

Remarks: Our empirical evaluation shows the effectiveness
of the proposed eTAMP algorithm in solving challenging,
multi-stage manipulation tasks. Whereas the most competitive
baseline in the literature fails to scale to increasing numbers
of decision steps, our algorithm trades off slightly higher
planning time in simple scenarios for high effectiveness when
multi-object and multiple actions are in place. The proposed
seamless combination of symbolic top-k planning with streams
for searching alternative skeleton plans, with the optimality of
PW-UCT, leads to a powerful algorithm that can handle the
combinatorial complexity of long-horizon manipulation tasks.

VII. ACKNOWLEDGEMENT

G. Chalvatzaki’s work is funded by the EN DFG Programme
iROSA (CH 2676/1-1).

VIII. CONCLUSION

We propose eTAMP as a general-purpose planner of robot
manipulation tasks with long horizons that demand symbolic
sequencing of operators and binding search of motion pa-
rameters under geometric constraints. eTAMP addresses the
difficulty of incomplete domain in task planning by using
symbolic top-k planning for diverse backup skeletons. It inte-
grates a uniform tree search method for the extended decision
space based on UCB and PW that allow global convergence
to optimal plans, in spite of the stochastic transition dynamics
during planning. The empirical results reveal that our ap-
proach outperforms the existing state-of-the-art PDDLStream
algorithm, especially in problems where alternative skeletons

are indispensable. We attribute the capability of eTAMP for
solving long-horizon tasks to the proposed hierarchical planner
structure over actions and skeletons, and the scalability of
UCT to large decision sequences (empirically proved in [28]).
In future work, we will explore a more informative sampling
method for stream generators to improve binding efficiency.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task
and motion planning in the now,” in 2011 IEEE In-
ternational Conference on Robotics and Automation,
pp. 1470–1477, IEEE, 2011.

[2] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Rus-
sell, and P. Abbeel, “Combined task and motion plan-
ning through an extensible planner-independent interface
layer,” in 2014 IEEE international conference on robotics
and automation (ICRA), pp. 639–646, IEEE, 2014.

[3] C. Weber and D. Bryce, “Planning and acting in incom-
plete domains,” in Proceedings of the International Con-
ference on Automated Planning and Scheduling, vol. 21,
2011.

[4] H. H. Zhuo, T. A. Nguyen, and S. Kambhampati, “Refin-
ing Incomplete Planning Domain Models Through Plan
Traces,” in IJCAI, pp. 2451–2458, 2013.

[5] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E.
Kavraki, “Incremental Task and Motion Planning: A
Constraint-Based Approach.,” in Robotics: Science and
systems, vol. 12, p. 00052, Ann Arbor, MI, USA, 2016.

[6] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling,
“PDDLStream: Integrating symbolic planners and black-
box samplers via optimistic adaptive planning,” in Pro-
ceedings of the International Conference on Automated
Planning and Scheduling, vol. 30, pp. 440–448, 2020.

[7] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,
L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task
and motion planning,” arXiv preprint arXiv:2010.01083,
2020.

[8] M. Katz, S. Sohrabi, O. Udrea, and D. Winterer, “A novel
iterative approach to top-k planning,” in Proceedings of
the International Conference on Automated Planning and
Scheduling, vol. 28, 2018.

[9] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling,
“Stripstream: Integrating symbolic planners and blackbox
samplers,” arXiv preprint arXiv:1802.08705, 2018.

[10] N. Shah, D. K. Vasudevan, K. Kumar, P. Kamojjhala,
and S. Srivastava, “Anytime integrated task and motion
policies for stochastic environments,” in 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 9285–9291, IEEE, 2020.

[11] M. Toussaint, “Logic-Geometric Programming: An
Optimization-Based Approach to Combined Task and
Motion Planning.,” in IJCAI, pp. 1930–1936, 2015.

[12] Z. Kingston, A. M. Wells, M. Moll, and L. E. Kavraki,
“Informing multi-modal planning with synergistic dis-
crete leads,” in 2020 IEEE International Conference on

Robotics and Automation (ICRA), pp. 3199–3205, IEEE,
2020.

[13] D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins, “PDDL-
the planning domain definition language,” 1998.

[14] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Bren-
ner, and B. Nebel, “Semantic attachments for domain-
independent planning systems,” in Towards service
robots for everyday environments, pp. 99–115, Springer,
2012.

[15] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling,
“Sampling-based methods for factored task and motion
planning,” The International Journal of Robotics Re-
search, vol. 37, no. 13-14, pp. 1796–1825, 2018.

[16] M. Helmert, “The fast downward planning system,” Jour-
nal of Artificial Intelligence Research, vol. 26, pp. 191–
246, 2006.

[17] A. Torralba, V. Alcázar, D. Borrajo, P. Kissmann,
and S. Edelkamp, “SymBA*: A symbolic bidirectional
A* planner,” in International Planning Competition,
pp. 105–108, 2014.

[18] D. Speck, R. Mattmüller, and B. Nebel, “Symbolic top-
k planning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, pp. 9967–9974, 2020.

[19] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo
planning,” in European conference on machine learning,
pp. 282–293, Springer, 2006.

[20] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree
search,” arXiv preprint cs/0703062, 2007.

[21] B. Kim, K. Lee, S. Lim, L. Kaelbling, and T. Lozano-
Pérez, “Monte Carlo tree search in continuous spaces us-
ing Voronoi optimistic optimization with regret bounds,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 9916–9924, 2020.

[22] S. M. LaValle et al., “Rapidly-exploring random trees:
A new tool for path planning,” 1998.

[23] C. Dellin and S. Srinivasa, “A unifying formalism for
shortest path problems with expensive edge evaluations
via lazy best-first search over paths with edge selectors,”
in Proceedings of the International Conference on Auto-
mated Planning and Scheduling, vol. 26, 2016.

[24] D. Auger, A. Couetoux, and O. Teytaud, “Continuous
upper confidence trees with polynomial exploration–
consistency,” in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pp. 194–209, Springer, 2013.

[25] R. Coulom, ““elo ratings” of move patterns in the game
of go,” ICGA journal, vol. 30, no. 4, pp. 198–208, 2007.

[26] G. M. J. Chaslot, M. H. Winands, H. J. V. D. HERIK,
J. W. Uiterwijk, and B. Bouzy, “Progressive strategies for
Monte-Carlo tree search,” New Mathematics and Natural
Computation, vol. 4, no. 03, pp. 343–357, 2008.

[27] E. Coumans and Y. Bai, “Pybullet, a python module
for physics simulation for games, robotics and machine
learning,” URL http://pybullet. org.

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

https://ieeexplore.ieee.org/abstract/document/5980391?casa_token=foT-gZIxEhkAAAAA:emN6zxnTEA0XTpzCO8Igy7c_ixGnF_Ef27_Vn1ZJjkjnm-AQ5bpH11uO_FEsuZohtXvBirtB_HE
https://ieeexplore.ieee.org/abstract/document/5980391?casa_token=foT-gZIxEhkAAAAA:emN6zxnTEA0XTpzCO8Igy7c_ixGnF_Ef27_Vn1ZJjkjnm-AQ5bpH11uO_FEsuZohtXvBirtB_HE
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://ojs.aaai.org/index.php/ICAPS/article/view/13463
https://ojs.aaai.org/index.php/ICAPS/article/view/13463
http://sagarmatha.eas.asu.edu/camera-macro.pdf
http://sagarmatha.eas.asu.edu/camera-macro.pdf
http://sagarmatha.eas.asu.edu/camera-macro.pdf
http://www.roboticsproceedings.org/rss12/p02.pdf
http://www.roboticsproceedings.org/rss12/p02.pdf
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/2010.01083
https://arxiv.org/abs/2010.01083
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17749/16971
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17749/16971
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1904.13006
https://arxiv.org/abs/1904.13006
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://ieeexplore.ieee.org/document/9197545
https://ieeexplore.ieee.org/document/9197545
https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/viewFile/754/1101
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/viewFile/754/1101
https://journals.sagepub.com/doi/10.1177/0278364918802962
https://journals.sagepub.com/doi/10.1177/0278364918802962
http://gki.informatik.uni-freiburg.de/papers/helmert-jair06.pdf
https://people.cs.aau.dk/~alto/papers/Planner-SymBA14.pdf
https://people.cs.aau.dk/~alto/papers/Planner-SymBA14.pdf
http://gki.informatik.uni-freiburg.de/papers/speck-etal-aaai2020.pdf
http://gki.informatik.uni-freiburg.de/papers/speck-etal-aaai2020.pdf
http://scholar.google.de/scholar_url?url=https://link.springer.com/content/pdf/10.1007/11871842_29.pdf&hl=en&sa=X&ei=EYE6YO_dKKXcsQK84KbAAg&scisig=AAGBfm0CK5OuFyix91nTfDud8W5rSy1lSw&nossl=1&oi=scholarr
http://scholar.google.de/scholar_url?url=https://link.springer.com/content/pdf/10.1007/11871842_29.pdf&hl=en&sa=X&ei=EYE6YO_dKKXcsQK84KbAAg&scisig=AAGBfm0CK5OuFyix91nTfDud8W5rSy1lSw&nossl=1&oi=scholarr
https://arxiv.org/pdf/1408.2028.pdf
https://arxiv.org/pdf/1408.2028.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/6546/6402
https://aaai.org/ojs/index.php/AAAI/article/view/6546/6402
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf
https://arxiv.org/abs/1603.03490
https://arxiv.org/abs/1603.03490
https://arxiv.org/abs/1603.03490
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_13
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_13
https://link.springer.com/chapter/10.1007/978-3-642-40988-2_13
https://hal.inria.fr/inria-00149859/document
https://hal.inria.fr/inria-00149859/document
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3015&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3015&rep=rep1&type=pdf

G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of Go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484–489, 2016.

https://web.iitd.ac.in/~sumeet/Silver16.pdf
https://web.iitd.ac.in/~sumeet/Silver16.pdf

Limits and Possibilities of Multi-Goal

Task-Motion Planning

Stefan Edelkamp, AI Center, CTU Prague

(joint work with Erion Plaku and Jan Faigl)

Abstract. Multi-Goal Motion Planning is a

robotic TSP where it is necessary to satisfy

motion constraints and physical limitations of

real robotic systems, which range from data

collection planning such as environment

monitoring, human-robot collaborations,

manipulation tasks, but also radiation therapy

and robotic surgery.

We consider model-free approaches that apply

to any vehicle model. In this work we look

recent, current and blue sky ideas to advance

multi goal task-motion planning. This way we

study its limits and possibilities, working

towards challenges and opportunities.

Introduction

Sampling-based motion planning has seen

tremendous improvements in terms of

scalability and expressiveness. However, the

integration of task and motion planning still

poses several open challenges.

Consider for example the scenario, where a

team of robots must coordinate their

movements and their task allocations to

complete a mission as soon as possible.

Different tasks have different durations and

resource consumption, and each task must be

performed within one of the available time

windows. Such a challenging scenario requires

temporal reasoning in addition to finding the

best path between task locations. We address

these challenges by combining sampling-based

motion planning with temporal task planning.

With the technology we have developed over

the years we efficiently generate and execute

plans for long-term tasks of several moving

robots in rough 3D environments with

obstacles, fast enough even for real-time

simulations (see Figure 1).

The robots, the environment model and the

planning task specification can be adapted non-

intrusively, essential for solution prototypes in

many applications from surveillance with

drones, via logistics applications to service

robotics.

Multi-Goal Motion Planning (MGMP) is a ro-

botic TSP where it is necessary to satisfy motion

constraints and physical limitations of real ro-

botic systems [1] that range from data collection

planning such as environment monitoring [2],

manipulation tasks [3], human-robot collabora-

tion [4], but also radiation therapy [5] and robo-

tic surgery [6]. We consider model-free approa-

ches that work with any vehicle model.

Figure 1. Involved 3D Environments for Multi-Goal

Motion Planning.

Multi-Goal Task-Motion Planning combines

task planning with multi-goal motion planning

and touches many involved research questions,

e.g., handling the dynamics of the robot,

avoiding existing obstacles, visiting multiple

waypoints, performing tasks, all this while

dealing with ordering time windows, deadlines,

and resource constraints (see Figure 3).

For a robot in a real-world environment there

are frequent task requests like visiting goals (in

the best possible order) to minimize travel time

for inspecting an object, before considering

another. These temporal requests are attached to

the physical world and must be reflected in the

motion planning of the robot. For complex

operations on a robot, the reachability of one

goal via path planning is not enough, as many

goals in the form of waypoints must be visited

for completing a plan. Moreover, robots have

tasks to perform at each waypoint, that take time

and require resources.

Figure 2. Inspection and Temporal Multi-Goal Motion

Planning.

While there are automata-based solutions for

finding plans for several goals, by the

exponential growth in the automata

representation, they do not scale well.

Engineered solutions offer better results as the

performance of our prototype system shows.

Ever since there have been an attempt to solve

the integrated task and motion planning

problem for complex robots.

We join sampling-based motion planning with

guidance, established by heuristics that are

found through problem abstractions. The

challenge is to combine the exploration in the

continuous space of valid trajectories, imposed

by the dynamics of the robot’s nonlinear, non-

holomorphic, and hybrid system specification,

and the discrete space that is associated with the

task planning. While there is an alternative to

include motion planning modules in the

preconditions of an action, our contribution is

iterating a loop of solving the abstraction to

guide the expansion of the sampling-based

motion tree to generate valid trajectories.

State-of-the-Art

Combinatorial optimization is an essential part

of the robot motion planning problem where the

TSP is the fundamental formulation to

determine a cost-efficient plan for robotic

systems. The TSP is well-studied problem with

available optimal solvers such as [7] with

efficient cutting-plane techniques, Dynamic

Programming approaches [8, 9], efficient

heuristic [10], soft-computing techniques such

as genetic algorithms [11], ant colony

optimization [12], neural networks for routing

problems, [13], and also combinatorial

metaheuristics [14] such as simulated annealing

[15], variable neighborhood search (VNS) [16]

and greedy randomized adaptive search

procedure (GRASP) [17] both with several

variants, modifications, and improvements [18,

19].

Many generalizations of the TSP have been

proposed motivated by applications fields such

as logistics, where various formulations of the

Vehicle Routing Problem (VRP) [20] play the

essential role [21] but recently also motivated

by the deployment of electric vehicles [22].

Although the proposed research might overlap

with other routing problems, it is primarily

motivated by data collection missions and

robotic scenarios, where the fundamental

challenge is arising from the need to reason

about the travel cost to regions and not to single

points of interest.

Thus, the TSPN and GTSP with Neighborhoods

(GTSPN) [23] are of our particular interest as

they combine routing with continuous

optimization. Besides, depending on the

application context, the Sequence Dependent

TSP (SDTSP) [24] is also highly relevant, e.g.,

for drone delivery optimization with payload

dependent battery consumption addressed by

the Mixed-Integer Linear Programming (MILP)

in [25].

The TSPN stands to find a cost-efficient plan on

how to visit each of the given sensing regions

that form the respective neighborhoods.TSPN is

APX-hard [26], and approximation algorithms

have been proposed for restricted variants of the

neighborhoods such as disjoint unit disks that

are arbitrarily connected [27], disjoint convex

fat neighborhoods [28]. It has been recently

been tackled by hyperplanes in the d-

dimensional Euclidean space [29] and

subproblem optimization [30]. The Mixed-

Integer Non-Linear Programming (MINLP) is

computationally intractable [31].

Therefore, heuristics are studied for the disk-

shaped neighborhoods that attract the attention

of the community as the Close Enough TSP

(CETSP) [32] addressed by the concept of

supernodes (region samples) [33]. Existing

approaches to the CETSP are surveyed in [34],

where the best results are reported for the

GTSP-based solution with high computational

requirements (in hours).

Contrary to that, high-quality solutions with low

computational requirements are reported [35]

for the Growing Self-Organizing Array

(GSOA) [36] based on an online sampling of the

regions during the unsupervised learning of the

sequencing part of the problem. New best

solutions of the existing benchmarks [34] are

found in a fraction of second, which

significantly outperforms GTSP-based

approaches [36].

The GTSP is reported to be solved optimally

using efficient branch-and-cut scheme up to 442

targets organized into cluster [37]. The existing

approximation algorithms [38] are reported to

guarantee low solution quality [39] and

heuristic solutions have been proposed [40, 41]

based on hybrid approach [42], memetic

algorithm [39], and adaptive large

neighborhood search [43].

A further generalization of the discrete GTSP to

a continuous neighborhood called the GTSP

with Neighborhoods (GTSPN) [23] has been

proposed to overcome limitations of the

continuous and discrete formulations of the

TSPN [44]. Instances of the GTSPN are

motivated by tasks of redundant robotic

manipulators, inspection with multiple views,

and surveillance missions have been addressed

by the genetic algorithm [23] that has been

outperformed by fast solvers based on the

decoupled approach and GSOA-based

construction heuristic [45].

The important generalization of the TSP-like

formulations to address practical needs of

robotic planning is the class of TSP with Profits

[46], specifically Price-Collecting TSP

(PCTSP) [47] and Selective TSP [48] also

called the Orienteering Problem (OP) [49]. The

PCTSP with Neighborhoods (PCTSPN) has

been introduced in [50] as a suitable problem

formulation for data collection planning for

cases when a combination of sensor

measurements can lead to information being

subadditive or superadditive, and visiting the

most profitable sensors can save travel cost by

avoiding less profitable ones. The heuristic

solution [50] has been surpassed by

unsupervised learning [51] that has been further

generalized to problems with spatially

correlated sensors measurements [52, 53]. The

OP formulation is suitable for scenarios with

additive rewards and limited operational time

[54] to determine a tour with the cost that does

not exceed the limited travel budget to visit the

most rewarding locations. Existing

combinatorial approaches [55, 56] for the

regular OP have been generalized to address

limitations arising from robotic systems such as

fuel consumption [57] and non-holonomic

constraints [58, 59]. The generalization

allowing to exploit a non-zero sensing range has

been introduced as the OP with Neighborhoods

(OPN) [60] and addressed by unsupervised

learning [61] later generalized for spatially

correlated measurements [53] including multi-

vehicle scenarios [62, 63].

The discrete variant of the OPN has been

introduced as the Set OP (SOP) in [64] and

addressed by the Mixed-Integer Programming

(MIP) and a matheuristic solution algorithm.

The MIP [64] is outperformed by the novel ILP

formulation introduced in [65], but therein

proposed less demanding VNS-based solver

provides competitive solutions. The current

advancements on multi-goal motion planning

are limited to model-based planning with

curvature-constrained path using the Dubins

vehicle model or Bezier curves in an

environment without obstacles [66]. Besides,

the existing theoretical results are suitable only

for scenarios without obstacles, and only for 2D

cases, which has limited applicability.

Objectives and Methodology

The general vision is to steer the robots of the

21st century. We generalize the results in multi-

goal motion planning to more complex vehicle

models, and to combine motion planning with

task planning for longer-term autonomy.

Specifically, we are targeting time-optimal

planning as the necessary building blocks for

multi-goal motion planning. Furthermore, we

investigate the extension towards scenarios with

obstacles, where we plan to leverage the current

achievements with a discretized environment

where search-based planning techniques with

performance bounds can be utilized. Model-free

frameworks and the integration of task and

motion planning is of highest interest for the

research communities in planning and robotics.

There is a rising number of contributions and

workshops (e.g., at RSS, IROS ICRA, AAAI,

and IJCAI) dedicated to this topic, but the

problems are widely considered being

unsolved. With our advances in model-free

multi-goal motion planning with obstacles [67,

68, 69] we touched the tip of the iceberg,

leading to wider range of robot controllers that

is relevant also for reducing cost for complex

robot missions in otherwise hardly accessible

terrains.

Once the waypoints have been computed (itself

a hard problem that we have approximated), the

advance in multi-goal motion planning has

immediate effects to the so-called inspection or

surveillance problem, where objects must be

examined by the robot for the presence of

defects, such as oil leakage in underwater

pipelines. We combine our scalable motion

planning framework with fast discrete solvers

and PDDL planners. The integrated approach of

growing a motion tree of valid trajectories with

planner guidance computed at its leaves is

original and novel. By the higher efficiency of

the robot’s path planning, simulation and

waypoint finding, task-motion planning

problems are now ready to be solved.

We extend an existing framework for solving

physical routing problems. Besides the standard

setting of finding valid trajectories for a given

robot model with nonlinear dynamics, in a mesh

environment with obstacles it will support

• temporal task planning, with tasks to be

performed only within certain time windows;

• multiple robots, computing motion trajectories

that do not overlap;

• precedence constraints on waypoints

extending routing problems to respect colors;

• resource reasoning such including capacity

constraints for picking up larger or heavier

objects;

• energy consumption reasoning such as

multiple recharging and facility location;

• pickup and delivery constraints for moving

objects between waypoints;

• inspection problem solving, generating a

reduced set of waypoints;

• safe-emergency planning to have a backup

plan if the overall plan fails.

The practical output is an integrated task and

motion planning software module for robots in

simulation and the real-world usable for a wide

range of applications and robots.

Limits and Possibilities

In the following we characterize possibilities

and limits in multi-goal task-motion planning.

Multi-Robot Multi-Goal Task-Motion

Planning

One natural task is to extend our model-free

approach [67] to several robots to visit multiple

waypoints, and still be able to avoid unwanted

behavior like deadlocks and collisions, i.e.,

solving complex multi-robot multi-goal

scenarios. The solution is inspired and provides

add-ons to multi-agent systems. We map the

problem of every two robots having non-

intersecting tours to approximate string

matching, to be solved with dynamic

programming.

Therefore, we look at multi-goal task-motion

planning with multiple agents, as an extension

MGTMP based on solving physical TSPs with

one agent. There are early studies helping

several robots in achieving their individual

goals while minimizing both congestion and

overall travel time [70].

First model-free solutions were given by [71]

the discrete problem in the framework that has

to be solved for each leaf node in the motion tree

to guide its expansion is a multi-agent path-

finding problem.

Multi-Robot Multi-Goal Task-Motion

Planning for the Simulation Framework

Based on the precursor work [70, 49] and initial

studies on the physical VRP in simplified

settings [72, 73], we have work on a flexible and

efficient framework solution to solve the

problem.

In a cluttered or narrow environment of the

randomized roadmap robots have let others

pass, which induces a lot of maneuvers and even

without motions itself is an NP-hard problem

(think of the sliding-tile puzzle, with the tiles

being robots). The derived solutions including

robot motions is implemented in the framework.

Multi-Robot Multi-Goal Task-Motion

PDDL Planning

Imposing the more general STRIPS formalism

[74] with state-dependent action inter-

dependencies can cover multi-robot scenario, at

least for the abstract problem assigns cost 1 is

assigned to each action. For faster prototypes

and the integration of more complex tasks with

motions, we push forward the use of the PDDL

language to include domain-independent

problem solvers in multi-robot multi-goal

motion planning problems.

Multi-Robot Multi-Goal Task-Motion

Planning on (Simulated) Robots

The real challenge is to lift the results to a

realistic robot scenario, with different kinds of

robots solving together one problem, as, e.g.,

imposed in DARPA SubT or similar challenges

serve as benchmarks for this task. As input

comes in with point clouds, this leads to

different kinds of maps.

The problem iss et up and we provide an

alternative prototypical implementation for

solving the discrete multi-agent pathfinding

problem that is based on dynamic

programming, which optimally resolve

conflicts for a deterministic or randomized

selection of vehicle pairs. The robot motion

planning simulation framework integrates

individual solvers and (multiagent) PDDL

planning. We expect the acquisition of PDDL

models compatible with state-of-the-art AI

planners, to assist with multiagent planning and

software integration, and maps, e.g., generated

from the point clouds of SubT.

Temporal and Metric Multi-Goal Task-

Motion Planning

Here we impose additional time windows

constraints for reaching the goals, which is very

important for real-world logistics e.g., for

warehouses [75].

The temporal dimension of the task in form of

scoring goals by the time point for achieving

them is of high industrial impact, as projects

with robots involved need to be scheduled and

meet timing constraints. This has influenced the

development of temporal planners. There are

solutions to the multi-robot path-finding

problem, e.g., applied by Amazon Robotics

(previously Kiva Systems) that operate on a grid

of robot locations. By the lack of modelling

dynamics, however, this limits the available

speed of the vehicles substantially.

Thinking on logistics and resource handling this

leads to more complex task-motion vehicle

routing problems, that have been studied for

decades in discrete form in OR [76], and if can

be extended to motion simulations of robots in

a virtual (or real) environments.

Besides multiple vehicles, time windows to be

met, we have considered pickup- and delivery

as well as capacity and priority constraints of

homogeneous and heterogeneous vehicle fleets.

We envision to consider solving the multimodal

so-called tourist travelers’ problem or other

types of the orienteering problem [49, 55, 56]

for robots with motion dynamics. Here we have

a tourist spending some days in the city. Starting

at the hotel(s) he will use public and individual

transport while increasing the number of sites

that respect their opening hours.

Traveling Salesman Problem with Time

and Resources

Time is market; this means that visiting a

waypoint in the plan is scored only in some time

windows during the simulation, otherwise the

payoff is reduced.

The temporal motion planning problem,

however, is very challenging, as the complex

dynamics of the robot may falsify suggested

temporal plans during plan execution.

One of the discrete problems to solve is the TSP

with time windows, which is even harder than

the strongly NP-hard standard TSP problem

[75] We have compared the working of a

general temporal planner with specialized

TSPTW solvers based on Branch-and-Bound

and Monte-Carlo Tree Search. Similary, refined

resource handling and reduced energy

consumption are two further objective in

extending the motion planning approach that

have to be addressed.

Temporal and Metric PDDL Planner

Integration

Fox & Long’s PDDL2.1 [77] allows expressing

numeric and temporal task planning and

temporally extended goals. This enables

resource handling as needed in logistic context

of goods to be delivered.

With the help of planners capable of handling

this larger level of expressiveness, we have

derived some initial results shown that these

more general solution methods are sufficiently

competitive with the state-of-the-art in domain-

dependent problem solving.

The problems are relevant for indoor logistics in

warehouse and production systems of smart

factories. For including timetables and time-

dependent shortest path search in precursor

work we have looked at monorail systems, cast

as public transport for the robots.

Application to Logistics

Besides the obvious application in warehouses,

there is a large list of challenges in logistic

domains, that request motion for completing a

given task. The inclusion of time and resource

handling in combination of moving agents is a

game changer for which we have derived first

solutions with pickup and deliveries using

priced TSPs in the discrete abstraction [78].

There is a recent shift of attention from SubT to

logistics that highlight the relevance. In this

task, we connect our approaches to these

application.

We contributed Capacitated TSP(TW/PD)

solvers with APIs to the framework and metric-

temporal PDDL-type planners, with an

interface between the two to be used for

communication. We work on optimal temporal

solving and in multiagent robot solutions.

We provide logistic scenarios and implement

the integration to the framework, setting up the

scenarios and their evaluation in order to

conduct a wider range of experiments and come

up with vehicle routing problem solutions as

obtained multiagent robot demonstrator.

Inspection Problem Solving

Due to its industrial relevance, a holy grail in

advanced robotics is solving the inspection

problem [79], namely, to steer one (or a fleet of)

autonomous vehicles (e.g., in an underwater

mission) in order to inspect the surface of an

object with specialized sensors. 3D trajectory

planning requires advanced geometric

reasoning (e.g. efficient collision detection,

skeletonization algorithms).

For the simulation we used CGAL [80] and

game engines [81]. While we have derived

some initial results to the problem in 2D and 3D,

inspecting objects from the in- and outside1, the

problem induces many more facets than we

have been considering so far.

Refining 3D Solution on Meshes to

Include Pyramid Visibility Constraints

For example, one would love to solve physical

art gallery problems, namely computing

waypoint locations for taking a larger sequence

of 2D/3D in snapshots. Alternatively, followed

by multi-goal motion planning, the task is to

compute a low-cost tour to visit the waypoints,

while limiting the range of the camera with

pyramid visibility constraints and continuously

taking pictures is even more ambitious.

Solving Physical Watchman Routing

Problems and PDDL Integration

We propose a robust and efficient inspection of

the entire workspace in a watchman route based

on automatically generated waypoints. The

framework design includes several relevant

technologies and refined algorithms such as

medial axis transformation, shortest path

approximation, and Monte-Carlo search for

finding tours [81].

One simulation of the robot runs on Unity,

while data processing executed in a Python

server. The measured inspection coverage of the

workspace on random terrains was at least

99.6%. We work on a framework and PDDL

planner integration.

Solving Multi-Robot Inspection

Problems

The real quest, however, is to use not only one

but several robots to join in and solve the

inspection problem. There are challenges like

task-sharing avaliable in coving space in terms

of increased visibility of the robots due to their

limit sensor range.

As stated above, we have integrated the

computational geometry algorithm library

(CGAL) to the solver to support advanced mesh

operations like Boolean intersections and

skeletonizations. We look at scenarios to

execute experiments in 2D and 3D in artificial

maps and ones from the SubT DARPA

challenge. The PhDs concentrate on APIs for

discrete solvers for scalable motion planning

and for hooks for integrating inspection with

PDDL planning.

Multi-goal Planning with Safe

Emergency Trajectories

We investigate motion planning generalization,

where additional mission constraints invoke a

backup planning problem to satisfy the mission

constraints. In particular, we address multi-goal

planning with a safe emergency trajectory. The

main challenge is to ensure at least one safe

emergency plan for each point of the requested

multi-goal trajectory to navigate to some

designated location in a sudden state of

emergency. A solution to such a mission

constraint, one needs to solve a motion planning

problem (finding the safe emergency trajectory)

inside the multi-goal motion planning (finding

multi-goal trajectory to perform the requested

task) that further increasing the computational

complexity of the MGTMP.

The addressed problem of safe task-motion

planning calls for plans with the guaranteed

trajectory to navigate to one of several

designated spots at each point of the plan

execution. Such a scenario can be reaching a

landing an airplane, reaching a hospital, a

battery location, or a populated area. Automated

planning, however, often restricts to static

environments, where only the acting agent can

change its actions. Exogenous events may result

in having to switch to emergency plans. Such

safety constraints that require being able to

return to one of several designated secure areas

influence plan quality so that the plan

generation for one agent has to take into a plan

in a limited set of trajectories.

We seek an approach for safe task-motion

planning for a case of emergency. Planning in

static environments accounts for generating

optimized plans, for instance, for their length,

makespan, or action cost. However, the

environment is rarely static as exogenous events

might occur without the consent of the agent.

Therefore, safe task-motion planning needs to

be “prepared” for sudden events requiring an

emergency plan to be ready and available

immediately when the events happen. We

consider safe emergency multi-goal task-

motion planning with resources in the presence

of obstacles.

We aim at a full-fledged solution for high-

dimensional robotic systems with nonlinear

dynamics and non-holonomic constraints visit

all goal regions fast in suitable cost-minimizing

order in unstructured, complex environments

and efficiently computes collision-free,

dynamically-feasible, low-cost, energy-

efficient, and safe trajectories that enable the

robot to satisfy the task specification.

Emergency-Aware Multi-goal

Planning.

We leverage previous work [82] where multi-

goal planning is employed in surveillance

planning with safe emergency landing

trajectories. The crucial property of safe landing

is a minimum safe altitude of the vehicle that

can be found by trajectory planning to nearby

airports using sampling-based motion planning

such as RRT* [83]. A trajectory is considered

safe if the vehicle is at least at the minimum safe

altitude at any point of the trajectory.

Although [82] provides a solution of the multi-

goal planning with a safe emergency landing

guarantee, it is limited because it strongly

depends on the precomputed map of the safe

altitude for vehicle gliding in the total loss of

thrust using the gliding model. Besides, it is

assumed the vehicle moves only above the

terrains and not, e.g., under a bridge, and it is

limited to planning in 2D.

Therefore, we plan to generalize the safe

landing trajectory to a safe emergency trajectory

without assuming the motion only above the

terrain (obstacles). We further propose to

generalize emergency trajectories to multi-

modal trajectories to address emergencies

caused by faults with different impacts on the

motion capabilities, e.g., partial loss of thrust.

Risk-aware Multi-goal Planning

We generalize existing emergency aware multi-

goal planning with a relaxed notion of the safe

emergency trajectory guarantee. In [82], the

target sites need to be at a safe altitude that

might not always be possible. Hence, reaching

such a location includes a possible risk

depending on a failure type. The risk due to

possible crashes can be based on the economic

evaluation and casualties [84, 85]. A precise

impact location cannot be predicted, and a

stochastic model has to be used in the case of

uncontrolled fall of the aircraft [86].

Possible risk to people, ground vehicles, and

aircraft for small UAVs ground risk map is

proposed in [84], and three possible events are

discussed in [85], i.e., loss of control with an

uncontrolled crash on the ground; impact with

someone; and fatal injury to the hit person. We

propose to address the risk-awareplanning using

the existing approach of risk map assessment

[87] to find the trajectory with the minimal risk

[88]. However, the existing approaches are

limited to a fixed flight altitude. Therefore, we

propose to extend the existing approaches and

generalize them to various flight levels and

speeds.

Risk-aware Multi-goal Planning in

Dynamic Environments

We plan to generalize the approaches being

developed towards dynamic environments.

The proposed generalization to risk-aware

multi-goal planning is ambitious, we plan ample

time for it. We plan to address the dynamic

environments by the concept of the life-long A*

[89] and RRTX [90] to achieve computationally

feasible generalization towards dynamic

environments. We maximize the effort to

generalize the existing risk-aware and safe

emergency guarantee towards different types of

failures for aerial vehicles and generalize the

approaches to other types of vehicles and

scenarios as those relevant for ground vehicles.

We plan to empirically evaluate our combined

discrete search and sampling-based motion

planning approach in a set of 3D scenarios. We

define the setting for the problem and work on

a solution in the framework. We work on the

generalization of the existing approach [82]

towards risk-aware planning in dynamic

environments.

Conclusion and Discussion

Integrated task and motion planning is essential,

as robot motion planning alone does not serve

long term goals, and task planning alone cannot

deal with the intrinsic challenges of robot

motion. The world is going to become more and

more populated with robots, and our solution

has a tremendous impact on their abilities to

plan.

The scientific contribution of multi-goal motion

planning aims to provide optimized solution of

routing problems with continuous model-free

robotic applications. The primary motivation is

planning, where the current solutions rely on

sampling continuous domains into a finite set of

values being addressed as variants of the TSP.

Solving the inspection problem certainly is a

holy grail and wrt applications like finding oil

leakages in underwater pipes a million dollar

buissiness. The ultimate motivation, however,

is to produce the software that steers the next

generation of autonomous robots, a surplus

towards long-term autonomy.

The optimal solution of the discretized problem

does not guarantee an optimal solution to the

original problem. Furthermore, heuristics

usually provide better solutions, however,

without any solution quality estimates. We aim

to develop the fundamental blocks to assess the

solution and provide quality guarantee. The

model-free solvers are general enough to open a

wide range of possible applications.

The established algorithmics foster further

research in challenging optimization problems,

and novel computational techniques improve

scalability of nowadays and future algorithms to

solve large instances.

The research fertilizes the deployments of

robotic systems in various fields. Finally,

stability analysis, identifying stability regions,

and finding robust solutions under perturbations

are important steps towards applications with

dynamic and on-demand changes.

Figure 3. Established robotic systems for this research.

Figure 4. New robotic systems for this research.

CTU is experienced with complex robotic (see

Figures 3 and 4) systems with the current

highlight of the CTU-CRAS team in the

DARPA SubT Challenge.

Using our motion planning framework, we

perform research in simulation. On the other

hand, experimenting with real robotic systems

relies on hardware availability; however, the

walking robots and aerial vehicles are part of the

effort in the DARPA SubT Challenge.

Robotic arms are already available at CTU

within the Center for Robotics and Autonomous

Systems (CRAS). For execution plans on real

robots, however, we mostly use the robot

hardware infrastructure present of CTU. We

also have a 3D print of the Nibro-OS2X, the

humanoid robot from Univ. of Bonn, which will

directly participate from the improved multi-

goal task-motion motion planning.

References

[1] S. Alatartsev, S. Stellmacher, and F. Ortmeier,

“Robotic task sequencing problem: A survey,” Journal of

Intelligent & Robotic Systems, 80(2):279–298, 2015.
[2] M. Dunbabin and L. Marques, “Robots for

environmental monitoring: Significant advancements and

applications,” IEEE Robotics & Automation Magazine,

19(1):24–39, 2012.

[3] M. Saha, T. Roughgarden, J.-C. Latombe, and G.

S´anchez-Ante, “Planning tours of robotic arms among

partitioned goals,” International Journal of Robotics

Research, 25(3):207–223, 2006.
[4] H. Cai and Y. Mostofi, “A human-robot collaborative

traveling salesman problem: Robotic site inspection with

human assistance,” in American Control Conference

(ACC), 2016, pp. 6170–6176.
[5] B. Ye, Q. Tang, J. Yao, and W. Gao, “Collision-free

path planning and delivery sequence optimization in

noncoplanar radiation therapy,” IEEE Transactions on

Cybernetics, 49(1):42–55, 2019.
[6] E. Lobaton, J. Zhang, S. Patil, and R. Alterovitz,

“Planning curvature-constrained paths to multiple goals

using circle sampling,” in ICRA, 2011, pp. 1463–1469.
[7] D. Applegate, R. Bixby, V. Chv´atal, and W. Cook,

“CONCORDE TSP Solver,” 2003, URL

http://www.tsp.gatech.edu/
concorde.html, [cited 2020-03-20].
[8] M. Held and R. M. Karp, “A dynamic programming

approach to sequencing problems,” Journal of the Society

for Industrial and Applied Mathematics, 10(1):196–210,

1962.
[9] C. Chauhan, R. Gupta, and K. Pathak, “Survey of

methods of solving TSP along with its implementation

using dynamic programming approach,” International

Journal of Computer Applications, 52(4):12–19, 2012.
[10] K. Helsgaun, “An effective implementation of the

Lin-Kernighan traveling salesman heuristic,” European

Journal of Operational Research, 126(1):106–130, 2000.
[11] J.-Y. Potvin, “Genetic algorithms for the traveling

salesman problem,” Annals of Operations Research,

63(3):337–370, 1996.
[12] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant

system: optimization by a colony of cooperating agents,”

IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 26(1):29–41, 1996.
[13] J. J. Hopfield and D. W. Tank, ““Neural” computation

of decisions in optimization problems,” Biological

Cybernetics, 52(3):141–152, 1985.
[14] M. Gendreau and J.-Y. Potvin, “Metaheuristics in

combinatorial optimization,” Annals of Operations

Research, 140(1):189–213, 2005.
[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,

“Optimization by simulated annealing,” Science,

220(4598):671–680, 1983.
[16] N. Mladenovic and P. Hansen, “Variable

neighborhood search,” Computers & Operations Research,

24(11):1097–1100, 1997.
[17] T. A. Feo and M. G. C. Resende, “Greedy randomized

adaptive search procedures,” Journal of Global

Optimization, 6(2):109–133, 1995.
[18] P. Hansen, N. Mladenovic, and J. A. M. Perez,

“Variable neighborhood search: Methods and

applications,” Annals of Operations Research,

175(1):367–407, 2010.
[19] M. G. C. Resende and C. C. Ribeiro, Optimization by

GRASP: Greedy randomized adaptive search procedures,

Springer-Verlag, 2016.
[20] R. Banos, J. Ortega, C. Gil, A. L. M´arquez, and F. de

Toro, “A hybrid meta-heuristic for multi-objective vehicle

routing problems with time windows,” Computers &

Industrial Engineering, 65(2):286–296, 2013.
[21] L. Costa, C. Contardo, and G. Desaulniers, “Exact

branch-price-and-cut algorithms for vehicle routing,”

Transportation Science, 53(4):946–985, 2019.
[22] T. Erdelic and T. Caric, “A survey on the electric

vehicle routing problem: Variants and solution

approaches,” Journal of Advanced Transportation, 2019,

Art. ID 5075671.
[23] I. Gentilini, Multi-goal path optimization for robotic

systems with redundancy based on the traveling salesman

problem with neighborhoods, Ph.D. thesis, Carnegie

Mellon University, 2012.
[24] A. Alkaya and E. Duman, “A new generalization of

the traveling salesman problem,” Applied and

Computational Mathematics, 9(2):162–175, 2010.
[25] M. Torabbeigi, G. J. Lim, and S. J. Kim, “Drone

delivery scheduling optimization considering payload-

induced battery consumption rates,” Journal of Intelligent

& Robotic Systems, 97(3):471–487, 2020.
[26] S. Safra and O. Schwartz, “On the complexity of

approximating TSP with neighborhoods and related

problems,” Computational Complexity, 14(4):281–307,

2006.
[27] A. Dumitrescu and J. Mitchell, “Approximation

algorithms for TSP with neighborhoods in the plane,”

Journal of Algorithms, 48(1):135–159, 2003.
[28] M. de Berga, J. Gudmundssonb, M. J. Katzc, C.

Levcopoulosd, M. H. Overmarse, and A. F. van der

Stappen, “TSP with neighborhoods of varying size,”

Journal of Algorithms, 57(1):22–36, 2005.
[29] A. Antoniadis, K. Fleszar, R. Hoeksma, and K.

Schewior, “A PTAS for euclidean TSP with hyperplane

neighborhoods,” in Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 1089–1105,

Society for Industrial and Applied Mathematics, 2019.
[30] A. Clark, “A submodular optimization approach to the

metric traveling salesman problem with neighborhoods,”

in IEEE Conference on Decision and Control (CDC),

2019, pp. 3383–3390.
[31] I. Gentilini, F. Margot, and K. Shimada, “The

travelling salesman problem with neighbourhoods:

MINLP solution,” Optimization Methods and Software,

28(2):364–378, 2013.
[32] D. J. Gulczynski, J.W. Heath, and C. C. Price, “The

close enough traveling salesman problem: A discussion of

several heuristics,” in F. B. Alt, M. C. Fu, and B. L.

Golden, eds., Perspectives in Operations Research: Papers

in Honor of Saul Gass’ 80th Birthday, pp. 271–283,

Springer US, 2006.
[33] Bo Yuan, M. Orlowska, and S. Sadiq, “On the optimal

robot routing problem in wireless sensor networks,” IEEE

Transactions on Knowledge and Data Engineering,

19(9):1252–1261, 2007.
[34] W. K. Mennell, Heuristics for solving three routing

problems: Close-enough traveling salesman problem,

close-enough vehicle routing problem, sequence-

dependent team orienteering problem, Ph.D. thesis,

University of Maryland, 2009.
[35] H. Zheng, J. Guo, and C. Bai, “Self-organizing neural

network based mission planning for space unmanned

system,” in 2019 IEEE International Conference on

Unmanned Systems (ICUS), 2019, pp. 114–118.
[36] J. Faigl, “GSOA: growing self-organizing array -

unsupervised learning for the close-enough traveling

salesman problem and other routing problems,”

Neurocomputing, 312:120–134, 2018.
[37] M. Fischetti, J. J. Salazar Gonzalez, and P. Toth, “A

branch-and-cut algorithm for the symmetric generalized

traveling salesman problem,” Operations Research,

45(3):378–394, 1997.
[38] N. Garg, G. Konjevod, and R. Ravi, “A

polylogarithmic approximation algorithm for the group

steiner tree problem,” Journal of Algorithms, 37(1):66–84,

2000.

[39] B. Bontoux, C. Artigues, and D. Feillet, “A memetic

algorithm with a large neighborhood crossover operator

for the generalized traveling salesman problem,”

Computers & Operations Research, 37(11):1844–1852,

2010.
[40] D. Karapetyan and G. Gutin, “Lin–Kernighan

heuristic adaptations for the generalized traveling

salesman problem,” European Journal of Operational

Research, 208(3):221–232, 2011.
[41] K. Helsgaun, “Solving the equality generalized

traveling salesman problem using the Lin-Kernighan-

Helsgaun algorithm,” Mathematical Programming

Computation, 7(3):269–287, 2015.
[42] P. C. Pop, O. Matei, and C. Sabo, “A new approach

for solving the generalized traveling salesman problem,”

in M. J. Blesa, C. Blum, G. Raidl, A. Roli, and M. Sampels,

eds., Hybrid Metaheuristics, Lecture Notes in Computer

Science, 2010, pp. 62–72, Springer.
[43] S. L. Smith and F. Imeson, “GLNS: An effective large

neighborhood search heuristic for the generalized traveling

salesman problem,” Computers & Operations Research,

87:1–19, 2017.
[44] K. Elbassioni, A. V. Fishkin, and R. Sitters,

“Approximation algorithms for the Euclidean traveling

salesman problem with discrete and continuous

neighborhoods,” International Journal of Computational

Geometry & Applications, 19(02):173–193, 2009.
[45] J. Faigl, J. Deckerova, and P. Vana, “Fast heuristics

for the 3D multi-goal path planning based on the

generalized traveling salesman problem with

neighborhoods,” IEEE Robotics and Automation Letters,

4:2439–2446, 2019.
[46] D. Feillet, P. Dejax, and M. Gendreau, “Traveling

salesman problems with profits,” Transportation Science,

39(2):188–205, 2005.
[47] E. Balas, “The prize collecting traveling salesman

problems,” Networks, 19:621–636, 1989.
[48] G. Laporte and S. Martello, “The selective travelling

salesman problem,” Discrete Applied Mathematics,

26(2):193–207, 1990.
[49] B. L. Golden, L. Levy, and R. Vohra, “The

orienteering problem,” Naval Research Logistics (NRL),

34(3):307–318, 1987.
[50] G. Hollinger, U. Mitra, and G. Sukhatme,

“Autonomous data collection from underwater sensor

networks using acoustic communication,” in IROS, 2011,

pp. 3564–3570.
[51] J. Faigl and G. A. Hollinger, “Autonomous data

collection using a self-organizing map,” IEEE

Transactions on Neural Networks and Learning Systems,

29(5):1703–1715, 2018.
[52] J. Faigl and P. Vana, “Self-organizing map for data

collection planning in persistent monitoring with spatial

correlations,” in IEEE International Conference on

Systems, Man, and Cybernetics (SMC), 2016, pp. 3264–

3269.
[53] J. Faigl, “Data collection path planning with spatially

correlated measurements using growing self-organizing

array,” Applied Soft Computing, 75:130–147, 2019.
[54] F. Mufalli, R. Batta, and R. Nagi, “Simultaneous

sensor selection and routing of unmanned aerial vehicles

for complex mission plans,” Computers & Operations

Research, 39(11):2787–2799, 2012.
[55] A. Gunawan, H. C. Lau, and P. Vansteenwegen,

“Orienteering Problem: A survey of recent variants,

solution approaches and applications,” European Journal

of Operational Research, 255(2):315–332, 2016.
[56] P. Vansteenwegen, W. Souffriau, and D. V.

Oudheusden, “The orienteering problem: A survey,”

European Journal of Operational Research, 209(1):1–10,

2011.
[57] L. Evers, T. Dollevoet, A. I. Barros, and H. Monsuur,

“Robust UAV mission planning,” Annals of Operations

Research, 222(1):293–315, 2012.
[58] R. Penicka, J. Faigl, P. Vana, and M. Saska, “Dubins

orienteering problem,” IEEE Robotics and Automation

Letters, 2(2):1210–1217, 2017.
[59] J. Faigl and P. Vana, “Self-organizing map for the

curvature-constrained traveling salesman problem,” in

International Conference on Artificial Neural Networks

(ICANN), 2016, pp. 497–505.
[60] G. Best, J. Faigl, and R. Fitch, “Multi-robot path

planning for budgeted active perception with self-

organising maps,” in IROS, 2016, pp. 3164–3171.
[61] J. Faigl, R. Penicka, and G. Best, “Self-organizing

map-based solution for the orienteering problem with

neighborhoods,” in IEEE International Conference on

Systems, Man, and Cybernetics (SMC), 2016, pp. 1315–

1321.
[62] J. Faigl, “On self-organizing maps for orienteering

problems,” in International Joint Conference on Neural

Networks (IJCNN), 2017, pp. 2611–2620.
[63] G. Best, J. Faigl, and R. Fitch, “Online planning for

multi-robot active perception with self-organising maps,”

Autonomous Robots, 42(4):715–738, 2018.
[64] C. Archetti, F. Carrabs, and R. Cerulli, “The set

orienteering problem,” European Journal of Operational

Research, 267(1):264–272, 2018.
[65] R. Penicka, J. Faigl, and M. Saska, “Variable

neighborhood search for the set orienteering problem and

its application to other orienteering problem variants,”

European Journal of Operational Research, 276(3):816–

825, 2019.
[66] L. E. Dubins, “On curves of minimal length with a

constraint on average curvature, and with prescribed initial

and terminal positions and tangents,” American Journal of

mathematics, pp. 497–516, 1957.
[67] S. Edelkamp and E. Plaku, “Multi-goal motion

planning with physics-based game engines,” in

Computational Intelligence and Games,
CIG, 2014, pp. 1–8.
[68] S. Rashidian, E. Plaku, and S. Edelkamp, “Motion

planning with rigid-body dynamics for generalized

traveling salesman tours,” in Motion in Games, 2014, pp.

87–96.
[69] E. Plaku, S. Rashidian, and S. Edelkamp, “Multi-

group motion planning in virtual environments,”

Computer Animation and Virtual Worlds, 29(6):e1688,

2018.
[70] P. Vana, J. Faigl, and J. Slama, “Emergency landing

aware surveillance planning for fixed-wing planes,” in

European Conference on Mobile Robots (ECMR), 2019,

pp. 1–6.
[71] D. Le and E. Plaku, “Multi-robot motion planning

with dynamics via coordinated sampling-based expansion

guided by multi-agent search,” IEEE Robotics Autom.

Lett., 4(2):1868–1875, 2019.
[72] S. Edelkamp, D. Golubev, and C. Greulich, “Solving

the physical vehicle routing problem for improved multi-

robot freespace navigation,” in G. Friedrich, M. Helmert,

and F. Wotawa, eds., KI, vol. 9904 of Lecture Notes in

Computer Science, 2016, pp. 155–161, Springer.
[73] S. Edelkamp and J. Lee, “Multi-robot multi-goal

motion planning with time and resources,” in K. Althoefer,

J. Konstantinova, and K. Zhang, eds., TAROS, vol. 11649

of Lecture Notes in Computer Science, 2019, pp. 288–299,

Springer.

[74] R. E. Fikes and N. J. Nilsson, “STRIPS: a new

approach to the application of theorem proving to problem

solving,” Artificial Intelligence, 2(3):189–208, 1972.
[75] S. Edelkamp, M. Lahijanian, D. Magazzeni, and E.

Plaku, “Integrating temporal reasoning and sampling-

based motion planning for multigoal problems with

dynamics and time windows,” IEEE Robotics Autom.

Lett., 3(4):3473–3480, 2018.
[76] P. Toth and D. Vigo, eds., The vehicle routing

problem, Society for Industrial and Applied Mathematics,

USA, 2001.
[77] M. Fox and D. Long, “PDDL2.1: an extension to

PDDL for expressing temporal planning domains,” J.

Artif. Intell. Res., 20:61–124, 2003.
[78] S. Edelkamp, E. Plaku, and Y. Warsame, “Monte-

carlo search for prize-collecting robot motion planning

with time windows, capacities, pickups, and deliveries,”

2019, pp. 154–167, Springer.

[79] J. Faigl and L. Preucil, “Inspection planning in the

polygonal domain by self-organizing map,” Applied Soft

Computing, 11(8):5028–5041, 2011.
[80] S. Edelkamp, M. Pomarlan, and E. Plaku,

“Multiregion inspection by combining clustered traveling

salesman tours with sampling-based motion planning,”

IEEE Robotics Autom. Lett., 2(2):428–435, 2017.
[81] S. Edelkamp and Z. Yu, “Watchman routes for robot

inspection,” in K. Althoefer, J. Konstantinova, and K.

Zhang, eds., TAROS, vol. 11650 of Lecture Notes in

Computer Science, 2019, pp. 179–190, Springer.
[82] P. Vana, J. Slama, and J. Faigl, “Surveillance

planning with safe emergency landing guarantee for fixed-

wing aircraft,” Robotics and Autonomous Systems,

133:103644, 2020.
[83] P. Vana, J. Slama, J. Faigl, and P. Paˇces, “Any-time

trajectory planning for safe emergency landing,” in IROS,

2018, pp. 5691–5696.
[84] X. Hu, B. Pang, F. Dai, and K. H. Low, “Risk

assessment model for uav cost-effective path planning in

urban environments,” IEEE Access, 8:150162–150173,

2020.
[85] K. Dalamagkidis, K. Valavanis, and L. Piegl, “On

integrating unmanned aircraft systems into the national

airspace system, international series on intelligent systems,

control, and automation: Science and engineering,”

Science and Engineering, 36, 2009.
[86] A. la Cour-Harbo, “Ground impact probability

distribution for small unmanned aircraft in ballistic

descent,” in International Conference on Unmanned

Aircraft Systems (ICUAS), 2020, pp. 1442–1451.
[87] S. Primatesta, G. Guglieri, and A. Rizzo, “A risk-

aware path planning strategy for uavs in urban

environments,” Journal of Intelligent & Robotic Systems,

95(2):629–643, 2019.
[88] S. Primatesta, A. Rizzo, and A. la Cour-Harbo,

“Ground risk map for unmanned aircraft in urban

environments,” Journal of Intelligent & Robotic Systems,

97(3):489–509, 2020.
[89] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong

planning A*,” Artificial Intelligence, 155(1):93–146,

2004.
[90] M. Otte and E. Frazzoli, “RRTX: Real-time motion

planning/replanning for environments with unpredictable

obstacles,” International Journal of Robotics Research,

35(7):797–822, 2016.

SM2P: Towards a Robust Co-Pilot System for Helicopter EMS

Ian Mallett1, Marcus Hoerger1, Surabhi Gupta2, Nisal Jayalath2, Felipe Trevizan1, Andrew Hunt2,
Hanna Kurniawati1, Christophe Guettier3

1School of Computing, Australian National University
{hanna.kurniawati, felipe.trevizan}@anu.edu.au ; {ian.p.mallett, hoergems}@gmail.com

2Safran Electronics and Defense Australasia
{surabhi.gupta, andrew.hunt}@safrangroup.com ; nisaljayalath@gmail.com

3Safran Electronics and Defense
{christophe.guettier}@safrangroup.com

Abstract

This paper presents our preliminary work towards develop-
ing robust decision-making components for an automated
co-pilot system in Helicopter Emergency Medical Services
(HEMS). Specifically, in this paper, we focus on the inte-
grated mission-motion planning framework for such a mis-
sion, and propose Stochastic-based Mission-Motion Planner
(SM2P). SM2P frames the mission planning as a Stochas-
tic Shortest Path (SSP), and the trajectory planning as a Par-
tially Observable Markov Decision Processes (POMDPs).
Each planning problem is solved using state-of-the art (ap-
proximate) solvers that can (re-)compute a good strategy that
accounts for the various uncertainty plaguing an HEMS mis-
sion, on-line, within seconds for a typical HEMS mission.
The use of SSP in mission planning allows SM2P to account
for the non-deterministic effects of actions due to problem
abstraction and limited condition in which the HEMS mis-
sion often takes place, while the use of POMDP allows SM2P
to account for both the non-deterministic and partially ob-
servable nature of the operation as more information are per-
ceived. Preliminary results on a simulation of three differ-
ent HEMS scenarios in Corsica region indicates that SM2P
reaches a success rate of over 95% in all scenarios.

Introduction
Helicopter Emergency Medical Services (HEMS) is among
the most challenging and dangerous air operations (Hart
March 2017). Its accident rate is more than 28 times higher
than that of commercial aircraft (Holland and Cooksley
2005). HEMS missions are time-critical and arrive with lit-
tle to no forewarning, making extensive planning difficult.
These conditions are known to increase the chance of catas-
trophic mistakes (nsa October 2013). Despite these difficul-
ties, most HEMS are performed without a co-pilot, which
means a single person —the pilot— is wholly responsible
for: guidance and navigation, detecting hazards to avoid,
evaluating the suitability of landing zones and the ability
to takeoff after landing, maintaining situational and spa-
tial awareness of the terrain and proximate obstacles during
manoeuvres in ground proximity, planning and re-planning
routes given weather or mission parameter changes, as well

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as flying the helicopter. To help reduce the pilot’s burden,
in this paper, we present our preliminary work in develop-
ing a core planning component of an AI-based co-pilot for
Helicopter Emergency Medical Services (HEMS).

Pilot Assistance Systems for helicopters, including auto-
pilot, exist. For instance, DLR and ONERA, together with
Eurocopter and Airbus, have developed multiple Pilot Assis-
tance Systems (Lantzch et al. 2012; Le Blaye 2003; Lüken
and Korn 2007). However, they are not suitable for HEMS,
as they do not account for uncertainty and terrain character-
istics, which are important if they were to provide manoeu-
vring strategies with ground proximity. Recently, Choud-
hury, et.al. have proposed a full-scale autonomous-flight sys-
tem for HEMS missions (Choudhury et al. 2019). They iden-
tify uncertainty as a critical issue in HEMS mission, but to
keep computation cost low, they address uncertainty by in-
flating risks: Deterministic planning is performed in a model
of the world where risks have been inflated (e.g., obsta-
cles have been enlarged) and assumes that no uncertainty
remains. This approach works well when the feasible solu-
tion space is large. But, when the set of feasible solutions
is small, inflating risks may remove all possible solutions,
causing the mission to be deemed infeasible. Unfortunately,
such scenarios are common in HEMS. For instance, when
the patients to be picked up is in a bushfire area or moun-
tainous areas —bushfires are frequent in many parts of the
world, including in Australia, California, the Borneo Island
in Indonesia, and South of France.

To alleviate the above difficulties, we propose to develop
an AI-based co-pilot system that suggests good decisions
within a limited computation time, while accounting for
imperfect information about the mission and operating en-
vironment. Specifically, we propose an integrated mission
and trajectory planner, where the mission planner is mod-
elled as a Stochastic Shortest Path (SSP) and the trajectory
planner is modelled as a Partially Observable Markov De-
cision Processes (POMDPs) problem. We call this approach
Stochastic-based Mission-Motion Planner (SM2P).

The mission planner in SM2P abstracts the helicopter’s
operation area. It receives information from mission com-
mand and makes high-level strategy to accomplish the given
mission. An example of this strategy is which victim to pick-

up first and the areas the helicopter needs to fly to in order to
pick-up the victim. The trajectory planner receives a high-
level guide from the mission planner and information about
the environment from the helicopter’s sensors and the pilot.
It computes a motion strategy (e.g., collision-free trajecto-
ries, selection on landing area, etc.). This motion strategy is
provided to the pilot. SM2P assumes the pilot will execute
the provided strategy with some potential deviations from
the suggested plan.

The mission and trajectory planners of SM2P communi-
cates closely. When the mission planner receives an update
on the mission, which require changes to its original mis-
sion plan, it will inform the trajectory planner, which will in
turn update its motion strategy. Similarly, when the trajec-
tory planner finds a certain guide is not feasible, it informs
the mission planner, which in turn will find an alternative
high-level strategy.

Preliminary results on three different HEMS scenarios in
Corsica region near St Florent and Bastia indicate SM2P has
a success rate of over 95% with 10 minutes offline compu-
tation per region, which can be computed once for HEMS
missions in the region, 40 seconds offline computation per
HEMS mission, and 5 seconds online computation.

Background and Related Work
Background on SSPs
A Stochastic Shortest Path problem (SSP) (Bertsekas and
Tsitsiklis 1991) is a tuple S = 〈S, s0, G,A, P,C〉 in which:
S is the finite set of states; s0 ∈ S is the initial state; G ⊆ S
is the non-empty set of goal states; A is the finite set of ac-
tions; P (s′|s, a) is the probability of reaching s′ after action
a is applied in state s; and C(s, a) ∈ R>0 is the immedi-
ate cost of applying action a in state s. For simplicity, we
assume s0 6∈ G and we represent by A(s) the actions appli-
cable in state s.

A solution to an SSP is a policy π, i.e., a mapping from
states to actions, and the optimal solution is any policy π∗
that (i) reaches G from s0 with probability 1; and (ii) has
minimum total expected cost of reaching the goal from s0.
where the expected cost of a policy satisfying (i) can be com-
puted using the following set of equations:

Vπ(s) = C(s, π(s)) +
∑
s′∈S P (s′|s, π(s))V ∗(s′)

for all s ∈ S \G and Vπ(sg) = 0 for all sg ∈ G.
In this work, we consider SSPs with dead ends, that is,

we do not assume that, for all s ∈ S, the probability for
reaching G from s is 1. We use the fixed-cost approach for
dead ends, i.e., if s is a dead end, then Vπ(s) is defined as
d, where d is a large positive penalty for not reaching the
goal. This approach allows us to transform the original SSP
S into a new SSP S’ without dead ends in which there is an
action that deterministically transitions from any state s to
G with cost d (Mausam and Kolobov 2012). Notice that our
approach can be trivially applied to different approaches to
handling dead ends that optimizes different metrics relating
cost and probability of reaching dead ends (e.g., see (Tre-
vizan, Teichteil-Königsbuch, and Thiébaux 2017)).

Background on POMDP
Formally a POMDP is a tuple 〈S,A,O, T, Z,R, γ〉, where
S, A and O are the state, action and observation spaces
of the robot. T and Z model the uncertainty in the ef-
fect of taking actions and receiving observations as con-
ditional probability functions T (s, a, s′) = p(s′|s, a) and
Z(s′, a, o) = p(o|s′, a), where s, s′ ∈ S, a ∈ A and o ∈ O.
R(s, a) models the reward the robot receives when perform-
ing action a from s and 0 < γ < 1 is a discount factor.
Due to uncertainties in the effect of performing actions and
receiving observations, the true state of the robot is only par-
tially observable. Hence, instead of planning with respect to
states, the robot plans with respect to probability distribu-
tions b ∈ B over the state space, called beliefs, where B is
the set of all probability distributions over S. The solution
of a POMDP is an optimal policy π∗, a mapping from be-
liefs to actions π∗ : b 7→ a such that the robot maximises
the expected discounted future reward when following π∗.
Once π∗ has been computed, it can be used as a feedback-
controller: Given the current belief b, the robot performs
π∗(b), receives an observation o ∈ O and updates its be-
lief according to b′ = τ(b, a, o), where τ is the Bayesian
belief update function. The value achieved by a policy π at
a particular belief b can be expressed as

Vπ(b) = R(b, π(b))+γ

∫
o∈O

Z(b, π(b), o)Vπ(τ(b, π(b), o))do

(1)
where R(b, a) =

∫
s∈S R(s, a)b(s)ds and

Z(b, a, o) =
∫
s′∈S Z(s′, a, o)

∫
s∈S T (s, a, s′)b(s)dsds′.

The optimal policy π∗ is then the policy that satisfies
π∗(b) = argmaxπ Vπ(b).

Overall Framework

MissionPlanner

MissionControl

Pilot

Helicopter

TrajectoryPlanner

MissionPlan

Replan

SensorFeedback

Action

Control

MissionObjectives

Figure 1: Overview of the planning architecture.

Most HEMS missions require the co-pilot system to solve
a large and complex planning problem in three senses: Large
hybrid state space, long planning horizon, and complex dy-
namics. The planner must operate on both continuous and

discrete variables, as it must identify which victims to pick-
up and in which order, which medical facility to go to, so as
to maximise the number of victims being saved, and naviga-
tion guidance in confined and imperfectly known areas that
respect fuel and cloud ceiling requirements. The problem re-
quires a long planning horizon. For instance, in the HEMS
scenarios around Saint Florent and Bastia, for a helicopter
to move from its starting position to the nearest hospital at
average speed, it needs at least 60 planning steps. When the
helicopter needs to pick-up a victim first, this planning step
will substantially increase. Last but not least, helicopter dy-
namics is known to be complex. In this paper, we focus on
the first two issues, and simplify the helicopter dynamics as
a second-order discrete-time stochastic model according to:

f(φt, λt, θt, ht, νt) =

φt + ∆νt cos θt
λt + ∆νt sin θt
ht + ∆(δh + eh)
θt + ∆(δθ + eθ)
νt + ∆(α+ eν)

 (2)

where φt, λt, θt, ht, νt ∈ R are the latitude, longitude, yaw-
orientation, elevation and forward velocity of the helicopter.
δh and δθ are fixed climb and turn rates, whereas α is a fixed
acceleration. ∆ is a fixed control duration and eh, eθ, eν rep-
resent random control errors that are drawn from zero-mean
Gaussian distributions.

Figure 1 presents the overall framework of our integrated
mission and trajectory planners. The mission planner com-
putes the high level strategy on which victims to pick-up
and which order should they be picked-up. These strategies
are transformed into navigation guides that respect the es-
timated fuel usage and flying requirements under the esti-
mated weather conditions. These strategies are computed,
while respecting fuel and weather condition requirements.

To construct navigation guides, the mission planner con-
structs an abstraction of the operation area of HEMS. Sup-
pose W ⊆ R3 is the bounded operational space of the
HEMS mission. The space W contains the terrain of the
area. The mission planner uses the SPArse Roadmap Span-
ner (Dobson, Krontiris, and Bekris 2013), to construct a
sparse graph G(V, E) that captures the connectivity of W
well. Each vertex in V is associated with a position sampled
fromW , while an edge vv′ ∈ E means there is a collision-
free straight line-path for the helicopter from the positions
represented by v ∈ V to v′ ∈ V . The environment W is
then decomposed into Voronoi regions, where the points are
the positions associated with the vertices V . The navigation
guide provided by the mission planner to the trajectory plan-
ner is then a mapping from one Voronoi region to the neigh-
bouring Voronoi region to visit, so as to achieve the mission
objective.

The trajectory planner is an on-line POMDP planner and
receives observations about the environment around its cur-
rent location from the helicopter’s sensors and from the pi-
lot. Such observations will enable the trajectory planner to
realise if moving into a certain Voronoi region has now be-
come very difficult or even infeasible. For example, if a no-
fly zone were to suddenly appear due to the spread of fire
in bush-fire areas, the navigation guide from the mission

planner would be rendered invalid. When this situation hap-
pens, the trajectory planner notifies the mission planner. The
mission planner will identify the affected components of G,
modify the graph, and re-plans with respect to the modified
graph. The new navigation guide is then passed to the trajec-
tory planner.

The subsequent sections provide details of the mission
and trajectory planners.

Mission Planner Details
The mission planner provides a high level policy to guide the
trajectory planner to achieve its mission objectives, primar-
ily guiding it to the additional victim to be rescued, and to
the hospital. The policy is made with respect the helicopter’s
position, current fuel level, and the height of an overcast
cloud ceiling. Under Visual Flight Rules conditions (VFR),
the helicopter must not cross this ceiling unless absolutely
necessary. In the experiement, we follow the VFR rules fol-
lowed in France.

We assume that, in the case where there are one or more
victims to pick up en route, that there is space for only one
more victim on board, and that when arriving to pick up a
victim, it may turn out that it is impossible to get the victim
on board. Given this, the mission planner’s goal is to either
successfully pick up a victim, or to try to pick them all up.

We use the graph G(V, E) obtained using SPArse
Roadmap Spanner (Dobson, Krontiris, and Bekris 2013) to
define the SSP 〈SMS, s0, G,AMS, P, C〉 where:

1. The mission planner state space SMS is the product of V
with a discretised set of fuel levelsF and discretised cloud
heights Hc. In the case where there are one or more vic-
tims to pick up en route (i.e., |Υ| > 1), we include a
variable at-capacity ∈ {>,⊥}, and for each victim
ν ∈ Υ, we include attemptedν ∈ {>,⊥}, represent-
ing whether the pilot has tried to pick up that victim.

2. The initial state s0 ∈ SMS is the initial position of the he-
licopter, fuel level equivalent to a full tank, and an initial
cloud height.

3. G ⊂ SMS is the set of states where the helicopter is at the
hospital and, when there are extra victims in the scenario,
either an extra victim is on board (at-capacity = >)
or ∀ν,attemptedν = >.

4. The set of possible actions AMS is {move(v, v′) | vv′ ∈
E} ∪ {pick-upν | ν ∈ Υ}. Let vs ∈ V be the he-
licopter’s location in state s ∈ SMS. If at-capacity
equals > in s, then the set of applicable actions AMS(s)
is {move(vs, v

′) | vsv′ ∈ E}, otherwise AMS(s) also in-
cludes {pick-upν |ν ∈ Υ, vs is the closest vertex to ν}.

5. The probability transition function P (s′|s, a) is such that
each component of s is changed independently as follows:

• Location: if a = move(vs, v
′), then the location at the

new state s′ is v′ with probability 0.9 (i.e., P (vs′ =
v′) = 0.9) and, with probability 0.1, the location does
not change (i.e., P (vs′ = vs) = 0.1). The location
remains the same for all non moving actions.

• Fuel level: for a = move(vs, v
′), the fuel level

decreases deterministically, assuming the helicopter
moves from vs to v′ at 150 km/h, using fuel at a steady
rate of 4kg per minute. For pick-upν , the fuel de-
creases by 20kg on a success, or 4kg on a failure (we
assume the pickup takes 5 or 1 minutes).

• Cloud ceiling: let cs and cs′ be the cloud ceiling
heights in states s and s′. P (cs′ = cs) = 0.98, P (cs′ =
cs + 100m) = 0.01 and P (cs′ = cs − 100m) = 0.01.
If cs′ would be outside [600m, 900m], it is set to the
nearest bound.

• Victims: for a = move(vs, v
′), at-capacity and

attemptedν are not changed. If a = pick-upν ,
P (attemptedν = >) = 1, P (at-capacity =
>) = 0.95, P (at-capacity = ⊥) = 0.05.

6. The cost function represents the expected time it takes to
complete an action, with a 15 minute penalty for enter-
ing the cloud layer. Moreover, C(s,pick-upν) = 288,
C(s,move(vs, v

′)) is the time in seconds to travel from
vs to v′ at 150 km/h, plus 900 if vs is above the current
cloud height.

Our probability transition function P (s′|s, a) defined
above implies that moving from a location v to v′ follows
a geometric distribution with p = 0.9 since the action move
succeeds with probability 0.9 and fails by staying at the
same location v with probability 0.1. While successive exe-
cutions of the same move action might not change the heli-
copter’s location, it changes the current state s ∈ SMS of the
system due to the deterministic fuel consumption (the fuel
component of the state monotonically decreases) and poten-
tial change in the cloud ceiling.

Trajectory Planner Details
The trajectory planner’s purpose is to compute a low-level
motion strategy for the pilot to successfully complete the
mission on-line, using the high-level mission-planner strat-
egy as a navigation guide. During run-time the trajectory
planner uses sensor information from the helicopter to con-
struct and maintain a local map of the environment that in-
cludes the terrain, as well as obstacles (such as trees, power
lines or buildings), cloud-ceiling and possible no-fly zones
within a bounded regionWlocal ⊂ W around the helicopter.
This local map is updated after every step (in this paper we
assume that the geometries and locations of the obstacles
withinWlocal are perfectly known to the trajectory planner).
The low-level motion strategy is then computed with respect
to the current local map and the stochastic dynamics of the
helicopter.

Due to imperfect controls and sensor information the true
state of the helicopter is only partially observed. Thus, we
maintain a belief bt ∈ b over the current state of the heli-
copter and formulate the problem of computing a low-level
motion strategy for the pilot as a POMDP. To increase ef-
ficiency, we further decompose the problem into two sub-
problems, both formulated as separate POMDPs: Navigating
and landing/take-off. Details on the POMDP formulation of
both sub-problems are provided in Sub-Sections POMDP-

Formulation of the Navigation Problem and POMDP-
Formulation of the Landing Problem respectively. For the
first sub-problem, the trajectory planner computes a policy
to navigate to the Voronoi regions in the environment as
specified by the mission planner policy. For the second sub-
problem, we first construct a set of possible landing zones
across the environment off-line (details on how these land-
ing zones are constructed are provided in Sub-Section Con-
structing the Landing Zones). At run-time, the trajectory
planner then determines the closest landing zone to the vic-
tim and computes a motion strategy to safely touch-down at
the landing zone in order to pick-up the victim. During run-
time the trajectory planner switches between both POMDP
problems depending on the current mission planner objec-
tive.

To compute a policy from the current belief bt ∈ B,
we use ABT (Kurniawati and Yadav 2013), one of the
fastest Monte-Carlo-Tree-Search based on-line solvers. A
summary of this method is presented here for complete-
ness. Starting from bt (we represent beliefs as sets of par-
ticles) ABT approximates the optimal policy by construct-
ing and evaluating a belief-tree, whose nodes represent be-
liefs and edges represent pairs of actions and observations.
To construct the belief-tree, ABT samples episodes, that
is, sequences of state-action-observation-reward quadruples,
starting from the current belief and associates the states of
the episode with nodes in the belief-tree. To select actions
during the episode sampling process, ABT uses Upper Con-
fidence Bounds1 (UCB1) (Auer, Cesa-Bianchi, and Fischer
2002) which ensures asymptotic convergence towards the
optimal policy. The states, observations and reward of an
episode are sampled from a generative model that encodes
the transition, observation and reward functions. An episode
is expanded until either a terminal state is reached, or the
episode reaches a belief-node for which there are actions that
haven’t been visited before. If the first terminating condition
occurs, ABT backpropagates the sampled reward-trajectory
to update the estimates of Q̂(b, a) for each belief b ∈ B as-
sociated to a state in the episode, where Q(b, a) is the value
of executing action a ∈ A from b and continuing optimally
afterwards. Otherwise, ABT first estimates the value of the
last belief node by simulating a rollout strategy from the last
state of the episode and then continues backpropagating the
sampled reward-trajectory as described above.

Once the planning time for the current step is over, ABT
selects an action according to π(bt) = argmaxa∈A Q̂(bt, a).
After executing the action and receiving an observation, the
current belief is updated (we use a Sequential-Importance-
Resampling (SIR) particle filter (Arulampalam et al. 2002)
to update the belief) and planning continues from the up-
dated belief.

To embed the navigation guides from the mission plan-
ner into the POMDP policy search, we construct a rollout
strategy that encodes the mission planner strategy. This is
done as follows: Suppose bt is the current belief and s̄ ∈ S
is the mean state of bt. Using s̄, we estimate the Voronoi
region – with associated vertex v1 ∈ V – the helicopter is
currently located in and query the mission planner policy.

This provides us with a high-level action that can either be
move(v1, v2), i.e. to navigate from the Voronoi region asso-
ciated with v1 to the Voronoi region associated with v2 ∈ V ,
or pick-upv1 , i.e. to pick up the victim located in the cur-
rent Voronoi region. In the first case, we compute a motion
strategy to reach the Voronoi region associated to v2, assum-
ing deterministic effects of actions. In the second case we
assume deterministic dynamics too, but compute a motion
strategy to reach a landing zone near the victim.

This allows us to guide the search towards achieving the
high-level strategy computed by the mission planner, while
simultaneously planning with respect to the stochastic heli-
copter dynamics and the local environment around the heli-
copter. Note that we only query the mission planner after the
current belief bt has been updated. Within a planning step
(that is, during the policy computation from bt), the high-
level action remains constant.

POMDP-Formulation of the Navigation Problem
State, Action and Observation Spaces The state space of
the helicopter is defined as the cross-product of four compo-
nents S = R3 × Π × [0, νmax] × R+ ×Hc, where the first
component is the 3D real-vector space consisting of the lati-
tude, longitude and elevation of the helicopter above median
sea level. Π = [−180.0, 180.0] is the set of yaw-orientations
(in degrees) of the helicopter, whereas [0, νmax] are the min-
imum and maximum forward-velocities (in m/s) of the he-
licopter. The component R+ is the set of all fuel loads of the
helicopter, whereas Hc is the discrete set of cloud-ceiling
heights.

The action space of the helicopter is de-
fined as A = {accelerate,decelerate,
climb,descend,turnLeft,turnRight}. The
accelerate and decelerate actions set the accelera-
tion α in eq.(2) to a fixed positive/negative value. Similarly,
the climb/descend and turnLeft/turnRight ac-
tions set the climb rate δh and turn rate δθ in eq.(2) to fixed
positive/negative values respectively.

We assume that the helicopter is equipped with two types
of sensors: A localization sensor which provides information
regarding the current latitude, longitude and elevation of the
helicopter and a gyroscope which provides information re-
garding the helicopter’s yaw-orientation. More formally, the
observation space is defined as O = R3 ×Π, where the first
component describes the latitude, longitude and elevation of
the helicopter Π is defined as above.

Transition Function To model the transition dynamics of
the helicopter, we use the second-order stochastic dynamic
system defined in eq.(2) given the latitude φ, longitude λ,
elevation h and yaw-orientation θ associated to the current
state of the helicopter. Additionally, we assume that the fuel
load of the helicopter decreases deterministically by a con-
stant rate (in our experiments, we assume a fuel consump-
tion of 1

3kg per time step).

Observation Function The observation model of the he-
licopter is defined as

ot = [φt;λt;ht; θt]
T

+ eo (3)

where φt, λt, ht, θt are the latitude, longitude, elevation
an yaw angle components of the state. eo ∈ R4 is a ran-
dom vector drawn from a zero-mean multivariate Gaussian
distribution representing sensor noise.

Reward function To encode the objective of reaching the
hospital, the helicopter receives a reward of 10,000 when en-
tering a goal area around the hospital (modelled as a sphere
with radius 1,000m around the location of the hospital).
Once the helicopter enters this goal area, the mission is con-
sidered successful. If the helicopter collides with the terrain
or an obstacle, it receives a penalty of -50,000 and the mis-
sion is considered as unsuccessful. To encourage the heli-
copter to reach the goal as quickly as possible, it receives a
penalty of -10 at every step. Since crossing the cloud ceil-
ing is considered dangerous due to low visibility, the heli-
copter receives a penalty of -10 for every state where it is
located above the cloud ceiling, discouraging the helicopter
from crossing the cloud layer unless necessary (for instance
to avoid an obstacle).

POMDP-Formulation of the Landing Problem
Once the trajectory planner receives a pick-upv action
from the mission planner, it switches to the landing prob-
lem. For this problem the task is to safely navigate to a land-
ing zone close to the injured person in the environment and
perform a landing maneuver.

The POMDP formulation of this problem is similar to
the one for the navigation problem described in the previ-
ous section, with some notable differences: We extend the
action space of the helicopter with and additional land ac-
tion whose purpose is to perform a vertical touch-down at
the current location of the helicopter to pick-up the victim.
For this action, the helicopter enters a terminal state and re-
ceives a reward of 10000 if the following conditions are met:
a.) The helicopter is located above a landing zone area (the
method to define and construct a landing zone is described
in the next subsection), b.) The vertical distance between the
helicopter and the terrain is within 75m and c.) The forward
velocity of the helicopter is smaller than 10m/s. If at least
one of these conditions is not satisfied, the helicopter en-
ters a terminal state too, but receives a penalty of -50000
and the mission is considered unsuccessful. Note that we as-
sume that in case the land action is successful, the injured
person is automatically picked up and the trajectory planner
switches back to the navigation problem.

Constructing the Landing zones In order for the heli-
copter to successfully pick up an injured person, it has to
determine areas in the environment that are suitable for land-
ing, that is, areas that are sufficiently large and flat. To con-
struct such areas, we use a simple geometric approach: Sup-
pose the terrain is represented by a triangular mesh, i.e. a
set U of triangles. For each triangle u ∈ U , we compute its
slope su via su = arccos(nu · z/(‖nu‖ ‖z‖)), where nu is
the normal vector of triangle u, z = (0, 0, 1)T and ”·” de-
notes the dot product. If su yields a value larger than a given
threshold smax (in our experiments we use smax = 9deg),
we remove the triangle u from U . In other words, we re-
move triangles from U that are too ”steep” for the helicopter

to land on. We then incrementally merge the remaining tri-
angles in U into subsets of triangles U = {U1, ...Uk}, with
Ui ⊂ U where for each triangle u1 ∈ Ui, there is at least
one u2 ∈ Ui, u1 6= u2 such that u1 and u2 share an edge
in the original terrain mesh. Each Ui ∈ U is then a possi-
ble landing zone. However, some triangle sets in U might
have an area (defined as the sum of the area of all triangles
in the triangle set) that is too small for the helicopter to land
on. To determine whether the triangles in a triangle set Ui
provide a sufficient area for landing, we project the triangles
in Ui onto the xy-plane and compute the area of the largest
inscribed circle within the (possibly non-convex) boundary
polygon of the projected triangles. If this area is smaller than
a given threshold (in our experiments we use 75πm2), we re-
move Ui from U. The remaining triangle sets in U are then
the resulting landing zones.

Note that this process of constructing the landing zones is
done off-line. During run-time, once the trajectory planner
switches to the landing problem, we select the closest land-
ing zone in U to the injured person (in terms of the distance
of the location of the injured person to the geometric centers
of the landing zones) which then becomes the target landing
zone for the pilot to land on.

Parallelization of Belief Update and Policy
Computation

Most on-line POMDP solvers (including ABT) typically fol-
low a strictly sequential order of execution, that is, policy
computation – policy execution – belief update. In practice,
such an implementation would incur significant delays be-
tween the execution of two actions, due to the time required
to update the current belief and compute a policy for the up-
dated belief. To reduce these delays to a minimum, we paral-
lelize policy computation, policy execution and parts of the
belief update, similar to the method proposed in (Hoerger
et al. 2019): While the helicopter executes an action a ∈ A,
we run two processes in parallel.

The first process is the belief-update process which
draws samples from a proposal distribution, (in our case
T (s, a, s′)) using state samples drawn from the current be-
lief and the currently executed action. Once the helicopter
receives an observation, all that remains for the belief up-
date is to update the importance weights, up to a normaliza-
tion constant, based on the perceived observation, which can
be done fast.

The second process is the policy-update process. Once the
helicopter starts executing a from the current belief b, our
implementation of ABT plans for the next step by sampling
additional episodes starting from the current belief, using the
currently executed action as the first action of the sampled
episodes, thereby improving the policy within the entire de-
scendent of b via a in the belief tree. This strategy increases
the chances that after the helicopter has executed a and the
belief is updated based on the observation perceived, a good
policy for the next belief is readily available.

Figure 2: The mission area used throughout the experiments.
Initially the helicopter starts at Saint-Florent (shown as a
blue marker) with a victim on board and the task is to navi-
gate to the hospital in Bastia (shown as a green marker). The
red markers indicate the locations of the additional victims
the helicopter has to pick-up before continuing its mission
to Bastia. Image: Google Earth, earth.google.com/web/

Experiments and Results
Problem Scenarios
To evaluate our system, we tested it on three problem sce-
narios in which a pilot operates on a map of size (28.1 ×
26.0)km in the Corsica region in France near Saint-Florent
and Bastia, shown in Figure 2. In all three scenarios the pi-
lot starts near Saint-Florent at location (42.680N, 9.3020E)
(shown as a blue marker in Figure 2) with an injured person
on board of the helicopter and its task is to safely navigate to
a hospital in Bastia at location (42.7401050N, 9.4571070E)
(shown as a green marker in Figure 2) to deliver the injured
person. Furthermore, at the beginning of the mission, the he-
licopter is instructed to pick up an additional injured person
in the environment before continuing its flight to Bastia. For
the dynamic model of the helicopter defined in eq.(2) we as-
sume that the constant acceleration α, climb rate δh and turn
rate δθ is α = ±4m/s2, δh = ±6m/s and δθ = ±4deg/s
respectively. We further assume that the pilot applies each
action for a control duration of ∆ = 5s.

For Scenario 1, the additional victim is located at
(42.6676170N, 9.3927340E) (shown as Victim #1 in Fig-
ure 2) and the pilot has to find a motion strategy to navigate
to Victim #1, safely land near the additional victim to board
it, and finally safely deliver both victims to the hospital in
Bastia.

In Scenario 2, the pilot must pick-up Victim #1, too.
However, at time t = 15, the pilot is informed about a no-fly
zone near the current location of the helicopter. This no-fly
zones causes the initial mission plan to become infeasible.
Subsequently, the pilot must find an alternative strategy to
reach Victim #1 before delivering both victims to the hospi-
tal.

The no-fly zone is simulated by modifying the mission

planner graph. Specifically, by removing the edge between
vertices v1 ∈ V and v2 ∈ V , where v1 is the vertex associ-
ated to the Voronoi region the helicopter is located in at time
t = 15 and v2 is the vertex associated to the target Voronoi
region of the current mission planner action move(v1, v2).

For Scenario 3 the pilot is initially informed that there’s
a victim at location (42.7320680N, 9.3630660E) (shown
as Victim #2 in Figure 2). At time t = 20 the mis-
sion planner receives an emergency call from Mission
Control, informing it about a second victim at location
(42.6887240N, 9.3842750E) (shown as Victim #3 in Fig-
ure 2). However, since there’s already a victim on board at
the start of the mission, the helicopter has space for only
one additional victim on board due to space and weight lim-
its. Subsequently, the pilot must decide which of the two
victims in the environment to pick up before continuing the
mission to the hospital in Bastia.

Experimental Setup
For all three problem scenarios we first generated 10 graphs
for the mission planner using the SPArse implementation
provided by OMPL. Each graph was constructed by running
SPArse for 10 minutes. We then compute, for each scenario
and each graph a mission planner policy that serves as the
initial mission plan for the trajectory planner.

For the mission planner we use Labelled SSiPP (Trevizan
and Veloso 2012) with the Regrouped Operator Counting
heuristic (Trevizan, Thiébaux, and Haslum 2017). The ini-
tial mission plan is computed off-line using one thread on
an Intel Xeon Silver 4110 CPU with 2.1Ghz and 128GB of
memory, and took approximately 13.6s (10s to construct the
graph and 3.6s to compute the mission planner policy) on
average per scenario per graph.

For the trajectory planner, all POMDP models as well as
the parallelized version of ABT (as discussed in Sub-Section
Parallelization of Belief Update and Policy Computa-
tion) were implemented in C++ within the OPPT-framework
(Hoerger, Kurniawati, and Elfes 2018). For the POMDP
models we used a discount factor of γ = 0.98. The size of
the local map the trajectory planner maintained during run-
time was set to be 4, 000 × 4, 000m. All simulations were
run using 3 threads on an Intel Xeon Silver 4110 CPU with
2.1Ghz and 128GB of memory. We assume that each action
the pilot executes takes 5s to complete, and provides a 5s
planning time per step to the trajectory planner.

Results
For each problem scenario and each initial mission planner
policy, we tested our system using 100 simulation runs. Ta-
ble 1 shows the success rate, average number of steps and av-
erage total discounted reward achieved by SM2P in all three
problem scenarios. In all three scenarios, SM2P achieved
a success rate of at least 96% where the pilot successfully
picked up a victim in the environment and reached the hos-
pital, demonstrating the robustness of SM2P in challenging
HEMS missions.

Table 2-5 provides detailed results for all Scenarios and
mission planner graphs. These results indicate the robust-
ness of SM2P. Recall that since the mission planner graphs

are computed using a sampling-based method, these graphs
are different between one run and another. Despite such dif-
ferences, SM2P consistently achieve a success rate of over
94%.

Looking at the average number of steps for Scenario 1
and 2 in Table 1, we can see that it typically takes slightly
longer (around 20 steps longer) to complete the mission in
Scenario 2 compared to Scenario 1. This is not surprising.
Due to the no-fly zone introduced at t = 15 in Scenario 2,
the helicopter must take a slight detour to reach the victim.
Furthermore, since the no-fly zone causes the initial mission
plan to become invalid, it is paramount that the mission plan-
ner is able to quickly update its policy. On average, SM2P
can update the mission plan during run-time in 5 seconds.
This is roughly the same time it takes for the pilot to ex-
ecute an action, which indicates that updating the mission
planner policy is efficient enough for an on-line planning
setting, even if there are structural changes to the mission
planner graph (such as an edge being deleted).

Table 5 shows the number of times (in percent) per graph,
SM2P decided to pick-up Victim #3 in Scenario 3. The de-
cision of which victim to pick-up is affected by the Voronoi
region the helicopter is estimated to be located in at time
t = 20, when the mission planner is informed regarding
the location of the additional Victim #3, causing the mission
plan to be updated. For the majority of the runs and mission
planner graphs, SM2P decided to pick up Victim #3, since
the location of Victim #3 is closer to the hospital. A notable
exception is graph 9 for which SM2P decided to pick up
Victim #2 in 30% of the runs. The reason is that for graph 9,
the helicopter often operates near the border of two neigh-
bour Voronoi regions at time t = 20. Depending on which
Voronoi region the helicopter is estimated to be located in,
the mission planner policy suggests to navigate either to Vic-
tim #2 or Victim #3. Recall from Sub-Section Trajectory
Planner Details that the current Voronoi region is estimated
from the mean state of the current belief. The consistency
of selecting which victim to pick up can be improved, for
instance, by estimating the Voronoi region that contains the
largest amount of probability mass of the current belief.

Success
Rate

Avg. num steps Avg. total discounted
reward

Scenario 1 96.8% 197.4 ± 2.1 -385.8 ± 56.2
Scenario 2 96.9% 217.1 ± 3.7 -468.2 ± 52.3
Scenario 3 97.6% 206.8 ± 2.3 -416.6 ± 55.6

Table 1: The success rate (in percent), Average number
of steps and Average total discounted reward achieved by
SM2P in all three problem scenarios. The average is taken
over all 10 mission planner graphs using 100 simulation runs
per scenario and graph. ± indicates the 95% confidence in-
tervals.

Summary
This paper presents our preliminary work in developing a ro-
bust decision-making component to help a pilot performing

Graph Success
Rate

Avg. num steps Avg. total dis-
counted reward

1 94% 191.02 ± 8.8 -618.67 ± 183.54
2 95% 221.81 ± 6.3 -583.94 ± 230.53
3 100% 218.5 ± 3.8 -146.58 ± 109.75
4 97% 194.09 ± 4.4 -361.88 ± 312.16
5 99% 177.76 ± 4.4 -128.89 ± 190.0
6 98% 192.19 ± 9.8 -225.26 ± 377.9
7 94% 181.60 ± 6.0 -589.94 ± 228.06
8 95% 224.0 ± 5.5 -591.90 ± 155.67
9 100% 176.02 ± 6.3 -93.37 ± 90.39
10 96% 201.32 ± 6.9 -308.08 ± 196.99

Table 2: Results for Scenario 1. The success rate, aver-
age number of steps and average total discounted rewards
are conputed over 100 simulation runs per mission planner
graph. ± indicates the 95% confidence intervals.

Graph Success
Rate

Avg. num steps Avg. total dis-
counted reward

1 100% 207.83 ± 6.8 -46.49 ± 93.99
2 94% 225.72 ± 8.47 -618.64 ± 748.15
3 95% 220.52 ± 10.5 -525.93 ± 125.34
4 97% 218.61 ± 9.5 -638.31 ± 102.78
5 98% 206.82 ± 4.5 -167.16 ± 108.46
6 95% 192.55 ± 9.7 -618.4 ± 265.65
7 98% 195.9 ± 6.8 -452.21 ± 197.56
8 95% 218.36 ± 6.61 -663.73 ± 303.60
9 98% 211.09 ± 8.22 -530.31 ± 683.77
10 99% 205.77 ± 4.6 -167.32 ± 107.25

Table 3: Results for Scenario 2. The success rate, aver-
age number of steps and average total discounted rewards
are conputed over 100 simulation runs per mission planner
graph. ± indicates the 95% confidence intervals.

a HEMS mission —time-critical missions that are typically
plagued by various types of uncertainty. In this work, we
propose Stochastic-based Mission-Motion Planner (SM2P)
as a framework that enable us to quantify uncertainty and
account such a quantification in its decision-making. SM2P
uses a combination of existing SSP and POMDP solvers that
are tightly coupled by their ability to revise and recompute
plans on-line within a few seconds. Simulation results in-
dicate that SM2P is sufficiently efficient to compute good
strategies for a co-pilot system in HEMS missions.

Future work abounds. For instance, in this work, we use a
simplified helicopter model. Using high fidelity helicopter
model will slow down the POMDP solver. Therefore, in-
corporating solvers that can perform well for problems with
complex dynamics, such as (Hoerger et al. 2019) would be
useful. Furthermore, uncertainty due to pilot stress level and
experience have not been taken into account in this work.
However, a reliable co-pilot system would account for such
factors. Another dimension is handling potential degrada-
tion of the pilot’s visibility. Although sensors that can “see

Graph Success
Rate

Avg. num steps Avg. total dis-
counted reward

1 100% 210.9 ± 7.4 -118.32 ± 116.30
2 97% 204.83 ± 6.1 -928.58 ± 458.79
3 96% 213.56 ± 8.2 -397.28 ± 396.25
4 100% 216.28 ± 7.4 -189.51 ± 173.52
5 98% 196.11 ± 7.4 -253.78 ± 386.41
6 96% 191.79 ± 8.2 -587.23 ± 195.28
7 98% 213.56 ± 8.9 -321.42 ± 164.33
8 96% 227.56 ± 6.8 -634.76 ± 587.32
9 100% 215.81 ± 5.4 -104.11 ± 176.50
10 95% 201.73 ± 5.4 -781.69 ± 426.47

Table 4: Results for Scenario 3. The success rate, aver-
age number of steps and average total discounted rewards
are conputed over 100 simulation runs per mission planner
graph. ± indicates the 95% confidence intervals.

Graph Victim #3 pickup (in %)
1 93%
2 90%
3 100%
4 100%
5 87%
6 100%
7 100%
8 94%
9 70%
10 100%

Table 5: The number of times (in percent) SM2P decided to
pick-up Victim #3 in Scenario 3 for each mission planner
graph over all simulation runs.

through” fogs have been developed, uncertainty due to de-
graded visibility conditions when operating in certain con-
ditions (e.g., bushfires) and its effects to the pilot’s capability
will need to be considered in the recommendations provided
by a co-pilot system. Last but not least, experiments on high
fidelity simulator or physical system is needed for better val-
idation.

Acknowledgments
We thank Colonel Andjy Zouag for the many discussions in
developing realistic EMS scenarios used in the experiments
for this paper.
This project is sponsored by Safran Electronics and Defense
and Safran Electronics and Defense Australasia.

References
October 2013. National Search Rescue (NSARA). He-
licopter Rescue Techniques. https://www.dco.uscg.mil/
Portals/9/CG-5R/nsarc/Helicopter Rescue Techniques
NSARA Manual 10-23-2013.pdf.

Arulampalam, M. S.; Maskell, S.; Gordon, N.; and Clapp, T.
2002. A tutorial on particle filters for online nonlinear/non-

Gaussian Bayesian tracking. IEEE Transactions on signal
processing 50(2): 174–188.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning 47(2-3): 235–256. ISSN 0885-6125.

Bertsekas, D.; and Tsitsiklis, J. 1991. An Analysis of
Stochastic Shortest Path Problems. Mathematics of Oper-
ations Research 16(3): 580–595. ISSN 0364-765X.

Choudhury, S.; Dugar, V.; Maeta, S.; MacAllister, B.; Arora,
S.; Althoff, D.; and Scherer, S. 2019. High performance and
safe flight of full-scale helicopters from takeoff to landing
with an ensemble of planners. Journal of Field Robotics .

Dobson, A.; Krontiris, A.; and Bekris, K. E. 2013. Sparse
roadmap spanners. In Algorithmic Foundations of Robotics
X, 279–296. Springer.

Hart, C. A. March 2017. National Transportation Safety
Board (NTSB). https://www.ntsb.gov/news/speeches/
CHart/Documents/hart 20170302.pdf.

Hoerger, M.; Kurniawati, H.; and Elfes, A. 2018. A Soft-
ware Framework for Planning Under Partial Observability.
In Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1–9. IEEE.

Hoerger, M.; Song, J.; Kurniawati, H.; and Elfes, A. 2019.
POMDP-based Candy Server: Lessons Learned from a
Seven Day Demo. In Proc. Int. Conference on Automated
Planning and Scheduling (ICAPS).

Holland, J.; and Cooksley, D. G. 2005. Safety of helicopter
aeromedical transport in Australia: a retrospective study.
Medical journal of Australia 182(1): 17–19.

Kurniawati, H.; and Yadav, V. 2013. An Online POMDP
Solver for Uncertainty Planning in Dynamic Environment.
In Proc. Int. Symp. on Robotics Research.

Lantzch, R.; Greiser, S.; Wolfram, J.; Wartmann, J.;
Müllhäuser, M.; Lüken, T.; Döhler, H.-U.; and Peinecke, N.
2012. ALLFLIGHT: Helicopter pilot assistance in all phases
of flight. .

Le Blaye, P. 2003. A concept of Flight Execution Moni-
tor (FEM) for helicopter pilot assistance. Technical report,
OFFICE NATIONAL D’ETUDES ET DE RECHERCHES
AERONOSPATIALES CEDEX FRANCE.

Lüken, T.; and Korn, B. 2007. PAVE: A prototype of a heli-
copter pilot assistant system. Technical report.

Mausam; and Kolobov, A. 2012. Planning with Markov De-
cision Processes. Morgan&Claypool.

Trevizan, F.; Teichteil-Königsbuch, F.; and Thiébaux, S.
2017. Efficient Solutions for Stochastic Shortest Path Prob-
lems with Dead Ends. In Proc. of 33rd Int. Conf. on Uncer-
tainty in Artificial Intelligence (UAI).

Trevizan, F.; Thiébaux, S.; and Haslum, P. 2017. Occupa-
tion Measure Heuristics for Probabilistic Planning. In Proc.
of 27th Int. Conf. on Automated Planning and Scheduling
(ICAPS).

Trevizan, F.; and Veloso, M. 2012. Trajectory-Based Short-
Sighted Probabilistic Planning. In Advances in Neural In-
formation Processing Systems (NIPS).

State-Temporal Decoupling of
Multi-Agent Plans under Limited Communication

Yuening Zhang, Jingkai Chen, Eric Timmons, Marlyse Reeves, Brian Williams
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
zhangyn@mit.edu, jkchen@csail.mit.edu, etimmons@mit.edu, mreeves@mit.edu, williams@mit.edu

Abstract
When a team of agents execute a mission in a distributed fash-
ion, they often communicate with each other to synchronize
their progress. However, in situations where communication
may be delayed, unavailable or costly, such as when a suite
of underwater vehicles is scouting an underwater area in the
ocean, pre-coordination is needed beforehand to compensate
for limited communication. Previous work proposed decou-
pling algorithms for Multi-Agent Simple Temporal Network
with Uncertainty (MaSTNU) in order to find decoupled ex-
ecution strategies for the agents, including communication
strategy, that satisfy all the inter-agent temporal constraints.
However, there is often the coupling between temporal and
state constraints, such as the constraint that the vehicles may
only communicate with each other when they are within a
certain distance. In this paper, we propose using Multi-Agent
Qualitative State Plan (MaQSP) that extends MaSTNU to in-
cluding continuous state constraints in order to model multi-
agent plans with coupled state and temporal constraints. We
describe a decoupling algorithm for MaQSP using a mixed-
integer linear programming (MILP) encoding, which includes
a novel path planning algorithm under temporal uncertainty.

Introduction
When multiple agents execute a shared task, the agents of-
ten depend on each other, resulting in inter-agent precedence
or synchronization constraints. To satisfy those constraints,
the agents communicate with each other to synchronize their
tasks and update their progress. However, in many cases,
the team may operate under limited communication, where
communication is not always available and may be delayed
or costly. For example, when deploying of a fleet of au-
tonomous underwater vehicles (AUVs) to scout an underwa-
ter area in the ocean, communication is mostly unavailable
as the AUVs are operating underwater, and has to be planned
ahead if communication is required.

Previous work has proposed modeling the multi-agent ex-
ecution problem as a Multi-Agent Simple Temporal Net-
work (MaSTN) (Hunsberger 2002; Boerkoel Jr and Dur-
fee 2013) or a Multi-Agent Simple Temporal Network with
Uncertainty (MaSTNU) (Casanova et al. 2016). They han-
dle limited communication between the team by finding de-
coupled execution strategies for the agents in the form of

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a set of local executable networks that depend only on ob-
servable information, which is called a temporal decoupling.
More specifically, the decoupling for a MaSTN completely
removes the need for communication, whereas MaSTNU ex-
plicitly models the available communication and its decou-
pling involves planning for how communication is used to
support the mission, resulting in a more flexible coordination
strategy. Additionally, MaSTNU also allows the modeling of
uncertain durations of activities. While MaSTNU addresses
the important problem of temporal coordination under lim-
ited communication, it fails to handle the case when there is
coupling between temporal constraints and state constraints.
In real-life deployments, the AUVs can only communicate
when they surface. While AUVs can communicate with each
other within a short distance, the ship often has a larger com-
munication range, and can communicate with both of them
over a much larger distance. Additionally, there may also
exist inter-agent state constraints such as when an AUV fin-
ishes its scouting mission, another AUV may want to pick
up the scouting mission from where the first AUV left off.
Previous work that considers multi-agent coordination with
both temporal constraints and continuous state constraints
only considers the problem under full observability, mod-
eled as a Qualitative State Plan (QSP) (Léauté and Williams
2005), and its solution is an execution strategy that assumes
the existence of a centralized authority that controls all the
agents (Fernández-González, Williams, and Karpas 2018;
Reeves, Fernández-González, and Williams 2019).

In this paper, we draw insights from the above work, and
propose using Multi-Agent Qualitative State Plan (MaQSP)
to model both the state and temporal constraints for multi-
agent plans under limited communication. With the addition
of continuous state constraints, MaQSP allows us to repre-
sent the common problem of combined temporal coordina-
tion and task planning. We describe a decoupling algorithm
for MaQSP by encoding the problem into a mixed-integer
linear program (MILP), which depends on a novel path plan-
ning algorithm for QSPs under temporal uncertainty assum-
ing first-order dynamics of the agents. Finally, we provide
preliminary experiment results on the algorithm.

Motivating Example
Consider a pedagogical example where two AUVs are de-
ployed from the ship on a scouting mission. The vehicle’s

position is a vector 〈x, y, d〉, where d is the depth and
d ≥ 0. The initial position is 〈0, 0, 5〉 for both AUVs,
and 〈0, 0, 0〉 for the ship. The ship is always above the
surface of the water, i.e. d = 0 throughout the mission.
AUV1 and AUV2 need to take a sample at science site L1
and L2, respectively. L1 region is a rectangular cuboid en-
closed by its two corners [〈65, 65, 6〉, 〈70, 70, 20〉] and L2 by
[〈−45, 35, 6〉, 〈−40, 40, 20〉]. Each of these sampling mis-
sions may take any time between 10 to 30 minutes. It is also
required that AUV2 must start its sampling mission within
15 minutes after AUV1 has finished its mission.

Notice that since the AUVs are operating underwater and
relatively distant from each other, they cannot observe each
other’s progress. As a result, AUV2 cannot observe when
AUV1 has finished its mission, which makes it difficult to
satisfy the inter-agent temporal constraint. However, it is
possible for the vehicles to communicate their progress by
notifying each other upon the occurrence of certain events,
though communication is costly and subject to certain con-
straints. The AUVs can communicate only when they sur-
face. The AUVs can communicate with each other if they are
within 30 meters of each other. The AUV and the ship can
communicate if they are within 100 meters of each other.

Our problem is to find a coordination strategy so that the
AUVs can successfully execute the mission. In this case, be-
cause the sampling mission may take any time between 10
to 30 minutes, which cannot be determined beforehand, it
becomes necessary for AUV1 to notify AUV2 upon finish-
ing its mission so that AUV2 can react in time to start its
mission within 15 minutes. Because the AUVs will be far
away from each other in their respective sampling missions,
the only possible way to communicate would be to relay the
communication from the ship. Additionally, since the AUVs
can only communicate when they surface, they must plan for
enough time to surface before communication.

Problem Definition
Multi-Agent Qualitative State Plan
We represent the above multi-agent plan by a Multi-Agent
Qualitative State Plan (MaQSP), which is an extension of
MaSTNU (Casanova et al. 2016) to capture both temporal
and state constraints. MaQSP introduces episodes in place
of the original temporal constraints, which is a concept from
Qualitative State Plan (QSP) (Léauté and Williams 2005).
We may also consider MaQSP as an extension of QSP to
the multi-agent context. Compared to the typical QSPs, our
definition allows the modeling of temporal uncertainty.
Definition 1 (QSP). A Qualitative State Plan (QSP) is a
tuple 〈V,X,EP 〉, where
• V is a set of events representing designated time points.
• X is a set of continuous state variables.
• EP is a set of episodes, where each episode ep ∈ EP is

a tuple 〈s, t, e, SC,DC〉, in which
– s, t ∈ V is the start and end event of the episode.
– e is a temporal constraint 〈s, t, lb, ub, ctg〉, where lb ∈
R ∪ {−∞}, ub ∈ R ∪ {+∞} is the lower bound and
upper bound from s to t, i.e. lb ≤ t − s ≤ ub, and ctg

Figure 1: Example MaQSP. We omit the [0,∞] requirement
constraint from vZ to every other event to avoid cluttering.

is a Boolean indicating if e is a contingent constraint,
in which case, 0 ≤ lb < ub <∞.

– SC is a set of state constraints scoped on X .
– DC is a set of delta constraints, where dc(Xs, Xt) ∈
DC specifies a constraint between the state variables
evaluated at the start event and at the end event.

When the ctg flag is set to false, the temporal constraint
is a simple temporal constraint (Dechter, Meiri, and Pearl
1991), also referred to as a requirement constraint, that re-
quires the scheduling of two events to be within certain
lower bound and upper bound. When set to true, it is a simple
temporal contingent constraint (Vidal 1999), or a contingent
constraint for short, whose end event is an uncontrollable
event that cannot be directly controlled by the agent, but can
be observed when it occurs. A contingent constraint speci-
fies the bound in which the uncontrollable event may occur,
and there is a unique contingent constraint for each uncon-
trollable event. In our example, we can use contingent con-
straints to express that fact that it may take anytime between
10 to 30 minutes to take a sample, but the duration cannot be
determined beforehand. When an episode does not include
any state constraints, it is effectively a temporal constraint.

Under the multi-agent context, MaQSP can be considered
as a partition of QSP into a set of agents, resulting in a set of
agents’ local QSPs and additional inter-agent episodes.
Definition 2 (MaQSP). A Multi-Agent Qualitative State
Plan (MaQSP) is a tuple 〈NA, EX , CX , vZ〉, where
• Each Na ∈ NA is the local state plan for agent a ∈
A, which is a QSP 〈V a, Xa, EP a〉, where V a, Xa, and
EP a are the local events, local state variables, and local
episodes for agent a, respectively.

• EX ∪ CX is a set of external episodes, whose tempo-
ral constraint connects the local events of two different
agents. External requirement episodes EX and external
contingent episodes CX include a requirement and con-
tingent temporal constraint, respectively.

• vZ is a reference event, an absolute time point proceeding
all other events and shared by all agents, such as 12 pm.
Our motivating example can be formulated as a MaQSP

shown in Figure 1, where each event is represented by a cir-
cle and an episode is represented by an arrow pointing from
the start event to the end event, with contingent episodes rep-
resented by double arrows. The reference event vZ is the ini-
tial time point 12 pm. Each vehicle’s local state plan is high-

lighted in color, with AUV1 in yellow, AUV2 in blue and
the ship in green. For example, AUV1’s local state plan con-
sists of local events {vA, vB , vE , vF , vH} and episode epAB

represents its sampling mission at science site L1. The ex-
ternal requirement episode epHC represents the inter-agent
temporal constraint that AUV2 has to start its sampling mis-
sion within 15 minutes after AUV1 finishes its mission. The
external contingent episodes CX = {epEE′ , epFF ′ , epGG′}
are also referred to as the communication links that repre-
sent available communication between the agents. In this
case, we allow AUV1 to communicate to AUV2 once with
epEE′ , and similarly from AUV1 to the ship epFF ′ , and the
ship to AUV2 epGG′ . The timing of communication is un-
constrained. For example, epEE′ means that AUV2 can ob-
serve the occurrence of event vE′ within a delay of 1 min
after event vE is scheduled by AUV1, if they are within 30
meters of each other, AUV1’s depth is 0 at event vE , and
AUV2’s depth is 0 at event vE′ .

We characterize three types of state constraints allowed in
an episode ep = 〈vi, vj , e, SC,DC〉. Notation-wise, we use
Xi to denote the state variables X evaluated at event vi, and
a(vi) denotes the agent that event vi belongs to.
• For sc ∈ SCstart, sc is satisfied at the start event vi of the

episode. That is, sc(Xi) holds, where Xi ⊆ Xa(vi).
• For sc ∈ SCend, sc is satisfied at the end event vj of the

episode. That is, sc(Xj) holds, where Xj ⊆ Xa(vj).
• For sc ∈ SCoverall, sc is satisfied throughout the episode.

That is, ∀T s.t. vi ≤ T ≤ vj , sc(XT) holds, where XT ⊆
Xa(vi) ∪Xa(vj).
In this paper, we consider the following forms of contin-

uous state constraints, where A is a constant matrix, B is a
constant vector, and c is a constant:
• AX ∈ L, where L is a convex region approximated by a

set of linear inequalities.
• AX ≤ B, which is a set of linear inequalities.
• dis(A1X,A2X) ≤ c, where A1 and A2 has the same

size, and A1X,A2X usually corresponds to the state vari-
ables belonging to different agents.

While the state constraints may take many forms, the above
are among the ones typically encountered that also guar-
antees convexity of our problem. Additionally, we will use
dis(A1Xs, A2Xt) ≤ c to denote distance constraint when it
is a delta constraint to differentiate it from an overall state
constraint. Note that for distance constraints, since we use a
MILP encoding in this paper, we can use L1 distance instead
of L2 distance, but we can easily extend it to L2 distance by
using MIQCP.

For example, in Figure 1, Xa ∈ L1 for episode epAB is
an overall state constraint that requires AUV1 to stay within
science site L1 throughout the episode. d(Xa

E) ≤ 0 for com-
munication link epEE′ is a state constraint to be satisfied
at the start event. In our example, dis(Xa

E , X
b
E′) ≤ 30 for

epEE′ is a delta constraint that requires the location where
AUV1 initiates the communication and the location where
AUV2 receives the communication need to be within 30
meters from each other. In this case, we assume the delay

is caused by the transmission over media, but the initiation
and reception of message is instantaneous. In other cases, it
may be reasonable to model a communication link with an
overall state constraint dis(Xa, Xb) ≤ 30 that requires the
two vehicles to be within 30 meters of each other throughout
the entire communication process, for example, to transmit
data. State constraints and delta constraints apply to external
requirement episodes too. For example, we may require as
a delta constraint that when AUV1 finishes its scouting mis-
sion, AUV2 should continue scouting from where AUV1 left
off to maintain the consistency of data collected. An exam-
ple of SCoverall may be a tethering constraint, such as when
a remotely operated vehicle (ROV) is deployed underwater
but is tethered to the ship, it has to stay within a certain dis-
tance to the ship throughout the entire mission.

State Temporal Decoupling Problem
Our state temporal decoupling problem for MaQSP is a
natural extension of the temporal decoupling problem for
MaSTNU (Zhang and Williams 2021).
Definition 3 (State Temporal Decoupling). Given a MaQSP,
the set of agents’ local state plans NA forms a state temporal
decoupling of the MaQSP if:
• (feasibility) All local state plans NA = {Na1 , Na2 , . . . ,
Nan} are feasible. That is, there exists a dynamic and
valid execution strategy for each local state plan.

• (validity) Merging any combination of execution strate-
gies for the local state plans NA yields a solution to
the MaQSP, that is, given that the external contingent
episodes CX are satisfied, all the external requirement
episodes EX are also satisfied.
The execution strategy for a local state plan is dynamic as

it may need to react on the fly to real-time observations of
when the uncontrollable events occur. The execution strat-
egy is valid if the resulting execution satisfies all the tem-
poral and state constraints in the state plan. In this paper,
we assume that the evolution of each continuous state vari-
able follows a first-order dynamical model ẋ = v, where
v ≤ vmax with vmax being a fixed maximum change rate.
Definition 4 (Decoupling Problem). The state temporal de-
coupling problem for MaQSP is a tuple 〈M,X0〉, where
M is a MaQSP, and X0 = ∪a∈AX

a
0 specifies the initial

state of the agents at the reference event vZ . The goal is
to find a set of decoupling episodes for each agent EP a

d ,
such that the set of augmented local state plans Na

+∆ =
〈V a, Xa, EP a ∪ EP a

d 〉 for each agent a forms a state tem-
poral decoupling of the MaQSP.

The feasibility condition in Definition 3 requires that the
addition of decoupling episodes does not over-constrain any
local state plan and makes it infeasible. The validity condi-
tion requires that if the local execution strategies satisfy the
decoupling episodes, then the external requirement episodes
must also be satisfied.

Figure 2 shows an example decoupling for our motivat-
ing example, where communication from AUV1 to AUV2
is relayed through the ship and used to support the satisfac-
tion of epHC . The highlighted red arrows represent the de-
coupling episodes. For example, epZF requires that AUV1

Figure 2: Decoupling solution for motivating example

must execute event vF between 81 to 101 minutes after vZ ,
and it must be in region L3 at vF , where L3 is a rectangular
cuboid enclosed by its two corners [〈59, 59, 0〉, 〈76, 76, 0〉].
The execution strategy for the ship is that it should sched-
ule vG as soon as it receives vF ′ until 89 minutes after vZ ,
at which point even if vF ′ is not received, it should sched-
ule vG. A feasible trajectory for each vehicle is shown by
its 〈x, y, d〉 position at each event highlighted in blue. No-
tice that a decoupling solution retains the flexibility for each
agent to execute its own state plan, and it only has to enforce
the necessary constraints to ensure validity.

Decoupling Algorithm
Our state temporal decoupling algorithm for MaQSP builds
on top of the temporal decoupling algorithm for MaSTNU
(Casanova et al. 2016) to handle additional continuous state
constraints, and follows their use of mixed-integer linear
programming (MILP) in order to solve the problem. More
specifically, such an encoding involves encoding both the
validity condition and the feasibility condition in a single
MILP problem, and solving it using off-the-shelf optimiza-
tion solvers. Intuitively, the validity condition specifies a set
of MILP constraints that ensures that the external episodes
across agents are decoupled and can be safely removed from
the MaQSP without affecting the correctness of the execu-
tion result. The feasibility condition specifies a set of MILP
constraints that ensures that the local state plans are feasible
and can be successfully executed.

Our decoupling algorithm extends the original temporal
decoupling algorithm in the following ways: For the validity
condition, we use Casanova’s encoding to decouple all the
external temporal constraints, and add on top of it encoding
to decouple all the external state and delta constraints. For
the feasibility condition, in the case of MaSTNU, since it
only concerns the scheduling problem, its local plan is an in-
stance of simple temporal network with uncertainty (STNU)
(Vidal 1999) without any state constraints. Therefore, the
feasibility of a STNU is simply its dynamic controllability,
which can be encoded as a MILP (Cui and Haslum 2017;
Wah and Xin 2007). With additional continuous state con-
straints, the feasibility of our local state plan becomes a path
planning problem under temporal uncertainty. Therefore, we
extend the MILP encoding to solve for feasibility of QSP
with temporal uncertainty, which is the first to address path
planning under temporal uncertainty as we know of.

In the following, we start by describing the temporal va-

Figure 3: (a) Temporal decoupling without communication
(b) Temporal decoupling with communication relay

lidity encoding (Casanova et al. 2016). We then describe the
encoding for feasibility of QSP, and the state validity en-
coding. The final decoupling algorithm puts everything to-
gether, which consists of the temporal validity encoding, the
state validity encoding, and feasibility constraints for each
agent’s local QSP.

Temporal Validity Encoding
We start by showing two temporal decoupling examples in
Figure 3 to show the intuitive ideas behind the temporal de-
coupling algorithm. In these examples, the goal is to satisfy
the external requirement temporal constraint eAB .

Recall that validity condition requires that by having each
agent execute its own local plan, the external requirement
constraints are guaranteed to be satisfied. In Figure 3(a),
eAB is satisfied by imposing two local temporal constraints,
eZA for AUV1 and eZB for AUV2. Note that since event vZ
is a reference time point shared by all agents, any constraint
connected to it is considered a local constraint. Assuming
these local constraints are satisfied, we have vB − vA =
(vB − vZ)+ (vZ − vA) = [75, 90]+ [−45,−30] = [30, 60],
which satisfies eAB . Intuitively, we have constrained the ex-
ecution time window for the start and end events of eAB

to be relative to a common reference time point. This is the
simplest case of decoupling that requires no communication,
first proposed by Hunsberger (Hunsberger 2002).

In Figure 3(b), we additionally have communication links
eAC and eDE , similar to our motivating example. In this
case, eAB is satisfied by imposing local temporal constraints
eZA for AUV1, eZC and eCD for the ship, and eZE and eEB

for AUV2. Since eAC and eDE are contingent constraints,
we can assume that they are satisfied by nature, and we have
vB−vA = (vB−vE)+(vE−vD)+(vD−vC)+(vC−vA) =
[0, 0]+[0, 5]+[30, 50]+[0, 5] = [30, 60], which also satisfies
eAB . In this case, not only do we need to satisfy the external
requirement constraint eAB , due to the existence of commu-
nication links, the agents receiving the communication need
to have some expectation of when communication will oc-
cur. For example, by constraining eZA, we are guaranteed
that event vC will definitely occur some time in between
vC−vZ = (vC−vA)+(vA−vZ) = [0, 5]+[0, 60] = [0, 65],
which is a contingent temporal constraint, since vC is not
controlled by the ship but can only be observed as it occurs.

With the above intuition, the key idea behind finding these
decoupling constraints is that the imposed local decoupling
constraints need to be tighter or more restrictive than the ex-
ternal requirement temporal constraints to make them redun-
dant, and they should also ensure that the uncontrollable end

event of each communication link has a corresponding lo-
cal contingent constraint that covers all of its possible range
of time occurrence. Note that the problem of finding valid
temporal decoupling constraints is combinatorial, and hence
it is encoded as a MILP summarized below. Readers should
refer to (Casanova et al. 2016; Zhang and Williams 2021)
for more detail.

Given MaSTNU 〈NA, EX , CX , vZ〉, the MILP formula-
tion includes the following variables, where V = ∪a∈AV

a:

(1) Real variables uij for vi, vj ∈ V , with uii = 0.

(2) Boolean variables ckj for (vi, vj , vk) ∈ T , where T =

{(vi, vj , vk)|eij ∈ CX , vk ∈ V a(vj)\{vj}}.

(3) Boolean variables bij for (vi, vj) ∈ EX , where EX =
{(vi, vj)|a(vi) 6= a(vj), eij /∈ CX , eji /∈ CX}.

(4) Boolean variables zijkl for (vi, vj , vk, vl) ∈ Q, where
Q = {(vi, vj , vk, vl)|(vi, vj) ∈ EX , (vk = vl = vZ)∨(
(a(vk) = a(vi)) ∧ (ekl ∈ CX ∨ elk ∈ CX)

)
}.

(5) Integer variables hij ∈ [0, H] for each tuple (vi, vj) ∈
EX , where H = max(|A| − 2, |CX |).

The constraints include the following, where lij = −uji:

(1) ∀vi, vj ∈ V, uij + uji ≥ 0

(2) ∀eij ∈ EX , (lij ≥ Lij) ∧ (uij ≤ Uij)

(3) ∀eij ∈ CX , (0 ≤ lij ≤ Lij) ∧ (uij ≥ Uij)

(4) ∀eij ∈ EX , (bij = 1) ∧ (bji = 1)

(5) ∀(vi, vj) ∈ EX , bij =
∑

vk,vl|(vi,vj ,vk,vl)∈Q zijkl

(6) ∀(vi, vj , vk, vl) ∈ Q, uij ≥ uik + ukl + ulj + (zijkl −
1)M, where M is a large constant

(7) ∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , zijkl ≤ blj

(8) ∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , hij + (1 −
zijkl)(H + 1) ≥ hlj + 1

(9) ∀eij ∈ CX ,
∑

vk|(vi,vj ,vk)∈T ckj = 1

(10) ∀(vi, vj , vk) ∈ T, (ukj ≥ uki + uij + (ckj − 1)M) ∧
(0 ≤ lkj ≤ lki + lij + (1− ckj)M)

(11) ∀(vi, vj , vk) ∈ T s.t. (vi, vk) ∈ EX , ckj ≤ bik and
∀(vi, vj , vk) ∈ T s.t. (vk, vi) ∈ EX , ckj ≤ bki

For our state temporal decoupling algorithm, we make an
adaptation to the above encoding since we do not require all
the communication links to be used. For example, in Figure
1, even though there is a communication link epEE′ from
AUV1 to AUV2, it may not be used to support the decou-
pling of any external requirement episodes, in which case
we do not need to satisfy any of its state constraints. There-
fore, we additionally add a boolean variables pj for each
epij ∈ CX , which denotes whether the communication link
is used or not. We add the following constraints:

• ∀(vi, vj , vk, vl) ∈ Q s.t. ekl ∈ CX , pl ≥ zijkl and
∀(vi, vj , vk, vl) ∈ Q s.t. elk ∈ CX , pk ≥ zijkl. This says
that the communication link must be decoupled if it is
used to support an external requirement constraint.

Figure 4: Feasibility for QSP with temporal certainty

• ∀(vi, vj , vk) ∈ T s.t. elk ∈ CX , pk ≥ ckj . This says that
the communication link must be decoupled if it is used to
support an external contingent constraint.

Additionally, if the end event of a communication link epij
has other constraints connected to it, then we need to set
pj = 1 as well. The constraint (9) in Casanova’s encoding
should be changed to ∀eij ∈ CX ,

∑
vk|(vi,vj ,vk)∈T ckj = pj

so that only the used communication links are decoupled.

Feasibility Encoding for QSP
While the validity encoding ensure that the external episodes
are decoupled, the imposed decoupling episodes may over-
constrain the local state plans. For MaSTNU, Casanova et
al. use the MILP dynamic controllability encoding proposed
by Cui et al. to ensure the feasibility of local STNUs (Cui
and Haslum 2017). We describe a novel feasibility checking
algorithm for QSPs that builds on top of Cui’s MILP encod-
ing. While previous path planning algorithms exist for QSPs
(Fernández-González, Williams, and Karpas 2018; Reeves,
Fernández-González, and Williams 2019; Chen, Williams,
and Fan 2021), they often assume a given total ordering of
the events and that all the events are executable without any
temporal uncertainty. As a result, their solution is typically
a deterministic trajectory with a list of waypoints at fixed
times. As mentioned, due to the existence of uncontrollable
events, our execution strategy for a QSP is a dynamic policy.

To illustrate the high-level idea for finding an execution
strategy for QSP, consider a simple QSP in Figure 4(a). First,
we convert the QSP into its normal form, where every con-
tingent temporal constraint has a lower bound of 0 (Mor-
ris 2006), and no contingent temporal constraint starts from
an uncontrollable event, as shown in Figure 4(b). This can
be achieved by rewriting each contingent episode into a re-
quirement episode with a fixed duration equal to the original
lower bound, followed by a contingent episode with a lower
bound of 0. Second, we enforce a total ordering of the events
at which state variables are constrained, as shown in Figure
4(c). Notice that we only need to order the events that have
state constraints, since for any event without any state con-
straints, we do not care what values the state variables take
at those events. Finally, given the ordering, we can express
the reachability constraint by specifying how long it takes at
least for the agent to go from one location to the next as the
lower bound between those two events, as in Figure 4(d).
We then check the feasibility of QSP by checking its dy-

Figure 5: (a) Example QSP with 5 state constraints (b) Ef-
fective state constraints for example QSP

namic controllability. We now describe the MILP encoding
in detail in the order of state constraints, ordering and reach-
ability constraints, and dynamic controllability constraints.

(1) Encoding State and Delta Constraints First, we en-
code all the continuous state and delta constraints, which in-
cludes: SCstart, SCend, SCoverall, DC. We denote the set
of constrained events as Vsc = {v|v = s(ep(c)),∀c ∈
SCstart ∪ SCoverall ∪DC or v = t(ep(c)),∀c ∈ SCend ∪
SCoverall ∪DC}, where ep(c) denotes the episode that the
constraint c belongs to, and s(ep), t(ep) denote the start and
end event of the episode ep, respectively. For each state vari-
able x ∈ X and for each constrained event vi ∈ Vsc, we
create a continuous variable xi that represents the value of
the state variable at that event. We denote Xi as the vector
of continuous variables for state variables X at event vi.

To encode the satisfaction of state constraints, consider
the example in Figure 5(a) with five state constraints. In this
case, since both X ∈ L2 and X ∈ L4 are overall state con-
straints to be satisfied throughout the episodes, their start and
end events need to satisfy those state constraints too. Ad-
ditionally, since epAB includes a contingent temporal con-
straint with a lower bound of 0, meaning that event vB is
an uncontrollable event that may occur any time on or after
event vA, any state constraint that needs to be satisfied at vB
must also be satisfied at vA as well as throughout episode
epAB . Therefore, the effective state constraints that need to
be satisfied and encoded for Vsc are shown in Figure 5(b).
Note that since we assume normal form of the QSP, event
vA cannot be another uncontrollable event and the propa-
gation of state constraints due to contingent constraints is
limited. Additionally, for any overall state constraint sc of
an episode, any constrained event ordered in between the
episode must also satisfy the constraint. Based on the MILP
dynamic controllability encoding, lij denotes the continuous
variable for the lower bound between event vi and vj . There-
fore, we enforce the overall state constraint sc ∈ SCoverall

for an episode epAB using the following constraint:

(C1) ∀vD ∈ Vsc, (lDA ≥ 0) ∨ (lBD ≥ 0) ∨ sc(XD).

Intuitively, this says that either vD is ordered before vA, or
vD is ordered after vB , or the state constraint has to be satis-
fied at event vD. Note that in the case of vD being an uncon-
trollable event with contingent episode epGD, as mentioned,
any state constraint that applies to vD should apply as an
overall state constraint for the entire episode epGD. If vG is
ordered before vA, based on our reachability analysis in the
following section, XA = XG must hold to satisfy dynamic
controllability, and any event vE ordered in between epGD

Figure 6: Examples for ordering and reachability constraints

also satisfies XG = XE , which automatically satisfies the
overall state constraint.

(2) Encoding Ordering & Reachability In order to en-
force a total ordering between constrained events and reach-
ability between pairs of events, we can combine them into
the following constraints. Note that we assume agents have
first-order dynamics, and our total ordering is a weak total
ordering that allows events to occur simultaneously.

(C2) ∀vA, vB ∈ Vsc such that vA, vB are executable,
∀x ∈ X, (lAB ≥ |xA − xB |/vmax) ∨ (lBA ≥
|xA − xB |/vmax)

(C3) ∀vA, vB ∈ Vsc such that vA or vB is uncontrollable,
(lAB ≥ 0) ∨ (lBA ≥ 0)

(C4) ∀vA, vB ∈ Vsc such that vA is uncontrollable and
vB is executable, ∀x ∈ X, (lBA ≥ 0) ∨ (lAB ≥
|xA − xB |/vmax)

For C2 (Figure 6(a)), when vA and vB are both exe-
cutable events with state variable values XA and XB , then
assuming first-order dynamics, we know it takes at least
maxx∈X |xA − xB |/vmax time to go from one event to an-
other. Therefore, we order them by imposing that the tempo-
ral lower bound either from vA to vB or from vB to vA has to
be greater or equal to the above. For C3 (Figure 6(b)), when
any of vA or vB is an uncontrollable event, then this con-
straint only enforces the ordering between the two events.
C2 and C3 together enforces a global total ordering of all the
constrained events. Note that any contingent episode such as
epCA must satisfy lbCA ≥ 0 by definition, which satisfies
C3. For C4 (Figure 6(b)), when event vB is an executable
event ordered after an uncontrollable event vA, then there is
a reachability constraint from vA to vB .

An example of enforced reachability constraints assum-
ing given order can be seen in Figure 4(d). Note that we
omitted the reachability constraint from vZ to vB to avoid
cluttering, since it is dominated by other reachability con-
straints. Notice that without a reachaility constraint from vC
to vA, XA can take any value within the range of its state
constraints, and we do not strictly require the agent to be
at XA at event vA. To understand the execution strategy,
we will focus on a minimal QSP in Figure 6(b) involving
a contingent episode epCA and the first executable event vB
ordered after vA, since the execution strategy for any con-
secutive executable events is simple. In order to describe
the execution strategy, we will write the QSP’s underlying
temporal network in its labeled distance graph form (Morris
2006) in Figure 7, where lij (uij) denotes the lower bound
(upper bound) from vi to vj . According to C2 and C4, we
have reachability constraints lCB ≥ |XC −XB |/vmax and
lAB ≥ |XA−XB |/vmax. Assuming that XA is constrained

Figure 7: Execution policy in labeled distance graph

to be in region L2, then it means that XC must be within
region L2 too. The execution policy involves the agent start-
ing at location XC at event vC , and going towards XB . If
the agent reaches the boundary for region L2, but hasn’t re-
ceived event vA, then it will be stuck at the boundary until
vA occurs. When vA occurs, the agent continues going to-
wards XB . The execution policy is feasible if the resulting
network is dynamically controllable, because based on the
dynamic controllability constraints:

• uCB − lCB ≥ 0. This ensures that there is enough time
on uCB for the agent to go from XC to XB non-stop.

• uCB−lAB−d ≥ 0. If the agent gets stuck at L2 boundary,
then in the worst case, it needs to wait until d time has
passed before continuing its way to XB . This ensures that
we can find such a location XA within the L2 boundary
such that there is enough time on uCB for the agent to
wait for d time and go from XA to XB .

• uAB − lAB ≥ 0. This ensures that if the agent is stuck
at L2 boundary until vA occurs, there is enough time on
uAB for it to go from the boundary point XA to XB .

• uAB + 0− lCB ≥ 0. This ensures that if event vA occurs
immediately after event vC , there is enough time on uAB

for the agent to go from XC to XB .

Note that it is possible for other events to be ordered in
between vC and vA. If an executable event vD is ordered
in between vC and vA, then reachability and dynamic con-
trollability constraints require that XC = XD. If an uncon-
trollable event vE is ordered in between vC and vA, and its
corresponding contingent episode is epGE , then it requires
that XC = XG and vC = vE , that is, event vC is scheduled
immediately when vE is received. We leave it to the reader
to validate the feasibility of execution policies in these cases.

(3) Encoding Dynamic Controllability We summarize
the MILP constraints that ensure the dynamic controllabil-
ity of the local plans (Cui and Haslum 2017; Wah and Xin
2007). Given a STNU 〈V,E,C〉, where V is the set of
events, E is the set of temporal requirement constraints, and
C is the set of temporal contingent constraints, the MILP
formulation includes the following variables, where VE de-
notes the set of executable events. Note that lij = −uji.

(1) Real variables uij for vi, vj ∈ V , with uii = 0

(2) Real variables wijk for eik ∈ C, vj ∈ VE , with wiik = 0

The MILP constraints are listed below:

(1) ∀eij ∈ E ∪ C, (lij ≥ Lij) ∧ (uij ≤ Uij)

(2) ∀eij ∈ C, (0 ≤ lij ≤ Lij) ∧ (uij ≥ Uij)

(3) ∀vi, vj , vk ∈ V, uij ≤ uik + ukj

Figure 8: Decouple delta constraint for (a) external require-
ment episode (b) external contingent episode

(4) ∀eik ∈ C,∀vj ∈ VE , (ljk < 0) ∨
(
(uij ≤ lik − ljk) ∧

(lij ≥ uik − ujk)
)

(5) ∀eik ∈ C,∀vj ∈ VE , uik − ujk ≤ wijk

(6) ∀eik ∈ C,∀vj ∈ VE , min(lik, wijk) ≤ lij

(7) ∀eik ∈ C,∀vj , vm ∈ VE , wijk − umj ≤ wimk

(8) ∀eik, emj ∈ C, (wijk < 0) ∨ (wijk − lmj ≤ wimk)

When the external contingent episodes are decoupled, ad-
ditional local contingent episodes may be introduced as part
of the decoupling episodes. Therefore, the above encoding
needs to be adapted to handle these optional local contin-
gent constraints. Refer to (Casanova et al. 2016) for detail.

State Validity Encoding
To ensure the validity of decoupling, the external state and
delta constraints across agents should be decoupled too. We
describe how to decouple DC and SCoverall next. For sim-
plicity, we assume that the events of an external episode
epAB are executable events, except for the uncontrollable
end event when epAB is an external contingent episode. This
assumption can be removed with some more analysis. When
encoding state validity constraints, for a communication link
epij , we condition its MILP constraints on pj = 1 so that
they are only enforced when epij is used.

First, as shown in Figure 8, consider an external episode
epAB with a delta constraint dc(Xa

A, X
b
B) ∈ DC. To find

the state decoupling for dc(Xa
A, X

b
B), it suffices to find L1,

L2 such that for any Xa
A ∈ L1 and for any Xb

B ∈ L2,
dc(Xa

A, X
b
B) always holds. In this way, we have decoupled

the external delta constraint by restricting locally for each
agent an area that it should be in at the specific start and
end event of the episode. Note that if epAB is a contingent
episode (Figure 8(b)), then its decoupling involves an intro-
duced local contingent episode epZB in its normal form, or
more specially, a requirement episode epZB′ and a contin-
gent episode epB′B . Because vB is an uncontrollable event,
Xb ∈ L2 has to be satisfied over the entire epB′B .

To encode the above constraint in MILP, while it is pos-
sible to directly find such regions L1, L2 approximated by a
set of points as a polygon, in this paper, we directly enforce
the constraint dc(Xa

A, X
b
B). If epAB is a contingent episode,

we additionally enforce dc(Xa
A, X

b
B′). Once a MILP solu-

tion is found, we can read off region L1 as the point Xa
A,

and region L2 as the point Xb
B or the region enclosed by

Xb
B and Xb

B′ in the case of a contingent episode. As a post-
processing step, we can optionally relax the region L1 and

L2 such that the decoupling is still valid to provide more
flexibility to the agents.

Second, as shown in Figure 9(a), consider an external
requirement episode epAB with an overall state constraint
sc(Xa, Xb) ∈ SCoverall. In this case, the resulting decou-
pling introduces copies of event vA and event vB and exter-
nal temporal constraints eAA′ and eB′B with duration 0. The
decoupling of eAA′ and eB′B can be handled by the tempo-
ral validity encoding. We can similarly find regions L1 and
L2 such that ∀vA ≤ T1 ≤ vB′ , Xa

T1
∈ L1 for agent a and

∀vA′ ≤ T2 ≤ vB , X
b
T2
∈ L2 for agent b, sc(Xa

T1
, Xb

T2
). In

order to encode the above constraints in MILP, we enforce
the constraints sc(Xa

A, X
b
A′), sc(Xa

A, X
b
B), sc(X

a
B′ , Xb

A′)
and sc(Xa

B′ , Xb
B). Additionally, for any constrained events

in between the two episodes, we enforce the overall state
constraint: ∀vaD ∈ V a

sc,∀vbE ∈ V b
sc, (lDA ≥ 0) ∨ (lB′D ≥

0) ∨ (lEA′ ≥ 0) ∨ (lBE ≥ 0) ∨ sc(Xa
D, Xb

E). Finally, we
can read off region L1 as the convex region enclosed by the
state variable values in between vA and vB′ , and similarly
for L2. L1, L2 can also be relaxed in post-processing.

Finally, as shown in Figure 9(b), consider an external
contingent episode epAB with an overall state constraint
sc(Xa, Xb) ∈ SCoverall. The resulting decoupling involves
a local requirement temporal constraint eZA and a local con-
tingent episode epAC for agent a, where epAC has an overall
state constraint Xa ∈ L1 that requires agent a to stay in re-
gion L1 throughout the communication period. Note that we
assume in this case, agent a receives event vC upon commu-
nication epAB finishes, since it is often used to model data
transmission that takes up a period of time. The decoupling
also involves a local requirement temporal constraint eZA′ , a
requirement episode epA′B′ and a contingent episode epB′B

for agent b, where epA′B′ and epB′B are under the over-
all state constraint Xb ∈ L2. We encode the constraints in
MILP in a similar fashion as before.

Preliminary Experiments
We evaluate our algorithm on two AUV team scenarios. All
experiments were run on on 3.40GHZ 8-Core Intel Core i7-
6700 CPU with 39GB RAM, and the MILP encoding was
solved using Gurobi 9.1.2, with a timeout of 100 seconds.
Note that the MILP encoding also allows the specification of
an objective function, which affects the runtime. We evaluate
the algorithm on three objective cases: (obj1) no objective
function, (obj2) minimize the use of communication links,
(obj3) minimize

∑
vi∈V uZi.

For our motivating example, we record the average run-
time for 3 communication scenarios: (ST1) only epEE′ is
available, which the algorithm finds no decoupling solution,
(ST2) epFF ′ and epGG′ are available, and (ST3) all com-
munication links are available. We also test the example for
temporal decoupling only by framing it as a MaSTNU (T3),
and for feasibility only by framing it as a QSP (QSP) that
assumes full observability between agents. We repeat the ex-
periments by adding two other missions to each AUV (tests
denoted by *). The result is shown in Table 1. The results
show that the choice of objective functions can have a large
impact on the runtime. Additionally, the runtime increases

test obj1 obj2 obj3 test obj1 obj2 obj3
ST1 0.24 0.21 0.17 ST1* 2.87 3.33 5.28
ST2 0.4 0.3 0.71 ST2* 4.46 3.15 43.14(1)
ST3 4.23 2.56 24.9 ST3* 18.6(1) 47.39(4) N/A(10)
T3 0.09 0.06 0.94 T3* 0.19 0.19 2.31

QSP 0.04 N/A 0.04 QSP* 6.84 N/A 23.6

Table 1: Average runtime in seconds over 10 runs for differ-
ent tests, with the number of timed out runs in parenthesis

Figure 9: Decouple state constraint of type SCoverall for (a)
external requirement episode (b) external contingent episode

quite drastically as the number of communication links in-
creases. Note that for temporal decoupling, there exists a so-
lution even with only epEE′ , and the added missions are not
totally ordered since no state constraints are enforced.

In a second scenario, the ship deploys an AUV in a region,
and the AUV carries out two sampling missions at different
science sites. When both missions are done, the AUV trans-
mits data through a communication link back to the ship.
The transmission may take any time between 20 to 30 min-
utes, during which they have to stay within 30 meters of each
other. The AUV and the ship needs to stay within 100 meters
of each other throughout the two sampling missions, and the
ship has its own imaging mission to do before a certain dead-
line such that it has to be carried out concurrently while the
AUV is on its sampling missions. Finding a solution takes
1.1 secs on average with obj1 and 1.6 secs with obj3.

Note that our QSP feasibility encoding finds an execution
strategy that fixes the state variable values at constrained ex-
ecutable events, meaning for an executable event vi ∈ Vsc

following an uncontrollable event vj ∈ Vsc with [0, 0] tem-
poral bound, we exclude any execution strategies where state
variables at vi can take any non-deterministic value that is
taken at vj . Future work can investigate if this assumption
can be relaxed. we also assume no obstacles in the environ-
ment and simple dynamics of the vehicles. Future work can
build on top of our encoding to allow richer path planning
constraints and agent dynamics.

Conclusion
In this paper, we introduced the framework of Multi-Agent
Qualitative State Plan (MaQSP) to model multi-agent plans
with coupled temporal and state constraints, where agents
are subject to limited communication during execution. We
proposed a state temporal decoupling algorithm for MaQSP
based on MILP encoding, which includes a novel path plan-
ning algorithm for QSPs with temporal uncertainty that may
be useful in other applications.

Acknowledgments
This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. HR001120C0035. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA).

References
Boerkoel Jr, J. C.; and Durfee, E. H. 2013. Distributed rea-
soning for multiagent simple temporal problems. Journal of
Artificial Intelligence Research 47: 95–156.
Casanova, G.; Pralet, C.; Lesire, C.; and Vidal, T. 2016.
Solving dynamic controllability problem of multi-agent
plans with uncertainty using mixed integer linear program-
ming. In Proceedings of the Twenty-second European Con-
ference on Artificial Intelligence, 930–938. IOS Press.
Chen, J.; Williams, B. C.; and Fan, C. 2021. Optimal Mixed
Discrete-Continuous Planning for Linear Hybrid Systems.
In Proceedings of the 24th International Conference on
Hybrid Systems: Computation and Control, HSCC ’21.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450383394. doi:10.1145/3447928.3456654.
URL https://doi.org/10.1145/3447928.3456654.
Cui, J.; and Haslum, P. 2017. Dynamic controllability
of controllable conditional temporal problems with uncer-
tainty. In 27th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2017).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence 49(1-3): 61–95.
Fernández-González, E.; Williams, B.; and Karpas, E. 2018.
ScottyActivity: Mixed Discrete-Continuous Planning with
Convex Optimization. J. Artif. Intell. Res. 62: 579–664.
Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In AAAI/IAAI.
Léauté, T.; and Williams, B. C. 2005. Coordinating ag-
ile systems through the model-based execution of temporal
plans. In AAAI, 114–120.
Morris, P. 2006. A structural characterization of tempo-
ral dynamic controllability. In International Conference on
Principles and Practice of Constraint Programming, 375–
389. Springer.
Reeves, M.; Fernández-González, E.; and Williams, B.
2019. Executing Multi-Goal Mission Plans for Coordinated
Mobile Robots. In ICAPS 2019 INTEX workshop.
Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal
of Experimental & Theoretical Artificial Intelligence 11(1):
23–45.
Wah, B. W.; and Xin, D. 2007. Optimization of bounds in
temporal flexible plans with dynamic controllability. Inter-
national Journal on Artificial Intelligence Tools 16(01): 17–
44.
Zhang, Y.; and Williams, B. C. 2021. Privacy-Preserving
Algorithm for Decoupling of Multi-Agent Plans with Uncer-
tainty. In Proceedings of the 31st International Conference
on Automated Planning and Scheduling (ICAPS).

Non-monotonic Logical Reasoning Guiding Axiom Induction from Deep Networks
for Transparent Decision Making in Robotics

Tiago Mota1 and Mohan Sridharan2

1Electrical and Computer Engineering, The University of Auckland, New Zealand
tmot987@aucklanduni.ac.nz

2School of Computer Science, University of Birmingham, United Kingdom
m.sridharan@bham.ac.uk

Abstract

This paper describes our architecture developed over the last
few years to provide transparency in decision making in in-
tegrated robot systems that include knowledge-based reason-
ing methods and data-driven learning methods. It couples the
complementary strengths of non-monotonic logical reason-
ing with incomplete commonsense domain knowledge, deep
learning, and inductive learning. During reasoning and learn-
ing, the robot interactively provides on-demand explanations
of its decisions and evolution of beliefs as relational descrip-
tions of relevant objects, attributes, and actions. The archi-
tecture’s capabilities are evaluated in the context of visual
scene understanding and planning based on simulated im-
ages and images from a physical robot manipulating tabletop
objects. Results indicate the ability to reliably acquire previ-
ously unknown domain knowledge, provide accurate expla-
nations, and to eliminate ambiguities in the human queries.

1 Introduction
Imagine a robot arranging objects in desired configurations
on a table, and estimating the occlusion of objects and sta-
bility of object configurations, e.g., Figure 1a. An object is
occluded if any fraction of its frontal face is hidden, and an
object configuration is unstable if any object in it is unsta-
ble. To perform these tasks, the robot extracts information
from on-board camera images, reasons with this informa-
tion and incomplete domain knowledge, and executes suit-
able actions. It also learns previously unknown axioms gov-
erning actions and change, and responds to questions about
its decisions and evolution of beliefs. For instance, assume
the goal in Figure 1b is to have the yellow ball on the or-
ange block, and the plan is to move the blue block on to the
table before placing the ball on the orange block. The robot
answers questions about planned, executed, or hypothetical
actions, e.g., ”why do you want to pick up the blue block
first?” and ”why did you not pick up the pig?”, by exploring
the evolution of related beliefs; it also poses disambiguation
questions, e.g., it responds to the human question ”why did
you not pick up the orange object?” about Figure 1a with
”are you referring to the orange block on the red block?”.

Our architecture seeks to jointly address the knowledge
representation, reasoning, learning, and control challenges

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Test scenario. (b) Robot camera image.
Figure 1: (a) Motivating scenario: Baxter arranging objects
in target configurations; (b) Image from left gripper camera.

posed by the motivating scenario. In this paper, we focus on
the ability to provide on-demand explanations of decisions
and evolution of beliefs in the form of descriptions compris-
ing relations between relevant objects, object attributes, ac-
tions, and robot attributes; action execution is based on the
robot’s built-in abilities (e.g., to move to a location). Provid-
ing such explanations can improve the algorithms and estab-
lish accountability, but it is difficult to do so in integrated
robot systems that use knowledge-based reasoning methods
(e.g., for planning) and data-driven learning methods (e.g.,
for pattern recognition). Our architecture draws on cognitive
systems research, which highlights the benefits of coupling
different representations, reasoning schemes, and learning
methods (Laird 2012; Winston and Holmes 2018) to:
• Combine the principles of non-monotonic logical reason-

ing and deep learning for decision making;
• Automatically learn previously unknown axioms of state

constraints, and action preconditions and effects;
• Automatically trace the evolution of any given belief or

the (non)selection of any given action by inferring the rel-
evant sequence of axioms and beliefs; and

• Exploit the interplay between representation, reasoning,
and learning to describe decisions and beliefs related to
computed or executed plans and hypothetical situations.

These capabilities are evaluated in the context of a robot:
(i) computing and executing plans to arrange objects in de-
sired configurations; and (ii) estimating occlusion of scene
objects and stability of object configurations, in simulated
scenes and in the real world. Results indicate the ability to:
(i) incrementally learn previously unknown axioms govern-
ing domain dynamics; and (ii) construct explanations reli-
ably and efficiently by automatically identifying and reason-
ing with the relevant knowledge and posing disambiguation

questions when needed. This work is described in a journal
article (Mota, Sridharan, and Leonardis 2021) and an up-
coming conference paper (Mota and Sridharan 2021), and
initial versions have appeared at other venues (Mota and
Sridharan 2019, 2020a). We first discuss related work (Sec-
tion 2), and then describe the architecture (Section 3), exper-
imental results (Section 4), and conclusions (Section 5).

2 Related Work
Understanding the operation of AI and machine learning
methods can be used to improve these methods, and to
make automated decision-making more acceptable to hu-
mans (Lewandowsky, Mundy, and Tan 2000). Recent work
in explainable AI and explainable planning (Miller 2019)
can be broadly categorized into two groups. Methods in
one group modify or map learned models or reasoning sys-
tems to make their decisions more interpretable (Ribeiro,
Singh, and Guestrin 2016) or easier for humans to under-
stand (Zhang et al. 2017). Methods in the other group pro-
vide descriptions that make a reasoning system’s decisions
more transparent (Borgo, Cashmore, and Magazzeni 2018),
help humans understand plans (Bercher et al. 2014), and
help justify solutions obtained by non-monotonic logical
reasoning (Fandinno and Schulz 2019). Much of this re-
search is agnostic to how an explanation is structured or as-
sumes comprehensive knowledge.

Given their use in different applications, there is much in-
terest in understanding the operation of deep networks, e.g.,
by computing the features most relevant to the estimated
outputs (Assaf and Schumann 2019; Samek, Wiegand, and
Mller 2017). There has also been work on reasoning with
learned symbolic structure or a graph encoding scene struc-
ture, in conjunction with deep networks to answer ques-
tions about images (Norcliffe-Brown, Vafeais, and Parisot
2018; Yi et al. 2018). However, these approaches: (i) do not
fully integrate reasoning and learning to inform and guide
each other; or (ii) do not use the rich commonsense domain
knowledge for reliable and efficient reasoning, learning, and
the descriptions of the system’s decisions and beliefs.

There are many methods for learning logic-based repre-
sentations of domain knowledge, e.g., incremental revision
of action operators in first-order logic (Gil 1994), inductive
learning of domain knowledge as an Answer Set Prolog pro-
gram (Law, Russo, and Broda 2020), and work in our group
on coupling non-monotonic logical reasoning and relational
reinforcement learning to learn axioms (Mota, Sridharan,
and Leonardis 2020; Sridharan and Meadows 2018). Our
approach for learning domain axioms is inspired by work
in interactive task learning (Laird et al. 2017); unlike meth-
ods that learn from many training examples, our approach
learns from limited training examples.

Our work focuses on integrated robot systems that use
knowledge-based and data-driven methods to reason with
and learn from incomplete domain knowledge and observa-
tions. We enable such robots to generate relational descrip-
tions of decisions, evolution of beliefs, and counterfactual
situations. Recent surveys state that these capabilities are
not supported by existing systems (Anjomshoae et al. 2019;
Miller 2019). Our architecture extends work in our group on

Inputs: Simulated scenes

Outputs:

Labels
(training phase)

Human query

Features
extraction

Decision tree
induction

Text/Audio
processingASP

program

Classification
block

Program
analyzer

Disambiguation

Baxter

Explanations
(relational description)

Output labels

(occlusion, stability)

Relevant
axioms,
literals

Current state

Answer set

New axioms

Trigger

Ambiguity

Disambiguation query

Answer set,
domain
knowledge

Plan

Processed
text

Goal

Real scenes

Figure 2: Architecture combines strengths of non-monotonic
logical reasoning with incomplete commonsense knowl-
edge, deep learning, and inductive learning.

explainable agency (Langley et al. 2017), a theory of expla-
nations (Sridharan and Meadows 2019), and on combining
non-monotonic logical reasoning and deep learning for clas-
sification of simulated images (Mota and Sridharan 2019).

3 Architecture
Figure 2 is an overview of our architecture. Components to
the left of the dashed vertical line combine non-monotonic
logical reasoning and deep learning for decision making.
Components to the right of the dashed line expand reason-
ing capabilities, answer questions about decisions and evolu-
tion of beliefs, and construct disambiguation queries. We de-
scribe all components, focusing on the recent developments,
using the following example domain.

Example Domain 1 [Robot Assistant (RA) Domain]
A Baxter robot: (i) estimates occlusion of scene objects and
stability of object structures, and arranges objects in desired
configurations; and (ii) provides on-demand relational de-
scriptions of decisions and evolution of beliefs. There is un-
certainty in the robot’s perception and actuation, and the
robot uses probabilistic algorithms to visually recognize and
move objects. The robot has incomplete (and potentially im-
precise) domain knowledge, which includes object attributes
such as size, surface, and shape; spatial relations between
objects (above, below, front, behind, right, left, in); some
domain attributes; and some axioms governing domain dy-
namics such as:
• Placing an object on top of an object with an irregular

surface results in an unstable object configuration.
• For any given object, removing all objects blocking the

view of any minimal fraction of its frontal face causes this
object to be not occluded.

• An object below another object cannot be picked up.
This knowledge may need to be revised over time, e.g., some
axioms and the value of some attributes may not be known,
or the robot may find that placing certain objects on an object
with an irregular surface results in a stable configuration.

3.1 Representation, Reasoning, and Learning
We first describe the knowledge representation, reasoning,
and learning components of the architecture.

Knowledge Representation To represent and reason with
domain knowledge, we use CR-Prolog, an extension to An-
swer Set Prolog (ASP) that introduces consistency restoring
(CR) rules; we use “CR-Prolog” and “ASP” interchangeably.

A domain’s description in ASP comprises a system de-
scription D and a history H. D comprises a sorted sig-
nature Σ and axioms encoding the domain’s dynamics. Σ
comprises basic sorts, statics, i.e., domain attributes that
do not change over time, fluents, i.e., attributes whose val-
ues can be changed, and actions; statics, fluents, and ac-
tions are described in terms of the sorts of their arguments.
In the RA domain, the robot needs to reason about spa-
tial relations between objects, and to plan and execute ac-
tions that change the domain. Such a dynamic domain is
modeled in our architecture by first describing Σ and the
transition diagram in action language ALd (Gelfond and
Inclezan 2013); this description is then translated to ASP
statements. The basic sorts include object, robot, size,
relation, surface, and step for temporal reasoning; stat-
ics include obj size(object, size) and obj surface(object, sur-
face); fluents include obj relation(relation, object, object),
e.g., obj relation(above, A, B) implies object A is above
object B, and in hand(robot, object); and actions include
pickup(robot, object) and putdown(robot, object, location).
In addition, the relation holds(fluent, step) implies that a par-
ticular fluent holds true at a particular timestep.

Given the Σ, axioms of a domain consist of causal laws,
state constraints, and executability conditions. For the RA
domain, these are translated to ASP statements such as:

holds(obj relation(on,Ob1, Ob2), I + 1) ← (1a)
occurs(putdown(rob1, Ob1, Ob2), I)

holds(obj relation(above,Ob1, Ob2), I)← (1b)
holds(obj relation(below,Ob2, Ob1), I)

¬occurs(pickup(rob1, Ob1), I) ← (1c)
holds(obj relation(below,Ob1, Ob2), I)

which encode a causal law, a state constraint, and an ex-
ecutability condition respectively, e.g., Statement 1(a) im-
plies that executing the putdown action causes the object in
the robot’s grasp (Ob1) to be on top of object (Ob2) in the
next time step. The axioms also encode some commonsense
knowledge in the form of default statements that hold un-
less stated otherwise, e.g., “larger objects placed on smaller
objects are unstable” is encoded in ASP as:

¬holds(stable(A), I)← (2)
holds(obj relation(above,A,B), I),

size(A, large), size(B, small),

not holds(stable(A), I)

where “not” denotes default negation. In addition to ax-
ioms, information from the input images (e.g., spatial re-
lations, object attributes) with sufficiently high probabil-
ity is converted to ASP statements at that time step. Also,
the domain’s history H comprises records of fluents ob-
served to be true or false at a particular time step, i.e.,
obs(fluent, boolean, step), and of the execution of an ac-
tion at a particular time step, i.e., hpd(action, step). This

notion can be expanded to include defaults describing the
values of fluents in the initial state (Sridharan et al. 2019).

For reasoning, our architecture constructs the CR-Prolog
program Π(D,H), which includes Σ and axioms of D, in-
ertia axioms, reality checks, closed world assumptions for
actions, and observations, actions, and defaults from H; see
our open-source repository (Mota and Sridharan 2020b).
Planning, diagnostics, and inference is reduced to comput-
ing answer sets of Π. Each answer set represents the robot’s
beliefs in a possible world; the literals of fluents and statics
at a time step represent the state at that time step. Although
incorrect inferences can occur due to incomplete knowledge
or noisy sensor inputs, non-monotonic logical reasoning en-
ables recovery from such errors. In addition, others in our
group have combined logical reasoning at a coarse resolu-
tion with probabilistic reasoning over the relevant part of
a finer resolution domain representation (Sridharan et al.
2019). To focus on the interplay between non-monotonic
logical reasoning and learning, we limit ourselves to logi-
cal reasoning at one resolution in this paper.

Classification Block (CNNs) In our architecture, for any
given image, the robot tries to perform the estimation tasks
(e.g., occlusion of objects, stability of object configura-
tions) using ASP-based reasoning. If an answer is not found,
or an incorrect answer is found (on training examples),
the robot automatically extracts relevant regions of inter-
est (ROIs) from the corresponding image. Parameters of
existing Convolutional Neural Network (CNN) architec-
tures (e.g., Lenet (LeCun et al. 1998), AlexNet (Krizhevsky,
Sutskever, and Hinton 2012)) are tuned to map information
from each such ROI to the corresponding classification la-
bels. The robot reasons with task knowledge (e.g., estimat-
ing occlusion) to automatically identify and ground only the
relevant axioms and relations to determine the ROIs (Mota
and Sridharan 2019); the notion of relevance is also ex-
panded to construct explanations efficiently in Section 3.2.

Decision Tree induction of Rules In our architecture, im-
ages used to train the CNNs are considered to contain infor-
mation about missing or incorrect constraints related to the
estimation tasks (occlusion, stability). Image features and
spatial relations extracted from ROIs in each such image,
and the known occlusion and stability labels (during train-
ing), are used to incrementally learn a decision tree sum-
marizing the corresponding state transitions; this process re-
peatedly splits nodes based on unused attributes likely to
provide the highest entropy reduction. Trees are learned sep-
arately for different actions, and branches of a tree that sat-
isfy minimal thresholds on purity at the leaf (≥ 95% samples
in one class) and on the level of support from labeled ex-
amples (≥ 5%) are used to construct candidate constraints.
Candidates without a minimal level of support (≥ 5%) on
unseen examples are removed. These thresholds are set to
identify highly likely axioms; small changes to thresholds do
not affect performance and the thresholds can be revised for
other outcomes, e.g., lowered to identify default constraints.
Also, to handle noisy images, we only retain axioms iden-
tified over a number of cycles of learning and validation. In
addition, different versions of the same axiom are merged to

remove over-specifications, e.g.:
¬stable(A) ← obj relation(above,A,B), (3a)

obj surface(B, irregular)

¬stable(A) ← obj relation(above,A,B), (3b)
obj surface(B, irregular),

obj size(B, large)

where Statement 3(b) is removed because size of the ob-
ject at the bottom of a stack does not add any information
about instability given that it has an irregular surface. If the
robot later observes that a large object with an irregular sur-
face can support a small object, the axiom will be revised. To
merge axioms, those with the same head and some overlap in
the body are grouped. Each combination of one axiom from
each group is encoded in an ASP program along with axioms
that are not in any group. This program is used to classify ten
labeled scenes, only retaining axioms in the program that
provides the highest accuracy on these scenes. In addition,
to filter axioms that cease to be useful over time, the robot
associates each axiom with a strength that decays exponen-
tially if it is not reinforced, i.e., not used or learned again.
Any axiom with strength below a threshold is removed.

In addition to constraints, the robot learns previously un-
known causal laws and executability conditions if there is a
mismatch between the expected and observed state after ac-
tion execution. Any expected but unobserved fluent literal
indicates missing executability condition(s); any observed
unexpected fluent literal suggests missing causal law(s).

1. To explore missing executability conditions, the robot
simulates the execution of the action (that caused the in-
consistency) in different initial states and stores relevant
information from the initial state and a label indicating
the presence or absence of inconsistency. Any fluent lit-
eral in the answer set or initial state containing an object
constant that occurs in the action is relevant; it is stored
with variables replacing ground terms.

2. To explore a missing causal law, training samples are col-
lected as in Step 1, but the robot label is the unexpected
fluent literal from the resultant state.

3. Separate decision trees are created with the relevant infor-
mation from the initial state as the features (i.e., nodes)
and the output labels (presence/absence of inconsistency
for executability condition, unexpected fluent for causal
law). The root is the executed action.

Axioms are constructed from the trees and merged as before.

3.2 Transparent Decision Making
Our architecture’s components that provide the desired rela-
tional descriptions of decisions, beliefs, and the outcomes of
hypothetical events, exploit the interplay between represen-
tation, reasoning, and learning, as described below.

Interaction interface Human interaction with our archi-
tecture is through speech or text. Existing implementations
and a controlled (domain-specific) vocabulary are used to
parse human verbal input and convert text to verbal re-
sponse. Specifically, verbal input from a human is tran-
scribed into text from the controlled vocabulary. This (or the

input) text is labeled using a part-of-speech (POS) tagger,
and normalized with the lemma list (Someya 1998) and re-
lated synonyms and antonyms from WordNet (Miller 1995).
The processed text helps identify the type of request: a de-
sired goal or a question about decisions, beliefs, or hypo-
thetical events. Any goal is sent to the ASP program for
planning; the robot executes the plan, performing diagnos-
tics and replanning as needed, until the goal is achieved. For
any question, the “Program Analyzer” considers the domain
knowledge (including inferred beliefs) and processed human
input to automatically identify relevant axioms and literals.
These literals are inserted into generic response templates
based on the controlled vocabulary, resulting in human-
understandable (textual) descriptions that are converted to
synthetic speech if needed. Whenever the posed query or
request is ambiguous, the disambiguation component con-
structs and poses queries to remove the ambiguity.

Tracing beliefs/axioms Our architecture supports the
ability to infer the sequence of axioms and beliefs that ex-
plains the evolution of any given belief or the non-selection
of any given ground action at a given time; the “Program An-
alyzer” component (see below) uses this inferred sequence
to construct explanations. We adapt the notion of proof trees,
which have been used to explain observations in the con-
text of classical first-order logic statements (Ferrand, Les-
saint, and Tessier 2006), to our formulation based on non-
monotonic logic, to obtain the following methodology:

1. Select axioms with the target belief or action in the head.
2. Ground literals in the body of each selected axiom. Check

if they are supported by the current answer set.
3. Create a new branch in a proof tree (with the target belief

or action as the root) for each selected axiom supported
by the answer set, and store the axiom and the related sup-
porting ground literals in suitable nodes.

4. Repeats Steps 1-3 with the supporting ground literals in
Step 3 as target beliefs in Step 1, until all branches reach
a leaf node without any further supporting axioms.

Paths from the root to the leaves in these trees provide expla-
nations. If multiple such paths exist, the algorithm randomly
selects one of the shortest branches to compose answers—
see (Mota, Sridharan, and Leonardis 2021) for examples.

Program analyzer Algorithm 1 describes the approach
for automatically identifying and reasoning with the relevant
information to construct relational descriptions in response
to questions or requests. We do so in the context of four
types of explanatory requests or questions; the first three
were introduced in prior work as questions to be considered
by any explainable planning system (Fox, Long, and Maga-
zzeni 2017), and we also consider the evolution of beliefs:

1. Plan description When asked to describe a particular
plan, the robot parses the related answer set(s) to extract
a sequence of actions of the form occurs(action1, step1),
..., occurs(actionN, stepN) (line 3, Algorithm 1). These
actions are used to construct the response.

2. Action justification: Why action X at step I? To jus-
tify the execution of any particular action at step I:

Algorithm 1: (Program Analyzer) Answer query
Input : Literal of input question; Π(D,H); answer

templates.
Output: Answer and answer Literals.
// Compute answer set

1 AS = AnswerSet(Π)
2 if question = plan description then

// Retrieve all actions from answer
set

3 answer literals = Retrieve(AS, actions)
4 else if question = ”why action X at step I?” then

// Extract actions after step I
5 next actions = Retrieve(AS, actions for step > I)

// Extract axioms influencing these
actions

6 relevant axioms = Retrieve(Π, head = ¬ next actions)
// Extract relevant literals from

Answer Set
7 relevant literals = Retrieve(AS, Body(relevant axioms)

∈ I∧ /∈ I + 1)
// Output literals

8 answer literals = pair(relevant literals, next actions)
9 else if question = ”why not action X at step I?” then

// Extract axioms relevant to action
10 relevant axioms = Retrieve(Π, head = ¬ occurs(X))

// Extract relevant literals from
Answer Set

11 answer literals = Retrieve(AS, Body(relevant axioms)
∈ I∧ /∈ I + 1)

12 else if question = ”why belief Y at step I?” then
// Extract axioms influencing this

belief
13 relevant axioms = Retrieve(Π, head = Y)

// Extract body of axioms
14 answer literals = Recursive Examine(AS,

Body(relevant axioms))
15 Construct Answer(answer literals, answer templates)

(a) For each action A that occurred after time step
I , the robot examines relevant executability condi-
tion(s) and identifies literal(s) that would prevent
A’s execution (lines 5-7). For the goal of placing
the orange block on the table in Figure 1b, assume
that the actions executed include occurs(pickup(robot,
blue block), 0), occurs(putdown(robot, blue block), 1),
and occurs(pickup(robot, orange block), 2). If the fo-
cus is on the first pickup action, an executability con-
dition related to the second pickup action:

¬occurs(pickup(robot, A), I) ←
holds(obj relation(below,A,B), I)

is ground in the scene to obtain obj relation(below, or-
ange block, blue block) as a literal of interest.

(b) If any identified literal is in the answer set at the time
step of interest (0 in this example), and is absent or
negated in the next step, it is a reason for executing the
action (X) under consideration (line 7).

(c) The condition modified by the execution of the action
of interest (X) is paired with the subsequent action (A)

to construct the answer (line 8). For instance, the ques-
tion “Why did you pick up the blue block at time step
0?”, receives the answer “I had to pick up the orange
block, and it was located below the blue block”.

A similar approach is used to justify the selection of any
particular action in a plan that has not been executed.

3. Hypothetical actions: Why not action X at step I? For
questions about actions not selected for execution:

(a) The robot identifies executability conditions that have
actionX in the head, i.e., conditions that (if true) would
prevent X from being included in plans (line 10).

(b) For each identified executability condition, the robot
examines whether literals in the body are satisfied in
the corresponding answer set (line 11). If so, these lit-
erals are used to construct the answer.

Suppose action putdown(robot, blue block, table) oc-
curred at step 1 in Figure 1b. For the question “Why did
you not put the blue block on the tennis ball at step 1?”,
the following related executability condition is identified:

¬occurs(putdown(robot, A, B), I) ←
has surface(B, irregular)

which implies that an object cannot be placed on another
object with an irregular surface. The answer set indicates
that the tennis ball has an irregular surface. The robot an-
swers “Because the tennis ball has an irregular surface”.
This process uses the belief tracing approach above.

4. Belief query: Why belief Y at step I? To explain any
particular belief, the robot uses the belief tracing approach
to identify the supporting axioms and relevant to construct
the answer. For instance, to explain the belief that object
ob1 is unstable in step I , the robot finds the support axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)

Assume that the current beliefs include that ob1 has a
small base. Searching for why ob1 is believed to have a
small base identifies the axiom:

holds(small base(ob1), I) ←
holds(relation(below, ob2, ob1), I),

has size(ob2, small), has size(ob1, big)

Asking “why do you believe object ob1 is unstable at step
I?” would provide the answer “Because object ob2 is be-
low object ob1, ob2 is small, and ob1 is big”.

Disambiguation Questions or requests posed by humans
may be ambiguous in terms of the objects or the time step
that they reference. Our architecture includes a method to
automatically construct questions that try to address such
ambiguity. Consider a number of attributes (e.g., colors,
shape) that characterize objects in the scene, and assume that
the robot can identify these attributes. Different disambigua-
tion queries can be formed by combining these attributes. In
our approach, which is inspired by findings in psychology
and cognitive science (Friedman 1974; Read and Marcus-
Newhall 1993), the robot constructs the query most likely

to address the ambiguity based on three heuristic measures
applied in the following sequence:

1. Unambiguity: this measure selects attributes that match
with a minimum number of ambiguous objects in the con-
text of the query and scene under consideration.

2. Human confusion: based on the understanding that
queries with many attributes are more likely to confuse a
human, this measure is biased towards selecting questions
with the minimum number of attributes.

3. Attribute/feature rank: this measure seeks to select can-
didate questions comprising more ”useful” attributes. It is
a linear combination of human preference and the detec-
tion complexity of each attribute, which are determined
by the robot’s domain interactions and algorithms, and is
calculated as follows:

Feature rank =α× (human preference) +

β × (detection complexity).

where the values of α and β are dynamically updated to
reflect the relative importance of the two measures. Here,
human preference expresses the predilection of humans to-
wards using certain attributes for describing certain objects,
and the detection complexity reflects the difficulty a robot
has in detecting the specific attribute. These are domain-
specific measures whose values are determined from statis-
tics collected during an initial semi-supervised training
phase. For instance, suppose a robot is able to detect color,
size and shape of objects, and the current values for α and β
are 0.6 and 0.4 respectively. The values of human preference
and detection complexity can be computed experimentally,
and incrementally updated based on the agent’s experiences.

A crude method for constructing disambiguation queries
would consider all possible combinations of attributes (not
included in the human input) to construct candidate queries.
It would apply the three measures, and stop when only one
candidate query remains or all three measures have been
applied. Such an approach would construct and consider a
large number of queries in a complex domain. To address
this problem, our architecture introduces a notion of rele-
vance (different from that used to identify ROIs for deep
learning) to identify and use contextual knowledge to con-
struct relevant queries. To do so, the robot uses the belief
tracing algorithm (that retrieve from the knowledge base the
support information for a specific belief) to identify infor-
mation that can be used to address the current ambiguity.

As described earlier, any human query or request is trans-
lated to literals compatible with the information in the
knowledge base using the text and audio interface and the
program analyzer components. For ease of understanding,
assume that the human query maps to a single literal; this
is grounded for as many each entity that matches the query
in the current scene. The negation of such literals are used
as the initial beliefs in the beliefs tracing algorithm. The
negated literals not supported by the knowledge base receive
higher attention. For instance, in the scene depicted in Fig-
ure 4, suppose the human request is “Put the green mug on
the top of the yellow object”. Since there are three yellow

objects in the scene, the request is ambiguous. The follow-
ing negated action literals are then used as input to the be-
liefs tracing algorithm:

¬occurs(putdown(rob1,mug, yellow duck), I)

¬occurs(putdown(rob1,mug, yellow cylinder), I)

¬occurs(putdown(rob1,mug, yellow block), I)

The first two literals are supported by the knowledge base,
i.e., the robot knows these actions cannot be executed given
the current state and axioms. So the robot prioritizes the
yellow cube as being the object of interest and the disam-
biguation question is biased towards confirming this intu-
ition, with the candidate query being: “Do you want the mug
on top of the yellow block?”. Section 4.2 discusses examples
related to this algorithm.

4 Experimental Setup and Results
Section 4.1 describes the experimental setup, followed by
execution traces in Section 4.2 and quantitative results in
Section 4.3. We evaluated the ability to learn axioms and
construct relational descriptions of decisions, evolution of
beliefs, and outcomes of hypothetical events.

4.1 Experimental Setup
We experimentally evaluated the following hypotheses:

H1 : our architecture enables the robot to accurately learn pre-
viously unknown domain axioms;

H2 : reasoning with incrementally learned axioms improves
the quality of plans generated;

H3 : exploiting the links between reasoning and learning im-
proves the accuracy of the explanatory descriptions;

H4 : our disambiguation approach reduces the number of
queries posed by the robot and increases the explanation
accuracy after the first disambiguation question; and

H5 : the information retrieved by belief tracing enables the
robot to construct better disambiguation queries.

Experimental trials considered images from the robot’s cam-
era and simulated images. Real world images contained
5 − 7 objects of different colors, textures, shapes, and sizes
in the RA domain of Example 1. The objects included
cubes/blocks, a pig, a capsicum, a tennis ball, an apple, an
orange, and a pot. These objects were either stacked on
each other or spread on the table—see Figure 1b. A to-
tal of 40 configurations were created, each with five dif-
ferent goals for planning and four different questions for
each plan, resulting in a total of 200 plans and 800 ques-
tions. We used a Baxter robot to manipulate objects on a
tabletop. Since it is difficult to explore a wide range of ob-
jects and scenes with physical robots, we also used a real-
time physics engine (Bullet) to create 40 simulated images,
each with 7 − 9 objects (3 − 5 stacked and the remain-
ing on a flat surface). Objects included cylinders, spheres,
cubes, a duck, and five household objects from the Yale-
CMU-Berkeley dataset (apple, pitcher, mustard bottle, mug,
and box of crackers). We once again considered five differ-
ent goals for planning and four different questions for each

plan, resulting in the same number of plans (200) and ques-
tions (800) as with the real world data.

To explore the interplay between reasoning and learning,
we focused on the effect of learned knowledge on planning
and constructing explanations. Specifically, we ran experi-
ments with and without some learned axioms in the knowl-
edge base. Learned axioms were revised over time, as de-
scribed in Section 3.1, whereas the learned axioms were not
used by the baselines for planning and explanation genera-
tion. During planning, we measured the number of optimal,
sub-optimal, and incorrect plans, and the planning time. An
”optimal” plan is a minimal plan to achieve the goal; the
quality of a plan was also measured in terms of the ability
to compute such minimal plans with the least number of ac-
tions to achieve the goal. The quality of an explanation was
measured in terms of precision and recall of the literals in
the answer provided by our architecture in comparison with
the expected (“ground truth”) response provided in a semi-
supervised manner based on manual input and automatic se-
lection of relevant literals.

For the disambiguation experiments, we created 200 sim-
ulated images, each with 7 − 15 objects stacked or spread
on a flat surface (table) as before. We considered ques-
tions containing 2 − 10 ambiguous objects, with 2 − 10 at-
tributes/features available for disambiguation. One hundred
images containing up to 10 objects were used for questions
containing up to six ambiguous entities whereas the other
100 were used for question with more than six ambiguous
entities. We registered the number of features and interac-
tions required, and the accuracy of the robot’s responses af-
ter posing the disambiguation queries. We compared the pro-
posed algorithm with the baseline algorithm that randomly
and incrementally selects features for disambiguation (from
the set of relevant attributes) until there is no more ambigu-
ity or no more features available to use in a disambiguation
query. The baseline initially uses the same number of fea-
tures as the proposed algorithm, and then adds one feature
at a time. Each extra feature explored in a disambiguation
query is considered as an additional interaction.

We discuss quantitative experimental results after describ-
ing some execution traces of our architecture’s operation.

4.2 Execution Traces
The following execution traces illustrate our architecture’s
ability to construct relational descriptions of the decisions,
beliefs, and the outcomes of hypothetical actions.

Execution Example 1 [Plans, actions, and beliefs]
Consider a robot that starts with objects as shown in Fig-
ure 1b. The robot is assigned the goal of achieving a state
in which the red block is on top of the orange block,
i.e., holds(obj relation(on, red block, orange block), I). The
robot answers the following questions after executing a plan
and achieving the assigned goal:
• Human: ”Please describe the plan.”

Baxter: ”I picked up the blue block. I put the blue block
on the table. I picked up the orange block. I put the orange
block on the table. I picked up the red block. I put the red
block on the orange block.”

Figure 3: Relation between blue cube and red cube is impor-
tant for the explanation in Execution Example 1.

Figure 4: Example simulated scene used in the evaluation.

• The human may ask the robot to justify a particular action
in the executed plan.
Human: ”Why did you pick up the blue block at step 0?”
Baxter: ”Because I had to pick up the red block, and it
was below the blue block.”
The constructed answer is also used to automatically
highlight the relevant image regions that influenced this
answer, as shown in Figure 3.

• The human now may ask about particular actions that
were not considered.
Human: ”Why did you not put down the orange block on
the blue block?”
Baxter: ”Because the blue block is small.” In the absence
of a reference to a time step, the robot answers the ques-
tion based on the single instance (in the executed plan) of
putting the orange block on another block or surface. The
answer is also based on a learned default constraint, i.e.,
that objects with a small base are typically unstable.

• The human may also ask about particular beliefs.
Human: ”Why did you believe that the red block was be-
low the blue block in the initial state?”
Baxter: ”Because I observed the red block below the blue
block in step 0.”

The following execution traces illustrate our architecture’s
ability to construct and use disambiguation queries to pro-
vide relational descriptions as explanations in response to
human queries and requests.
Execution Example 2 [Disambiguation example 2]
Consider the scenario shown in Figure 4, and assume that
objects are characterized by color, shape, and size. A human
may pose the following request to the robot:
• Human: ”Please pick up the yellow object.”

This is an ambiguous request because it is unclear which
yellow object the human is referring to.

• The baseline disambiguation strategy would randomly
choose and use one of the two unused attributes to ask
a follow up question. This could take the form of:
Robot: ”What is the size of the yellow object?”
In this case, the three yellow objects are of comparable
size (medium), so the robot would need at least one more
question for disambiguation.

• As stated in Section 3.2, our approach uses three measures
to choose the best attributes to construct disambiguation
queries. Assume that all possible combinations of the two
unused features (size and shape) are considered to con-
struct candidate disambiguation queries, i.e., size, shape,
and size and shape are considered.

• Using the unambiguity measure, the robot chooses at-
tribute(s) resulting in the least number of matching enti-
ties. Since yellow objects are of a similar size (medium),
no candidate query is constructed based just on size.

• Based on the human confusion measure, the robot seeks
to construct queries based on the minimum number of at-
tributes. In our example, the candidate query containing
only the shape attribute is preferred over the other com-
bining size and shape, constructing the question:
Robot: ”What is the shape of the yellow object?”

• Only two measures were used for constructing a disam-
biguation query in this example. However, in more com-
plex situations and/or when two or more queries are con-
sidered, the third (attribute rank) measure will help select
the most useful query to be posed to the human.

Execution Example 3 [Disambiguation and Axioms trace]
Continuing with the previous example, assume that the hu-
man now requests:
• Human: ”Please move mug on top of the yellow object.”

This request is also ambiguous because similar to Exe-
cution Example 2, the robot is unsure which of the three
yellow objects the human is referring to.

• Unlike Execution Example 2, we now consider the exist-
ing axioms in the ASP program to provide contextual in-
formation that reduces the ambiguity and the search space
during the construction of the disambiguation queries.

• Assume that that robot knows the following axioms:
¬holds(stable(Ob1), I) ← (4a)

holds(obj relation(above,Ob1, Ob2), I),

has surface(Ob2, irregular)

¬occurs(putdown(rob1, Ob1, Obj2), I) ← (4b)
holds(obj relation(below,Ob2, Ob3), I)

Statement 4(a) eliminates the duck as a possible place
for the mug since it is known to have an irregular sur-
face. This reduces the number of ambiguous entities to
two. Statement 4(b) favors the yellow block (on top of the
green block) as the possible supporting place for the mug.

• It is possible to place the mug on top of the yellow cylin-
der after removing the red block, but the yellow block of-
fers a simpler solution based on the unambiguity measure;
the following disambiguation query is thus constructed:
Robot: ”Should I move mug on top of the yellow block?”
The human’s answer helps the robot complete its task.

Table 1: Precision and recall for learning previously un-
known axioms. Errors under ”Strict” mainly correspond to
over-specifications with irrelevant literals.

Missing Axioms Precision Recall
Strict 69.2% 78.3%

Relaxed 96% 95.1%

4.3 Experimental Results
The first set of experiments evaluated H1. We removed five
axioms (two causal laws and three executability conditions)
from the robot’s knowledge, and ran the learning algorithm
20 times. We measured the precision and recall of learning
the missing axioms in each run; Table 1 summarizes the re-
sults. Each run stopped if the robot executed a number of ac-
tions without detecting any inconsistency, or if the number
of decision trees constructed exceeded a number. The row
labeled ”Strict” summarizes results when any variation in
the target axiom was considered an error, i.e., over-specified
axioms with additional irrelevant literals were considered to
be incorrect. Equation 5 shows an example of such an ax-
iom in which the second literal in the body is irrelevant.
The row labeled ”Relaxed” summarizes results when over-
specifications were not considered errors; the high precision
and recall support hypothesis H1.

¬holds(in hand(R1, O1), I + 1) ←
occurs(putdown(R1, O1, O2), I),

¬holds(in hand(R1, O5), I). (5)

The second set of experiments was designed to evaluate H2.
1. As stated earlier, 40 initial object configurations were

created. The Baxter automatically extracted information
(e.g., attributes, spatial relations) from images corre-
sponding to top and frontal views (cameras on the left and
right grippers), and encoded it in the ASP program as the
initial state.

2. For each initial state, five goals were randomly chosen and
encoded in the ASP program. The robot reasoned with the
existing knowledge to create plans for these 200 combi-
nations (40 initial states, five goals).

3. The plans were evaluated in terms of the number of opti-
mal, sub-optimal and incorrect plans, and planning time.

4. Trials were repeated with and without learned axioms,
and for the simulated images.

Since the number of plans and planning time vary depending
on the initial conditions and the goal, we conducted paired
trials with and without the learned axioms included in the
ASP program used for reasoning. The initial conditions and
goal were identical in each paired trial, but differed between
paired trials. Then, we expressed the number of plans and
the planning time with the learned axioms as a fraction of
the corresponding values obtained by reasoning without the
learned axioms. The average of these fractions over all the
trials is reported in Table 2. We also computed the number
of optimal, sub-optimal, and incorrect plans in each trial as
a fraction of the total number of plans; we did this with and

Table 2: Number of plans and planning time after includ-
ing the learned axioms, expressed as a fraction of the values
without including the learned axioms.

Ratio (with/without)
Measures Real scenes Simulated scenes

Number of steps 1.15 1.23
Number of plans 0.81 1.08

Planning time 0.96 1.02

Table 3: Number of optimal, sub-optimal, and incorrect
plans expressed as a fraction of the total number of plans.
Reasoning with the learned axioms improves performance.

Real Scenes Simulated Scenes
Plans Without With Without With

Optimal 0.4 0.9 0.14 0.3
Sub-optimal 0.11 0.1 0.46 0.7

Incorrect 0.49 0 0.4 0

without using the learned axioms for reasoning, and the av-
erage over all trials is summarized in Table 3.

These results indicate that for images of real scenes, us-
ing the learned axioms for reasoning significantly reduced
the search space, resulting in a smaller number of plans and
a reduction in the planning time. The use of the learned ax-
ioms did not make any significant difference with the sim-
ulated scenes. This is understandable because the simulated
images had more objects (than real scenes) with several of
them being small objects. This increased the number of pos-
sible plans to achieve any given goal. Also, when the robot
used the learned axioms for reasoning, it reduced the num-
ber of sub-optimal plans and eliminated all incorrect plans.
Also, almost every sub-optimal plan was created when the
corresponding goal could not be achieved without creating
an exception to a default. Without the learned axioms, a
larger fraction of the plans were sub-optimal or incorrect.
The number of sub-optimal plans is higher with simulated
scenes that have more objects to consider. These results sup-
port hypothesis H2 but also indicate the need to explore
complex scenes further.

The third set of experiments was designed to evaluate H3:

1. For each of the 200 combinations (40 configurations, five
goals) from the first set of experiments with real-world
data, we considered knowledge bases with and without
the learned axioms and asked the robot compute plans to
achieve the goals.

2. The robot had to describe the plan and justify the choice
of a particular action (chosen randomly) in the plan. Then,
one parameter of the chosen action was changed ran-
domly to pose a question about why this new action could
not be applied. Finally, a belief related to the previous two
questions had to be justified—see Execution Example 1.

3. The literals present in the answers were compared against
the expected literals in the ”ground truth” response, with
the average precision and recall scores reported in Table 4.

4. We also performed these experiments with simulated im-
ages, and the results are summarized in Table 5.

Tables 4, 5 show that when the learned axioms were used
for reasoning, the precision and recall of relevant literals

Table 4: (Real scenes) Precision and recall of retrieving rel-
evant literals for constructing answers to questions with and
without using the learned axioms for reasoning. Using the
learned axioms significantly improves the ability to provide
accurate explanations.

Precision Recall
Query Type Without With Without With

Plan description 78.54% 100% 67.52% 100%
Why X? 76.29% 95.25% 66.75% 95.25%

Why not X? 96.61% 96.55% 64.04% 100%
Belief 96.67% 99.02% 95.6% 100%

Table 5: (Simulated scenes) Precision and recall of retriev-
ing relevant literals for constructing answers to questions
with and without reasoning with learned axioms. Using the
learned axioms significantly improves the ability to provide
accurate explanations.

Precision Recall
Query Type Without With Without With

Plan description 70.78% 100% 57.98% 100%
Why X? 65.63% 93.0% 57.75% 93.0%

Why not X? 90.53% 96.38% 65.15% 100%
Belief 92.73% 98.44% 90.27% 99.21%

(for constructing the explanation) were higher than when the
learned axioms were not included. The improvement in per-
formance is particularly pronounced when the robot had to
answer counterfactual questions about actions not consid-
ered during planning. The precision and recall rates were
reasonable even when the learned axioms were not included
for certain types of questions; this is because not all the
learned axioms are needed to accurately answer each ex-
planatory question. When the learned axioms were used for
reasoning, errors were very rare and corresponded to some
additional literals being included in the answer (i.e., over-
specified explanations). Experimental results thus indicate
that coupling reasoning and learning to inform and guide
each other enables the robot to provide accurate relational
descriptions of decisions, evolution of beliefs, and the out-
comes of hypothetical actions. This supports hypothesis H3.
Additional examples of images, questions, and answers, are
in our open source repository (Mota and Sridharan 2020b).

The fourth set of experiments was designed to evaluate
hypothesis H4:

1. A hundred initial object configurations were constructed
randomly (similar to that in Figure 4). The information
extracted from each such image (e.g., object attributes,
spatial relations) was encoded in the corresponding ASP
program as the initial state.

2. For each initial state, we considered questions in which
2−10 objects were ambiguous, and 2−10 attributes were
available for the construction of disambiguation queries.

3. The total number of attributes used for disambiguation
was the same for the baseline algorithm and our algo-
rithm. When a sufficient number of attributes were not
available, all available attributes were considered.

4. We ran the baseline for the same 100 scenes mentioned
above, and considered any additional attribute needed by

Figure 5: Average number of interactions required by the
baseline for disambiguation is higher than our methods.

Figure 6: Accuracy of answers provided by the robot after
constructing disambiguation queries using the baseline, and
our method with and without contextual knowledge.

the baseline in comparison with our disambiguation algo-
rithm as an extra interaction.

The average number of interactions as a function of the num-
ber of ambiguous objects is plotted in Figure 5. Figure 5
shows that the baseline approach required more interactions
to achieve the expected response in comparison with our
method; these results support H4.

The fifth set of experiments was designed to evaluate hy-
potheses H4 and H5. All steps except the last one were
identical to the fourth set of experiments described above.
In the final step, the accuracy of the answers provided by
the robot (to the original human query) after asking the
disambiguation question was computed with the baseline
method, our method without contextual knowledge, and our
method with the contextual knowledge. These results are
plotted in Figure 6 as baseline, proposed approach, and ap-
proach+context respectively. Figure 6 indicates that our al-
gorithm improved the accuracy of the responses provided,
which further supports H4. Also, extracting and using the
relevant domain knowledge improved accuracy of human re-
sponses to disambiguation queries, which supports H5.

5 Conclusion
The architecture described in this paper is a step towards
greater transparency in reasoning and learning for integrated
robot systems that include methods for reasoning with in-
complete commonsense domain knowledge and for data-
driven learning. Our architecture supports a principled com-
bination that exploits the complementary strengths of non-

monotonic logical reasoning with domain knowledge, data-
driven deep learning from a limited set of examples, and the
inductive learning of previously unknown axioms governing
domain dynamics. We also described a reliable and efficient
interactive strategy that traces evolution of beliefs, and con-
structs and poses suitable disambiguation queries. Experi-
mental results using simulated images indicates that when
reasoning with contextual knowledge and interactive learn-
ing inform and guide each other, the robot is able to con-
struct better disambiguation queries and provide more ac-
curate relational descriptions (as explanations) of decisions
and beliefs in response to the human queries.

Our architecture presents multiple directions for further
research. We will further explore the interplay between rea-
soning and learning for explaining decisions and beliefs
while performing scene understanding and planning in more
complex domains. We will also investigate the use of our
architecture on a physical robot interacting with humans
through noisy sensors and actuators, building on other work
in our group on combining abstract non-monotonic logical
reasoning with fine-grained probabilistic reasoning at dif-
ferent resolutions (Sridharan et al. 2019). The longer-term
objective is to support explainable reasoning and learning in
integrated robot systems in complex domains.

References
Anjomshoae, S.; Najjar, A.; Calvaresi, D.; and Framling,
K. 2019. Explainable agents and robots: Results from a
systematic literature review. In International Conference
on Autonomous Agents and Multiagent Systems. Montreal,
Canada.
Assaf, R.; and Schumann, A. 2019. Explainable Deep
Neural Networks for Multivariate Time Series Predictions.
In International Joint Conference on Artificial Intelligence,
6488–6490. Macao, China.
Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, exe-
cute, explain - how planning helps to assemble your home
theater. In Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling.
Borgo, R.; Cashmore, M.; and Magazzeni, D. 2018. Towards
Providing Explanations for AI Planner Decisions. In IJCAI
Workshop on Explainable Artificial Intelligence, 11–17.
Fandinno, J.; and Schulz, C. 2019. Answering the ”Why”
in Answer Set Programming: A Survey of Explanation Ap-
proaches. Theory and Practice of Logic Programming 19(2):
114–203.
Ferrand, G.; Lessaint, W.; and Tessier, A. 2006. Expla-
nations and Proof Trees. Computing and Informatics 25:
1001–1021.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In IJCAI Workshop on Explainable AI.
Friedman, M. 1974. Explanation and scientific understand-
ing. Philosophy 71(1): 5–19.
Gelfond, M.; and Inclezan, D. 2013. Some Properties of
System Descriptions of ALd. Journal of Applied Non-

Classical Logics, Special Issue on Equilibrium Logic and
Answer Set Programming 23(1-2): 105–120.

Gil, Y. 1994. Learning by Experimentation: Incremental Re-
finement of Incomplete Planning Domains. In International
Conference on Machine Learning, 87–95.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet Classification with Deep Convolutional Neural Net-
works. In Neural Information Processing Systems, 1097–
1105.

Laird, J. E. 2012. The Soar Cognitive Architecture. The MIT
Press.

Laird, J. E.; Gluck, K.; Anderson, J.; Forbus, K. D.; Jenkins,
O. C.; Lebiere, C.; Salvucci, D.; Scheutz, M.; Thomaz, A.;
Trafton, G.; Wray, R. E.; Mohan, S.; and Kirk, J. R. 2017.
Interactive Task Learning. IEEE Intelligent Systems 32(4):
6–21.

Langley, P.; Meadows, B.; Sridharan, M.; and Choi, D. 2017.
Explainable Agency for Intelligent Autonomous Systems. In
Innovative Applications of Artificial Intelligence.

Law, M.; Russo, A.; and Broda, K. 2020. The ILASP System
for Inductive Learning of Answer Set Program. Association
for Logic Programming Newsletter .

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based Learning Applied to Document Recogni-
tion. Proceedings of the IEEE 86(11): 2278–2324.

Lewandowsky, S.; Mundy, M.; and Tan, G. 2000. The Dy-
namics of Trust: Comparing Humans to Automation. Jour-
nal of Experimental Psychology: Applied 6(2): 104.

Miller, G. A. 1995. WordNet: a lexical database for English.
Communications of the ACM 38(11): 39–41.

Miller, T. 2019. Explanations in Artificial Intelligence: In-
sights from the Social Sciences. Artificial Intelligence 267:
1–38.

Mota, T.; and Sridharan, M. 2019. Commonsense Reason-
ing and Knowledge Acquisition to Guide Deep Learning on
Robots. In Robotics Science and Systems.

Mota, T.; and Sridharan, M. 2020a. Axiom Learning
and Belief Tracing for Transparent Decision Making in
Robotics. In AAAI Fall Symposium on Artificial Intelligence
for Human-Robot Interaction: Trust and Explainability in
Artificial Intelligence for Human-Robot Interaction.

Mota, T.; and Sridharan, M. 2020b. Scene Understanding,
Reasoning, and Explanation Generation. https://github.com/
tmot987/Scenes-Understanding.

Mota, T.; and Sridharan, M. 2021. Answer me this: Con-
structing Disambiguation Queries for Explanation Genera-
tion in Robotics. In IEEE International Conference on De-
velopment and Learning (ICDL).

Mota, T.; Sridharan, M.; and Leonardis, A. 2020. Common-
sense Reasoning and Deep Learning for Transparent Deci-
sion Making in Robotics. In European Conference on Mul-
tiagent Systems. Thessaloniki, Greece.

Mota, T.; Sridharan, M.; and Leonardis, A. 2021. Integrated
Commonsense Reasoning and Deep Learning for Transpar-
ent Decision Making in Robotics. Springer Nature Com-
puter Science .
Norcliffe-Brown, W.; Vafeais, E.; and Parisot, S. 2018.
Learning Conditioned Graph Structures for Interpretable Vi-
sual Question Answering. In Neural Information Processing
Systems. Montreal, Canada.
Read, S. J.; and Marcus-Newhall, A. 1993. Explanatory co-
herence in social explanations: A parallel distributed pro-
cessing account. Personality and Social Psychology 65(3):
429.
Ribeiro, M.; Singh, S.; and Guestrin, C. 2016. Why Should
I Trust You? Explaining the Predictions of Any Classifier.
In International Conference on Knowledge Discovery and
Data Mining, 1135–1144.
Samek, W.; Wiegand, T.; and Mller, K.-R. 2017. Explain-
able Artificial Intelligence: Understanding, Visualizing and
Interpreting Deep Learning Models. ITU Journal: ICT Dis-
coveries: The Impact of Artificial Intelligence on Communi-
cation Networks and Services 1: 1–10.
Someya, Y. 1998. Lemma List for English Language.
Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. 2019.
REBA: A Refinement-Based Architecture for Knowledge
Representation and Reasoning in Robotics. Journal of Arti-
ficial Intelligence Research 65: 87–180.
Sridharan, M.; and Meadows, B. 2018. Knowledge Repre-
sentation and Interactive Learning of Domain Knowledge
for Human-Robot Collaboration. Advances in Cognitive
Systems 7.
Sridharan, M.; and Meadows, B. 2019. Towards a Theory of
Explanations for Human-Robot Collaboration. Kunstliche
Intelligenz 33(4): 331–342.
Winston, P. H.; and Holmes, D. 2018. The Genesis En-
terprise: Taking Artificial Intelligence to Another Level via
a Computational Account of Human Story Understanding.
Computational models of human intelligence report 1, Mas-
sachusetts Institute of Technology.
Yi, K.; Wu, J.; Gan, C.; Torralba, A.; Kohli, P.; and Tenen-
baum, J. B. 2018. Neural-Symbolic VQA: Disentangling
Reasoning from Vision and Language Understanding. In
Neural Information Processing Systems. Montreal, Canada.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explicability
and predictability for robot task planning. In International
Conference on Robotics and Automation, 1313–1320.

https://www.sciencedirect.com/science/article/pii/B9781558603356500192
https://www.sciencedirect.com/science/article/pii/B9781558603356500192
https://ieeexplore.ieee.org/abstract/document/8012335
https://github.com/tmot987/Scenes-Understanding
https://github.com/tmot987/Scenes-Understanding

Benchmarking Sampling-based Motion Planning Pipelines
for Wheeled Mobile Robots

Eric Heiden *1, Luigi Palmieri ∗2, Leonard Bruns 3,
Kai O. Arras2, Gaurav S. Sukhatme1†, Sven Koenig1

1 Department of Computer Science, University of Southern California, Los Angeles, USA
2 Robert Bosch GmbH, Corporate Research, Stuttgart, Germany

3 Division of Robotics, Perception and Learning (RPL), KTH Royal Institute of Technology, Stockholm, Sweden
heiden@usc.edu, Luigi.Palmieri@de.bosch.com, leonardb@kth.se

Abstract

Sampling-based motion planning is a key tool for sev-
eral autonomous systems ranging from autonomous
driving to service and intralogistic robotics. Over the
past decades, several algorithms, extend functions and
post-smoothing techniques have been introduced for
such systems. Choosing the best combination of such
components for an autonomous system’s application is
a tedious exercise, even for expert users. With the aim of
helping researchers and practitioners in efficiently solv-
ing this issue, we have recently presented Bench-MR,
the first open-source motion-planning benchmarking
framework designed for sampling-based motion plan-
ning for nonholonomic, wheeled mobile robots. Unlike
related software suites, Bench-MR is an easy-to-use and
comprehensive benchmarking framework that provides
a large variety of sampling-based motion-planning al-
gorithms, extend functions, collision checkers, post-
smoothing algorithms and optimization criteria. In this
workshop paper, we complement our previous publica-
tion, by providing several examples on how to use it,
together with the details on the framework architecture
and components.

Introduction
In this paper we present Bench-MR, the first open-source
benchmarking framework designed for sampling-based mo-
tion planning for nonholonomic, wheeled mobile robots in
complex navigation scenarios resembling real-world appli-
cations. This work has previously been published at the In-
ternational Conference on Robotics and Automation (Hei-
den et al. 2021)1.

Bench-MR is based on two main pillars, namely the
motion-planning components (consisting of the sampling-

*Equal contribution
†G.S. Sukhatme holds concurrent appointments as a Professor

at USC and as an Amazon Scholar. This paper describes work per-
formed at USC and is not associated with Amazon.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We publish code and documentation on our Bench-MR web-
site at https://robot-motion.github.io/bench-mr.

Figure 1: Selection of environments provided by Bench-
MR: City grid from the Moving AI path-finding benchmark
(Sturtevant 2012) (top left), polygon-based warehouse envi-
ronment (top right), and thresholded occupancy grid from
the Freiburg SLAM dataset (Kümmerle et al. 2009) (bot-
tom).

based motion planning algorithms, extend functions, colli-
sion checkers, post-smoothing algorithms and optimization
criteria) and the evaluation components (consisting of the
navigation scenarios and performance metrics), see Fig. 2.
We chose all these components carefully to match the ap-
plication constraints. For example, we focus on polygon-
based collision checking since it presents a challenge for
motion-planning algorithms which make inefficient use of
collision checking. Furthermore, we support the evaluation
of motion-planning systems for particular settings of nav-
igation scenarios, such as varying obstacle density. Over-
all, Bench-MR is a highly configurable and expandable
software suite with representative state-of-the-art motion-
planning and evaluation components.

https://robot-motion.github.io/bench-mr

Much of Bench-MR builds on the Open Motion Planning
Library (OMPL) (Şucan, Moll, and Kavraki 2012), but we
also provide interfaces to other implementations of motion-
planning algorithms (such as SBPL planners (Likhachev,
Gordon, and Thrun 2003)) and extend functions (such as
POSQ (Palmieri and Arras 2014) and continuous-curvature
steering (Fraichard and Scheuer 2004)) outside of OMPL.
Thus, Bench-MR offers users access to state-of-the-art com-
ponents of sampling-based motion-planning systems for
wheeled mobile robots, while being less confined to partic-
ular implementations of these components.

Related Work
Several researchers have recently introduced benchmark-
ing frameworks for analyzing motion-planning algorithms
for different robotic systems. We discuss some of the most
prominent ones in the following.

Sturtevant (Sturtevant 2012) has introduced a benchmark-
ing framework for path-planning algorithms for robotic sys-
tems without kinematic constraints. The Moving AI path-
finding benchmark provides many navigation scenarios on
different grid-based environments, such as city grids. Bench-
MR includes some of their environments (and supports their
format) but additionally it provides many other environment
classes, motion-planning components and evaluation com-
ponents for wheeled mobile robots.

Luo et al. (Luo and Hauser 2014) have introduced
a benchmarking framework for asymptotically optimal
motion-planning that supports only straight-line connec-
tions and compares them only on four navigation scenarios.
Bench-MR, on the other hand, provides many diverse navi-
gation scenarios for wheeled mobile robots.

Moll et al. (Moll, Şucan, and Kavraki 2015) have in-
troduced a general benchmarking framework for motion-
planning algorithms that is highly coupled with OMPL. It is
highly customizable but lacks specific navigation scenarios
for wheeled mobile robots. Bench-MR, on the other hand,
provides navigation scenarios, performance metrics and ex-
tend functions for wheeled mobile robots and, similar to Co-
hen et al. (Cohen, Şucan, and Chitta 2012), different classes
of motion-planning algorithms, including lattice-based plan-
ners.

Althoff et al. (Althoff, Koschi, and Manzinger 2017) have
introduced a benchmarking framework for autonomous cars
driving on roads. Bench-MR, on the other hand, focuses on
wheeled mobile robots in complex and cluttered static (in-
door and outdoor) environments.

Additionally the website (Amato, Rauchwerger, and
Morales 2013) provides several benchmarks for different
robotic systems but contains only a small number of nav-
igation scenarios for wheeled mobile robots. Instead Path-
Bench (Clair et al. 2021) is a framework for testing recent
machine learning based algorithms for planning in 2D or 3D
grid environments without focusing on mobile robots.

A number of authors (Calisi and Nardi 2009; Weisz et al.
2016; Rañó and Minguez 2006; Sprunk et al. 2016) have in-
troduced benchmarking frameworks for motion-planning al-
gorithms in dynamic environments. Bench-MR, on the other

Bench-MR
Python Front-End

C++ Back-End

External
OMPL SBPL ...

Merged
Result
JSON

Setup Front-End
Plotting

Config
JSON

Config
JSON

Config
JSON

Result
JSON

Result
JSON

Result
JSON

Motion-Planning Evaluation
Motion-Planning

Algorithms
Post-Smoothing

Algorithms

Extend
Functions

Collision
Checkers

Optimization
Criteria

Scenarios

Performance
Metrics

Figure 2: Architecture of Bench-MR. The components nec-
essary for motion planning are shown in the box on the left
(turquoise), and the utilities used in the evaluation are shown
in the box on the right (orange). The implementation is split
into a C++ back-end for running the performance-critical
motion-planning components, and a Python front-end for
providing a flexible interface to the design and evaluation
of the benchmark scenarios through Jupyter notebooks.

hand, focuses on motion planning in static environments,
which is a fundamental operation often performed during
robot navigation in dynamic environments.

Architecture of Bench-MR
Bench-MR is split into a Python front-end and a C++ back-
end, see Fig. 2. The front-end provides a flexible inter-
face for setting up and performing evaluations of motion-
planning systems through Jupyter notebooks. For example,
the front-end allows the user to select appropriate navigation
scenarios (such as environment classes) and performance
metrics related to the planning efficiency and the result-
ing motion quality. It then provides the user with extensive
evaluation reports and plotting capabilities. The back-end
performs the (compute-intensive) evaluations by using the
motion-planning components in the blue box and the eval-
uation components in the orange box. We chose all compo-
nents based on their scientific impact and their popularity
in the open-source community (Şucan, Moll, and Kavraki
2012; Likhachev et al. 2005; Fraichard and Scheuer 2004).
JSON files are used for communicating both settings from
the front-end to the back-end and the evaluation results in the
opposite direction. The open-source code of Bench-MR is
available at https://github.com/robot-motion/bench-mr. This
website also contains extensive documentation, including
tutorials and examples, and up-to-date benchmarking re-
sults, that are automatically generated.

Bench-MR provides interfaces to two existing open-
source motion-planning libraries, namely OMPL (Şucan,
Moll, and Kavraki 2012) and SBPL (Likhachev, Gordon,

https://github.com/robot-motion/bench-mr

and Thrun 2003), enabling the user to utilize their compo-
nents as part of Bench-MR. We expose many settings from
OMPL and SBPL through the Python interface, to allow the
user to change the parameters of their components. Cross-
component settings in Bench-MR (such as the computation
time limit) can be changed via a common interface.

Bench-MR Planning Components
In this section, we explain the Bench-MR motion-planning
components.

Sampling-Based Motion-Planning Algorithms
Bench-MR provides many different sampling-based motion-
planning algorithms that belong to to three different classes
(as suggested by prior work, such as (LaValle, Branicky,
and Lindemann 2004; LaValle 2006; Janson, Ichter, and
Pavone 2018)): feasible planners, asymptotically (near) op-
timal planners and lattice-based planners.2 For feasible and
asymptotically (near) optimal planners, Bench-MR provides
the option to use random sampling with a uniform distribu-
tion and goal biasing or deterministic Halton sampling (Jan-
son, Ichter, and Pavone 2018; LaValle, Branicky, and Lin-
demann 2004; Palmieri et al. 2019). We choose the most
prominent open-source implementation for each class.

Feasible Planners Feasible planners eventually find a
path with probability one but not necessarily an opti-
mal path. Bench-MR currently provides feasible planners
from OMPL (such as RRT (LaValle and Kuffner Jr 2001),
PRM (Kavraki et al. 1996), SPARS (Dobson, Krontiris, and
Bekris 2013), RRT (LaValle and Kuffner Jr 2001; Kunz
and Stilman 2015) using random forward propagation, EST
(Hsu, Latombe, and Motwani 1997), SBL (Sánchez and
Latombe 2003) and STRIDE (Gipson, Moll, and Kavraki
2013)).

Asymptotically (Near) Optimal Planners Asymptoti-
cally (near) optimal planners eventually find an optimal
path with probability one. Bench-MR currently provides
optimization-based planners from OMPL (such as RRT∗ and
PRM∗ (Karaman and Frazzoli 2011), BFMT (Starek et al.
2015), RRT# (Arslan and Tsiotras 2013)), informed search-
based planners (such as Informed RRT∗ (Gammell, Srini-
vasa, and Barfoot 2014), SORRT∗ (Gammell, Barfoot, and
Srinivasa 2018) and BIT∗ (Gammell, Srinivasa, and Barfoot
2015)), CForest (Otte and Correll 2013) and near-optimal
planners (such as SST (Li, Littlefield, and Bekris 2016),
an asymptotically near-optimal incremental version of RRT,
SPARS (Dobson, Krontiris, and Bekris 2013) and SPARS2
(Dobson and Bekris 2013)).

Lattice-Based Planners Lattice-based planners use state
lattices with predefined motion primitives that encode dif-
ferential constraints (Pivtoraiko, Knepper, and Kelly 2009).
Bench-MR currently provides lattice-based planners from
SBPL (such as ARA∗ (Likhachev, Gordon, and Thrun 2003),

2For the sake of brevity, we do not list all included planners
with detailed explanations and instead direct the reader to the cor-
responding references.

AD∗ (Likhachev et al. 2005), MHA∗ (Islam, Narayanan, and
Likhachev 2015) and ANA∗ (Van Den Berg et al. 2011)).

Extend Functions
Depending on the class of a sampling-based motion-
planning algorithm, Bench-MR provides two classes of
extend functions, namely those that use random forward
propagation for a given robot dynamical model and those
that solve a two-point boundary value problem (Laumond,
Sekhavat, and Lamiraux 1998) to connect two given robot
configurations exactly for a given steer function. We refer
the reader to (Kunz and Stilman 2015) for an analysis of the
properties of both classes. We also include the predefined
motion primitives for lattice-based planners here since they
can be understood as a discrete set of predefined controls.

Robot Dynamics Models Our software includes two
robot dynamics models, namely a kinematic car (ẋ =
vcosθ , ẏ = vsinθ , θ̇ = v/L · tanδ) and a kinematic single-
track model (ẋ = vcosθ , ẏ = vsinθ , θ̇ = v/L · tanδ , δ̇ = vδ),
where x and y are the Cartesian coordinates according to a
fixed world frame, L is the length of the car, v is the tangen-
tial velocity, θ is the heading, δ is the steering angle and δ̇

is its rate (Paden et al. 2016).

Steer Functions Several common steer functions, namely
Dubins (Dubins 1957), Reeds-Shepp (Reeds and Shepp
1990), Continuous Curvature (Banzhaf et al. 2017;
Fraichard and Scheuer 2004) and POSQ (Palmieri and Arras
2014; Palmieri, Koenig, and Arras 2016) are included.

Motion Primitives Bench-MR provides a few motion
primitives from SBPL, and further models can be added via
the motion primitive file interface of SBPL.

Collision Checkers
Bench-MR includes a two-dimensional grid-based approach
to collision checking, which checks whether the robot (mod-
eled as a polygon or single point) collides with blocked
cells. Furthermore, we provide a two-dimensional polygon-
based approach to collision checking, which uses the sepa-
rating axis theorem (Gottschalk 1996) to check whether the
robot (modeled as a convex polygon) intersects with obsta-
cles (also modeled as convex polygons). Finally, Bench-MR
provides the distance field, represented as a grid whose cells
are annotated with the distance to the closest obstacle, for all
environment classes.

Post-Smoothing Algorithms
Bench-MR includes several post-smoothing algorithms
from OMPL, such as B-Spline, Shortcut and Simplify-
Max (Şucan, Moll, and Kavraki 2012). It also includes
the recently introduced GRradient-Informed Post Smooth-
ing (GRIPS) algorithm (Heiden et al. 2018), a hybrid ap-
proach that combines short-cutting with locally optimized
waypoint placement based on the distance field of the envi-
ronment.

0 25 50 75 100 125 150
0

25

50

75

100

125

150

Informed RRT*
RRT
Start
Goal

Figure 3: Predefined grid-based environment obtained from
a gray-scale image of an Intel office building (Kümmerle
et al. 2009).

Optimization Criteria
Bench-MR provides optimization criteria by allowing user-
defined cost functions for several motion-planning algo-
rithms.

Bench-MR Evaluation Components
In the following, we explain the Bench-MR evaluation com-
ponents.

Navigation Scenarios
A navigation scenario consists of a specification of the
shapes of obstacles in an environment, the shape of a robot,
and its start and goal poses. Bench-MR provides the two
common environment classes used by motion-planning sys-
tems, namely grid-based and (convex) polygon-based en-
vironments. It provides both predefined and procedurally-
generated environments for both classes.

Predefined Grid-Based Environments We provide two
classes of predefined grid-based environments. First, we in-
clude a selection of city grids from the Moving AI path-
finding benchmark (Sturtevant 2012), consisting of city lay-
outs of sizes ranging from 256× 256 to 1024× 1024 cells.
An example is the Berlin 0 256 grid in Fig. 1 (top left).
Second, Bench-MR also provides image-based grids that
can be created from grey-scale images by thresholding with
a user-defined occupancy cutoff value (a common represen-
tation for maps generated by SLAM algorithms (Kümmerle
et al. 2009)). Examples are shown in Fig. 1 (bottom) and
Fig. 3.

Procedurally-Generated Grid-Based Environments
Bench-MR provides two classes of procedurally-generated
grid-based environments to allow the user to vary environ-
ment characteristics (such as the environment complexity)
in small steps. It provides random outdoor-like environ-
ments (with occasional small obstacles, such as trees) with
a desired percentage of blocked cells γ . These environments
are generated by starting with only unblocked cells and
repeatedly sampling a cell with a uniform distribution and

making it blocked. Examples are shown in Fig. 4 (top).
It also provides random indoor-like environments (with
complex networks of rectangular spaces, such as rooms and
corridors) with a desired minimum corridor width r. They
are generated by starting with only blocked cells and, for
a predefined number of steps, repeatedly sampling a cell
with a uniform distribution and applying a modified RRT
exploration algorithm to connect it to the nearest tree node
with either horizontal or vertical unblocked corridors of the
desired minimum corridor width. Examples are shown in
Fig. 4 (bottom).

0 10 20 30
0

10

20

30
°=1%

0 10 20 30
0

10

20

30
°=1:5%

0 10 20 30
0

10

20

30
°=2%

0 10 20 30
0

10

20

30
°=2:5%

0 10 20 30
0

10

20

30
°=3%

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=3

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=6

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=7

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
r=8

Figure 4: Procedurally-generated grid-based environments,
namely random outdoor-like environments with different
percentages of blocked cells (top), and random indoor-like
environments with different minimum corridor widths (bot-
tom).

Predefined Polygon-Based Environments Bench-MR
includes five classes of predefined polygon-based environ-
ments, as shown in the left-most five subfigures of Fig. 5.
It provides three parking scenarios in street environments
where a car-like vehicle has to park between other cars,
namely by i) pulling forward into a parking space, iii) back-
ing into a parking space, and ii) parallel parking. Bench-
MR also provides two navigation scenarios in warehouse
environments where a square-shaped robot has to navigate
among shelves of various sizes and irregular orientations.
Additional polygon-based environments can be loaded from
SVG files.

Procedurally-Generated Polygon-Based Environments
Bench-MR allows the user to generate their own polygon-
based environments procedurally by placing (convex) polyg-
onal obstacles into the environment. An example resembling
an asteroid field is shown in the right-most subfigure of
Fig. 5.

Performance Metrics
Bench-MR provides commonly used performance metrics
for evaluating motion-planning systems with respect to their
planning efficiency and resulting path quality.

1. The success statistics measure the percentage of found,
collision-free and exact paths. Whether a path is collision-
free is checked with a given collision checker. The ratio of
exact paths is included since some motion-planning sys-
tems report approximate paths.

2. The path length measures the length in meters (m) of a
path in the workspace.

parking1 parking2 parking3 warehouse1 warehouse2 asteroids

Figure 5: Paths for polygon-based environments computed by the Bidirectional Asymptotically Optimal Fast Marching Tree
(BFMT) motion-planning algorithm using the Reeds-Shepp steer function. The first five environments are predefined, and the
right-most environment is procedurally generated.

3. The maximum curvature (κmax), normalized curvature
(κnorm) and angle-over-length (AOL) measure the smooth-
ness of a path. Smoother paths result in less control effort
and energy to steer a robot and more comfort for the pas-
sengers. Since the maximum curvature is not well-defined
in the presence of cusps, we also use the normalized cur-
vature (which is the path-length-weighted curvature along
the path segments between the cusps), defined as

κnorm = ∑
i

∫
σi

κ(σ̇i(t))||ṗσi(t)||2 dt, (1)

where σi are the path segments of path σ between the
cusps, κ(σ̇(t)) is the curvature at point σ(t) of the path
and pσ are the x and y components of σ . Since the nor-
malized curvature ignores cusps, we also use the angle-
over-length (AOL) as a combined metric that divides the
total heading change by the path length. The total heading
change is computed numerically by summing the abso-
lute angular difference between neighboring tangent vec-
tors along the path. Following this convention, the head-
ing change for each cusp is approximately π .

4. The computation times measure the time in seconds (s)
required for collision checking, for extend function eval-
uation (namely forward integration when using forward
propagation or solving the two-point boundary value
problems when using steer functions), and for finding an
initial path.

5. The mean clearing distance measures how close a path is
to obstacles (reported in meters).

6. The number of cusps (Banzhaf et al. 2017) measures how
often a robot has to stop on a path and turns its wheels to
abruptly change its heading.

Example Usage
In the following, we demonstrate how Bench-MR allows for
an easy benchmarking of different planners. For more ex-
periments that give insights on the interplay between various
components of the planning pipeline, we refer the reader to
our main paper (Heiden et al. 2021).

Introductory Example
As initial step we set our motion planning benchmark object
mpb, associated to a configuration file in the JSON format
that contains all the benchmark configurations. We specify
a generator for procedural grid environments that resemble
indoor-like spaces with corridors that have a width of 3 cells:

1 from mpb import MPB
2 mpb = MPB(c o n f i g f i l e = ” b e n c h m a r k t e m p l a t e . j s o n ”)
3 mpb . s e t c o r r i d o r g r i d e n v (r a d i u s = 3)

Next, we define the planning algorithms that we wish to
compare, the type of steer function, and the number of runs
to execute each combination of planning algorithm and steer
function:

1 mpb . s e t p l a n n e r s ([” r r t ” , ” r r t s t a r ” , ” i n f o r m e d r r t s t a r ”])
2 mpb . s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
3 mpb . run (r u n s =3)
4 mpb . v i s u a l i z e t r a j e c t o r i e s ()

To visualize the resulting paths (see Fig. 6), we need to
call a single function on our motion planning benchmark in-
stance mpb:

1 mpb . v i s u a l i z e t r a j e c t o r i e s ()

0 10 20 30 40 50
0

10

20

30

40

50
Run 0 (50£ 50 corridor 1)

0 10 20 30 40 50
0

10

20

30

40

50
Run 1 (50£ 50 corridor 2)

0 10 20 30 40 50
0

10

20

30

40

50
Run 2 (50£ 50 corridor 3)

Informed RRT*
RRT
RRT*
Start
Goal

Figure 6: Paths obtained from the listed example.

To visualize the recorded metrics and gather statistical in-
sights (see Fig. 7), we can call the following function:

1 mpb . p l o t p l a n n e r s t a t s ()

As shown in Fig. 7, it visualizes the performance on key
metrics as violin plots across the 3 runs that have been exe-
cuted, grouped by the motion planning algorithms.

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

60

70

80

Path Length

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

0

2

4

6

Maximum Curvature

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

0.05

0.10

0.15

0.20

Computation Time
Mean
Median

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

3.0

3.2

3.4

3.6

Mean Clearing
In

fo
rm

ed
 R

RT
*

RR
T

RR
T*

2

4

6

8

Cusps

In
fo

rm
ed

 R
RT

*

RR
T

RR
T*

0

1

2

3

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

Figure 7: Statistics obtained with the illustrated example.

Parallel Benchmark Execution
Bench-MR supports multi-processing out of the box to dis-
tribute benchmarks across multiple processors. After the
parallel execution, the results from the separately evaluated
benchmark instances can be merged for further analysis.

In the following example we vary the time allotment
within which the planner Informed RRT∗ equipped with the
Reeds-Shepp steer function has to find a solution. Therefore,
we create three MPB instances with different planning times
(0.5 s, 1 s and 10 s), and select the corridor-like procedural
grid generator as envionment. Finally, the MPB instances are
added to a MultipleMPB object which executes the three
benchmarks in parallel over five runs each.

1 from mpb import MultipleMPB , MPB
2 poo l = MultipleMPB ()
3 f o r t ime in [0 . 5 , 1 , 1 0] :
4 m = MPB()
5 m[” m a x p l a n n i n g t i m e ”] = t ime
6 m. s e t c o r r i d o r g r i d e n v ()
7 m. s e t p l a n n e r s ([” i n f o r m e d r r t s t a r ”])
8 m. s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
9 poo l . benchmarks . append (m)

10 poo l . r u n p a r a l l e l (” t e s t p a r a l l e l ” , r u n s =5)

Comparison: Random and Halton Sequences, State
Lattice
In this example we show how to compare different sampling
strategies, namely an i.i.d. uniform random distribution, Hal-
ton sequence, and state lattice.

We start by configuring a benchmark using a corridor en-
vironment generated with a radius of 3 cells, choose the
PRM∗ planning algorithm and the extend function Reeds-
Shepp:

1 from mpb import MPB
2 import m a t p l o t l i b a s mpl
3 mpb = MPB()
4 mpb . s e t p l a n n e r s ([” p r m s t a r ”])
5 mpb . s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
6 mpb . s e t c o r r i d o r g r i d e n v (r a d i u s = 3 . 0)
7 mpb [” ompl . s eed ”] = 1
8 mpb [” ompl . c o s t t h r e s h o l d ”] = 0
9 mpb [” m a x p l a n n i n g t i m e ”] = 0 . 3

Next, we create three copies of the benchmark object mpb
and assign to them the different sampling strategies. For the
state lattice we need to also choose a different planning al-
gorithm, as it has to be a method from SBPL (we choose
ARA∗ here):

1 from copy import deepcopy
2 m p b i id = deepcopy (mpb)
3 m p b i id . s e t i d (” i i d ”)
4 m p b i id [” ompl . s a m p l e r ”] = ” i i d ”
5
6 mpb ha l ton = deepcopy (mpb)
7 mpb ha l ton . s e t i d (” h a l t o n ”)
8 mpb ha l ton [” ompl . s a m p l e r ”] = ” h a l t o n ”
9

10 m p b s t a t e l a t t i c e = deepcopy (mpb)
11 m p b s t a t e l a t t i c e . s e t i d (” s b p l a r a s t a r ”)
12 m p b s t a t e l a t t i c e . s e t p l a n n e r s ([” s b p l a r a s t a r ”])
13 m p b s t a t e l a t t i c e [” s b p l . s c a l i n g ”] = 1
14 m p b s t a t e l a t t i c e [” s b p l . r e s o l u t i o n ”] = 0 . 2 5
15 m p b s t a t e l a t t i c e [” m a x p l a n n i n g t i m e ”] = 1

Finally, we run the previously defined benchmarks in par-
allel:

1 poo l = MultipleMPB ()
2 poo l . benchmarks . append (m p b i i d)
3 poo l . benchmarks . append (mpb ha l ton)
4 poo l . benchmarks . append (m p b s t a t e l a t t i c e)
5 poo l . r u n p a r a l l e l (r u n s =100 , id =” exp ” , s h o w p l o t = F a l s e)
6 poo l . merge (” exp / exp . j s o n ” ,
7 p l an names =[”PRM* (i i d) ” , ”PRM* (Ha l t on) ” , ”SL (ARA*) ”])

The results have been merged to the previously configured
results JSON file exp/exp.jsonwhich we can use to plot
statistical results from the previous runs, see Fig. 8:

1 from p l o t s t a t s import p l o t p l a n n e r s t a t s
2 p l o t p l a n n e r s t a t s (” exp / exp . j s o n ” ,
3 m e t r i c s =” p a t h l e n g t h , p l a n n i n g t i m e , a o l ” ,
4 s a v e f i l e =” . / s a m p l i n g . pdf ” ,
5 n u m c o l o r s =4 , t i c k s r o t a t i o n =20)

PRM* (Halton)
PRM* (iid)

SL (ARA*)

20

40

60

80

100

Path Length

PRM* (Halton)
PRM* (iid)

SL (ARA*)
0.05

0.10

0.15

0.20

0.25

0.30

Computation Time

PRM* (Halton)
PRM* (iid)

SL (ARA*)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AOL
Mean
Median

Figure 8: Statistics obtained by comparing different sam-
pling strategies.

Metrics
In this example we show the available metrics that our
benchmarking suite offers, how we can evaluate and visu-
alize them.

We start by setting our planning context. Again, we adopt
the corridor environment and use the steer function Reeds-
Shepp to compare three algorithms from OMPL: RRT, RRT∗
and Informed RRT∗.

1 mpb = MPB()
2 mpb . s e t c o r r i d o r g r i d e n v (r a d i u s = 3)
3 mpb . s e t p l a n n e r s ([” r r t ” , ” r r t s t a r ” , ” i n f o r m e d r r t s t a r ”])
4 mpb . s e t s t e e r f u n c t i o n s ([” r e e d s s h e p p ”])
5 # o p t i o n a l run ID , number o f runs (e n v i r o n m e n t s)
6 mpb . run (id =” t e s t r u n ” , r u n s =3)

We can plot all the available statistics with the following
command:

1 mpb . p l o t p l a n n e r s t a t s (” , ” . j o i n (s t a t n a m e s . keys ()))

Note that all the available metrics are stored in the
stat names dictionary which maps from the name of the
metric to its printable title which is used for plotting pur-
poses.

Informed RRT* RRT RRT*
0

1

2

3

4

5

6

Maximum Curvature

Informed RRT* RRT RRT*
4

6

8

10

12

14

16

18

Normalized Curvature

Informed RRT* RRT RRT*
0.2

0.3

0.4

0.5

0.6

AOL

Informed RRT* RRT RRT*
4.0

4.5

5.0

5.5

6.0

6.5

7.0

Maximum Clearing
Mean
Median

Informed RRT* RRT RRT*

3.0

3.2

3.4

3.6

3.8

4.0

Mean Clearing

Informed RRT* RRT RRT*
2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Median Clearing

Informed RRT* RRT RRT*

1.6

1.8

2.0

2.2

2.4

Minimum Clearing

Informed RRT* RRT RRT*
60

65

70

75

80

85

Path Length
Mean
Median

Informed RRT* RRT RRT*
0

500

1000

1500

2000

2500

3000

3500

Smoothness

Informed RRT* RRT RRT*
0

2

4

6

8

10

12

14

Computation Time

Informed RRT* RRT RRT*
2

4

6

8

10

12

Cusps

Informed RRT* RRT RRT*
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

Figure 9: Metrics obtained by comparing different planners.

Additionally we can plot also the time spent in different
planning phases (e.g. steer function, collision checking), see
Fig. 10:

1 mpb . p l o t p l a n n e r t i m i n g s ()

Informed RRT* RRT RRT*
0

2

4

6

8

10

12

14

Run 1
Total time
Steering
Collision

Figure 10: Example computation times reported for a single
run, separated by the time used for computing the extend
function (steering) and for collision checking.

Conclusions
Bench-MR is an easy-to-use and comprehensive bench-
marking framework that aids practitioners and researchers
in designing, testing and evaluating motion-planning sys-
tems. Various motion planning components can be easily
compared against the state of the art on complex naviga-
tion scenarios with many performance metrics. Unlike other
benchmarking tools, our suite of motion planning compo-
nents is particularly tailored to applications in wheeled mo-
bile robotics, and provides a productive user interface. In
this workshop paper that complements our previous work
(Heiden et al. 2021), apart from reporting details on the
framework and its components, we have presented several
examples that demonstrated how to use Bench-MR. In fu-
ture work, we plan to extend Bench-MR to dynamic envi-
ronments to support more realistic scenarios in autonomous
driving.

Acknowledgments
We thank Ziang Liu for his contributions to the software
repository and testing of various algorithms. This work was
supported by a Google Ph.D. Fellowship, the European
Union’s Horizon 2020 research and innovation program un-
der grant agreement No. 101017274 (DARKO), and the US
National Science Foundation (NSF) under grant numbers
1409987, 1724392, 1817189, 1837779 and 1935712.

References
Althoff, M.; Koschi, M.; and Manzinger, S. 2017. Com-
monRoad: Composable benchmarks for motion planning on
roads. In IEEE Intelligent Vehicles Symposium (IV), 719–
726.
Amato, N.; Rauchwerger, L.; and Morales, M. 2013.
Algorithms and Applications Group motion planning
benchmark. https://parasollab.web.illinois.edu/resources/
mpbenchmarks/.
Arslan, O.; and Tsiotras, P. 2013. Use of relaxation methods
in sampling-based algorithms for optimal motion planning.
In 2013 IEEE International Conference on Robotics and Au-
tomation. IEEE.
Banzhaf, H.; Palmieri, L.; Nienhüser, D.; Schamm, T.;
Knoop, S.; and Zöllner, J. M. 2017. Hybrid curvature steer:
A novel extend function for sampling-based nonholonomic
motion planning in tight environments. In International
Conference on Intelligent Transportation Systems, 1–8.
Calisi, D.; and Nardi, D. 2009. Performance evaluation of
pure-motion tasks for mobile robots with respect to world
models. Autonomous Robots 27(4): 465–481.
Clair, J.; Milenkova, R.; Shields, A.; Yao, J.; Patel, Z.; Hu,
D.; Kelly, P.; and Saeedi, S. 2021. PathBench3D: A Bench-
marking Platform for Classic and Learned Path Planning Al-
gorithms. https://github.com/perfectly-balanced/PathBench.
Cohen, B.; Şucan, I. A.; and Chitta, S. 2012. A generic
infrastructure for benchmarking motion planners. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 589–595.

https://parasollab.web.illinois.edu/resources/mpbenchmarks/
https://parasollab.web.illinois.edu/resources/mpbenchmarks/
https://github.com/perfectly-balanced/PathBench

Dobson, A.; and Bekris, K. E. 2013. Improving sparse
roadmap spanners. In 2013 IEEE International Conference
on Robotics and Automation. IEEE.
Dobson, A.; Krontiris, A.; and Bekris, K. E. 2013. Sparse
roadmap spanners. In Algorithmic Foundations of Robotics
X, 279–296. Springer.
Dubins, L. E. 1957. On curves of minimal length with a
constraint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal of
Mathematics 79(3): 497–516.
Fraichard, T.; and Scheuer, A. 2004. From Reeds and
Shepp’s to continuous-curvature paths. IEEE Transactions
on Robotics 20(6): 1025–1035.
Gammell, J. D.; Barfoot, T. D.; and Srinivasa, S. S. 2018. In-
formed sampling for asymptotically optimal path planning.
IEEE Transactions on Robotics 34(4): 966–984.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2014.
Informed RRT*: Optimal sampling-based path planning
focused via direct sampling of an admissible ellipsoidal
heuristic. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2997–3004.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2015.
Batch informed trees (BIT*): Sampling-based optimal plan-
ning via the heuristically guided search of implicit random
geometric graphs. In IEEE International Conference on
Robotics and Automation, 3067–3074.
Gipson, B.; Moll, M.; and Kavraki, L. E. 2013. Resolution
independent density estimation for motion planning in high-
dimensional spaces. In 2013 IEEE International Conference
on Robotics and Automation. IEEE.
Gottschalk, S. 1996. Separating axis theorem. Technical
Report TR96-024, Department of Computer Science, UNC
Chapel Hill.
Heiden, E.; Palmieri, L.; Bruns, L.; Arras, K. O.; Sukhatme,
G. S.; and Koenig, S. 2021. Bench-MR: A Motion Planning
Benchmark for Wheeled Mobile Robots. IEEE Robotics and
Automation Letters 6(3): 4536–4543.
Heiden, E.; Palmieri, L.; Koenig, S.; Arras, K. O.; and
Sukhatme, G. S. 2018. Gradient-Informed Path Smoothing
for Wheeled Mobile Robots. In IEEE International Confer-
ence on Robotics and Automation, 1710–1717.
Hsu, D.; Latombe, J.-C.; and Motwani, R. 1997. Path plan-
ning in expansive configuration spaces. In Proceedings
of International Conference on Robotics and Automation.
IEEE.
Islam, F.; Narayanan, V.; and Likhachev, M. 2015. Dynamic
multi-heuristic A*. In IEEE International Conference on
Robotics and Automation, 2376–2382.
Janson, L.; Ichter, B.; and Pavone, M. 2018. Determinis-
tic sampling-based motion planning: Optimality, complex-
ity, and performance. International Journal of Robotics Re-
search 37(1): 46–61.
Karaman, S.; and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. International Journal
of Robotics Research 30(7): 846–894.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4): 566–580.

Kümmerle, R.; Steder, B.; Dornhege, C.; Ruhnke, M.;
Grisetti, G.; Stachniss, C.; and Kleiner, A. 2009. On mea-
suring the accuracy of SLAM algorithms. Autonomous
Robots 27(4): 387–407. http://ais.informatik.uni-freiburg.
de/slamevaluation/datasets.php.

Kunz, T.; and Stilman, M. 2015. Kinodynamic RRTs with
fixed time step and best-input extension are not probabilisti-
cally complete. In Algorithmic Foundations of Robotics XI,
233–244. Springer.

Laumond, J.-P.; Sekhavat, S.; and Lamiraux, F. 1998. Guide-
lines in nonholonomic motion planning for mobile robots. In
Robot Motion Planning and Control, 1–53. Springer.

LaValle, S. M. 2006. Planning algorithms. Cambridge Uni-
versity Press.

LaValle, S. M.; Branicky, M. S.; and Lindemann, S. R. 2004.
On the Relationship between Classical Grid Search and
Probabilistic Roadmaps. International Journal of Robotics
Research 23(7-8): 673–692.

LaValle, S. M.; and Kuffner Jr, J. J. 2001. Randomized kin-
odynamic planning. International Journal of Robotics Re-
search 20(5): 378–400.

Li, Y.; Littlefield, Z.; and Bekris, K. E. 2016. Asymptoti-
cally optimal sampling-based kinodynamic planning. Inter-
national Journal of Robotics Research 35(5): 528–564.

Likhachev, M.; Ferguson, D. I.; Gordon, G. J.; Stentz, A.;
and Thrun, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In International Conference on Au-
tomated Planning and Scheduling, 262–271.

Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. Ad-
vances in Neural Information Processing Systems 16: 767–
774.

Luo, J.; and Hauser, K. 2014. An empirical study of optimal
motion planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1761–1768.

Moll, M.; Şucan, I. A.; and Kavraki, L. E. 2015. Bench-
marking motion planning algorithms: An extensible infras-
tructure for analysis and visualization. IEEE Robotics &
Automation Magazine 22(3): 96–102.

Otte, M.; and Correll, N. 2013. C-FOREST: Parallel shortest
path planning with superlinear speedup. IEEE Transactions
on Robotics 29(3): 798–806.

Paden, B.; Čáp, M.; Yong, S. Z.; Yershov, D.; and Frazzoli,
E. 2016. A survey of motion planning and control tech-
niques for self-driving urban vehicles. IEEE Transactions
on Intelligent Vehicles 1(1): 33–55.

Palmieri, L.; and Arras, K. O. 2014. A novel RRT extend
function for efficient and smooth mobile robot motion plan-
ning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 205–211.

http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php
http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php

Palmieri, L.; Bruns, L.; Meurer, M.; and Arras, K. O. 2019.
Dispertio: Optimal sampling for safe deterministic motion
planning. IEEE Robotics and Automation Letters 5(2): 362–
368.
Palmieri, L.; Koenig, S.; and Arras, K. O. 2016. RRT-based
nonholonomic motion planning using any-angle path bias-
ing. In IEEE International Conference on Robotics and Au-
tomation, 2775–2781.
Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. Journal of Field Robotics 26(3): 308–333.
Rañó, I.; and Minguez, J. 2006. Steps toward the auto-
matic evaluation of robot obstacle avoidance algorithms. In
Workshop of Benchmarking in Robotics in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 90–
91.
Reeds, J.; and Shepp, L. 1990. Optimal paths for a car that
goes both forwards and backwards. Pacific Journal of Math-
ematics 145(2): 367–393.
Sánchez, G.; and Latombe, J.-C. 2003. A single-query bi-
directional probabilistic roadmap planner with lazy collision
checking. In Robotics research. Springer.
Sprunk, C.; Röwekämper, J.; Parent, G.; Spinello, L.;
Tipaldi, G. D.; Burgard, W.; and Jalobeanu, M. 2016. An
experimental protocol for benchmarking robotic indoor nav-
igation. In Experimental Robotics, 487–504.
Starek, J. A.; Gomez, J. V.; Schmerling, E.; Janson, L.;
Moreno, L.; and Pavone, M. 2015. An asymptotically-
optimal sampling-based algorithm for bi-directional motion
planning. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2072–2078.
Sturtevant, N. R. 2012. Benchmarks for grid-Based
pathfinding. Transactions on Computational Intelligence
and AI in Games 4(2): 144 – 148. https://movingai.com/
benchmarks/grids.html.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4): 72–82. doi:10.1109/MRA.2012.2205651.
https://ompl.kavrakilab.org.
Van Den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K.
2011. Anytime nonparametric A*. In AAAI Conference on
Artificial Intelligence, 105–111.
Weisz, J.; Huang, Y.; Lier, F.; Sethumadhavan, S.; and Allen,
P. 2016. RoboBench: Towards sustainable robotics system
benchmarking. In 2016 IEEE International Conference on
Robotics and Automation, 3383–3389.

https://movingai.com/benchmarks/grids.html
https://movingai.com/benchmarks/grids.html
https://ompl.kavrakilab.org

Trust-Aware Planning:
Modeling Trust Evolution in Longitudinal Human-Robot Interaction

Zahra Zahedi, Mudit Verma, Sarath Sreedharan, Subbarao Kambhampati
SCAI, Arizona State University

{zzahedi, mverma13, ssreedh3, rao}@asu.edu

Abstract

Trust between team members is an essential requirement for
any successful cooperation. Thus, engendering and maintain-
ing the fellow team members’ trust becomes a central respon-
sibility for any member trying to not only successfully partic-
ipate in the task but to ensure the team achieves its goals.
The problem of trust management is particularly challenging
in mixed human-robot teams where the human and the robot
may have different models about the task at hand and thus
may have different expectations regarding the current course
of action and forcing the robot to focus on the costly expli-
cable behavior. We propose a computational model for cap-
turing and modulating trust in such longitudinal human-robot
interaction, where the human adopts a supervisory role. In
our model, the robot integrates human’s trust and their expec-
tations from the robot into its planning process to build and
maintain trust over the interaction horizon. By establishing
the required level of trust, the robot can focus on maximizing
the team goal by eschewing explicit explanatory or explica-
ble behavior without worrying about the human supervisor
monitoring and intervening to stop behaviors they may not
necessarily understand. We model this reasoning about trust
levels as a meta reasoning process over individual planning
tasks. We additionally validate our model through a human
subject experiment.

Introduction
Building and maintaining trust between team members form
an essential part of any human teaming endeavor. We ex-
pect this characteristic to carry over to human-robot teams
and the ability of an autonomous agent to successfully form
teams with humans directly depends on their ability to model
and work with human’s trust. Unlike homogenous human
teams, where the members generally have a well-developed
sense of their team member’s capabilities and roles, teaming
between humans and autonomous agents may suffer because
of the user’s misunderstanding about the robot’s capabilities.
Thus the understanding and (as required) correction of the
human’s expectations about the robot can be a core require-
ment for engendering lasting trust from the human team-
mate. Recent works in human-aware planning, particularly
those related to explicable planning (Zhang et al. 2017) and
generating model reconciliation (Chakraborti et al. 2017),
can provide us with valuable tools that can empower au-
tonomous agents to shape the user’s expectation correctly

and by extension, their trust.
In this paper, we will consider one of the most basic

human-robot teaming scenarios, one where the autonomous
agent is performing the task and the human is following
a supervisory role. For this setting, we propose a meta-
computational framework that can model and work with the
user’s trust in the robot to correctly perform its task. We
will show how this framework allows the agent to reason
about the fundamental trade-off between (1) the more ex-
pensive but trust engendering behavior, including explicable
plans and providing explanations, and (2) the more efficient
but possibly surprising behavior the robot is capable of per-
forming. Thus our framework is able to allow the agent to
take a long term view of the teaming scenario, wherein at
earlier points of teaming or at points with lower trust, the
agent is able to focus on trust-building behavior so that later
on, it can use this engendered trust to follow more optimal
behavior. We will validate this framework by demonstrating
the utility of this framework on a modified rover domain and
also perform a user study to evaluate the ability of our frame-
work to engendering trust and result in higher team utility.

Related Work
There exists a number of works that have studied trust in the
context of human-robot interaction. The works in this area
can be broadly categorized into two groups (1) Trust infer-
ence based on observing human behavior or (2) Utilizing
estimated trust to guide robot behavior.

For Trust inference, Online Probabilistic Trust Inference
Model (OPTIMo) is one of the pioneers in this area in which
they capture trust as a latent variable represented with a dy-
namic Bayesian network. OPTIMo uses a technique for es-
timating trust in real-time that depends on the robot’s task
performance, human intervention, and trust feedback (Xu
and Dudek 2015). Trust inference model based on Bayesian
inference with Beta-distribution to capture both positive and
negative attitude on robot’s performance (Guo, Zhang, and
Yang 2020) contributes an important extension to OPTIMo.
Also, this Bayesian reasoning for trust inference has been
considered non-parametrically with Gaussian processes, Re-
current Neural Network (RNN), and a hybrid approach in
which trust is a task-dependent latent function (Soh et al.
2020).

With regards to trust utilization, some works try to esti-

mate trust, given human intervention and robot command,
using reputation function (Xu and Dudek 2012), or OP-
TIMO (Xu and Dudek 2016) to make an adaptive mecha-
nism that dynamically adjusts the robot’s behaviors, to im-
prove the efficiency of the collaborative team. Also, an ex-
tension of OPTIMo with time series trust model (Wang et al.
2015) has been used to estimate trust in multi-robot scenar-
ios. The estimated trust is utilized to decide between manual
or autonomous control mode of robots (Wang et al. 2018).
In (Chen et al. 2018, 2020), a POMDP planning model has
been proposed that allows the robot to obtain a policy by
reasoning about human’s trust as a latent variable. In swarm
robots, they leveraged trust to update the communication
graph that will reduce the misleading information from less
trusted swarm robots (Liu et al. 2019).

This paper is situated in the trust utilization area since the
robot is trying to use trust to make a meta planning decision.
Although most of the mentioned work tried to utilize trust
for better team performance, they all used trust in the action
level and didn’t consider how the trust will affect robot per-
formance at the problem level. As they consider trust as a
tool to improve performance in cooperation, the importance
of considering trust that comes with more interpretable be-
havior has been neglected in those works.

Background
In this section we will introduce some of the basic concepts
related to planning that we will be using to describe our
framework.

A Classical Planning problem isM = 〈D, I,G〉 where
D = 〈F,A〉 is a domain with F as a set of fluents that
define a state s ⊆ F , also initial I and goal G states are
subset of fluent I,G ⊆ F , and each action in a ∈ A is
defined as follows a = 〈ca, pre(a), eff±(a)〉 ∈ A, where
A is a set of actions, ca is the cost, and pre(a) and eff± are
precondition and add or delete effects. i.e. ρM(s, a) |= ⊥
if s 6|= pre(a); else ρM(s, a) |= s ∪ eff+(a) \ eff−(a),
and ρM(.) is the transition function.
So, when we talk about model M, it consists of action
model as well as initial state and goal state. The solution
to the model M is a plan which is a sequence of actions
π = {a1, a2, . . . , an} which satisfies ρM(I, π) |= G. Also,
C(π,M) is the cost of plan π where

C(π,M) =

{∑
a∈π ca if ρM(I, π) |= G

∞ o.w
.

Human-Aware planning (HAP) in its simplest form con-
sists of scenarios, where a robot is performing a task prob-
lem and human is observing and evaluating the task. So it
can be defined by a tuple of the form 〈MR,MR

h 〉, where
MR is the planning problem being used by the robot and
MR

h is the human’s understanding of the task (which may
differ from the robot’s original model). They are defined as
MR = 〈DR, IR,GR〉 andMR

h = 〈DRh , IRh ,GRh 〉.
So, in general, the robot is expected to solve the task while
meeting the user’s expectations. As such, for any given plan,
the degree to which the plan meets the user expectation is
measured by the explicability score of the plan, which is de-

fined to be the distance (δ) between the current plan and the
plan expected by the user (πE).

E(π) = −1 ∗ δ(πE , π)
We will refer to the plan as being perfectly explicable when
the distance is zero. A common choice for the distance is
the cost difference in the human’s model for the expected
plan and the optimal plan in the human model (Kulkarni
et al. 2019). Here the robot has two options, (1) it can
choose from the possible plans it can execute the one with
the highest explicability score (referred to as the explicable
plan), or (2) it could try to explain, wherein it updates
the human model through communication, to a model
wherein the plan is chosen by the robot is either optimal
or close to optimal and thus have a higher explicability
score (Sreedharan et al. 2020a; Chakraborti, Sreedharan,
and Kambhampati 2017). A form of explanation that is
of particular interest, is what’s usually referred to as a
minimally complete explanation or MCE (Chakraborti et al.
2017), which is the minimum amount of model information
that needs to be communicated to the human to make
sure that the human thinks the current plan is optimal.
In the rest of the paper, when we refer to explanation or
explanatory messages, we will be referring to a set of model
information (usually denoted by ε), where each element of
this set corresponds to some information about a specific
part of the model. We will use + operator to capture the
updated model that the human would possess after receiving
the explanation. That is, the updated human model after
receiving an explanation ε will be given byMR

h + ε.

A Markov Decision Process (MDP) is 〈S,A,C, P, γ〉
where S denote the finite set of states, A denotes the fi-
nite set of actions, C : S × A → R is a cost function,
P : S × S × A → [0 1] is the state transition function
and γ is the discount factor where γ ∈ [0 1]. An action a
at state sn at time n incurs a cost (sn, a) and a transition
P (sn, sn+1, a) where sn+1 is the resulting state which sat-
isfies Markov property. So, the next state only depends on
the current state and the action chosen at the current state.
A policy π(s) denotes as action chosen at state s. The prob-
lem in an MDP is to find an optimal policy π : S → A that
maximizes the cumulative cost function (please note that the
cost function here is defined as a negative of costs). Over a
potentially infinite time horizon, we need to maximize the
expected discounted costs

∑∞
n=0 γ

kC(S,R).

Problem Definition
We will focus on a human-robot dyad, where the human (H)
adopts a supervisory role and the robot is assigned to per-
form tasks. We will assume that the human’s current level of
trust is an approximate discretization of a continuous value
between 0 to 1, and it can be mapped to one of the sets of
ordered discrete trust levels. We will assume that the exact
problem to be solved at any step by the robot is defined as
a function of the current trust the human has in the robot,
thereby allowing us to capture scenarios where the human
may choose to set up a trust-based curriculum for the robot
to follow. In particular, we will assume that each trust level

is associated with a specific problem, which is known to the
robot a priori, thereby allowing for precomputation of pos-
sible solutions. In general, we expect the human’s actions to
be completely determined by their trust in the robot, and we
will model the robot’s decision-making level as two levels
decision-making process. Before describing the formulation
in more detail, let us take a quick look at some of the as-
sumptions we are making regarding the problem setting and
clarify our operational definition of trust.

Assumptions
Robot (R), is responsible for executing the task.

1. Each task is captured in the robot model by a determin-
istic, goal-directed model MR (which is assumed to be
correct). The robot is also aware of the human’s expected
model of the taskMR

h (which could include the human’s
expectation about the robot). As assumed in most HAP
settings, these models could differ over any of the dimen-
sions (including action definitions, goals, current state,
etc.).

2. For simplicity, we will assume that each task assigned is
independent of each other, in so far that no information
from earlier tasks is carried over to solve the later ones.

3. The robot has a way of accessing or identifying the cur-
rent state of the human supervisor’s trust in the robot.
Such trust levels may be directly provided by the supervi-
sor or could be assessed by the robot by asking the human
supervisor specific questions.

Human (H), is the robot’s supervisor and responsible for
making sure the robot will perform the assigned tasks and
will achieve the goal.

1. For each problem, the human supervisor can either choose
to monitor (ob) or not monitor (¬ob) the robot.

2. Upon monitoring the execution of the plan by R, if H
sees an unexpected plan, they can intervene and stop R.

3. The human’s monitoring strategy and intervention will
be completely determined by the trust level. With respect
to the monitoring strategy, we will assume it can be
captured as a stochastic policy, such that for a trust level
i the human would monitor with a probability of ω(i).
Moreover, the probability of monitoring is inversely
proportional to the level of trust. In terms of intervention,
we will assume that the lower the trust and the more
unexpected the plan, the earlier the human would end the
plan execution. We will assume the robot has access to a
mapping from the current trust level and plan to when the
human would stop the plan execution.

Human Trust and Monitoring strategy
Before going further, let us examine the exact definition of
the trust we will rely on. According to a widely accepted
trust definition, trust is a psychological state comprising
the intention to accept vulnerability based upon the posi-
tive expectations of the intentions or behavior of another
(Rousseau et al. 1998). So, according to this definition, when
we have human-robot interaction, the human can choose to
be vulnerable by 1) Not intervening in the robot’s actions

while it is doing something unexpected and 2) Not to moni-
tor the robot while the robot might do inexplicable behavior
(Sengupta, Zahedi, and Kambhampati 2019). Thus, a human
with a high level of trust in the robot would expect the robot
to achieve their goal and as such, might choose not to mon-
itor the robot, or even if they monitor and the robot may
be performing something unexpected, they are less likely to
stop the robot (they may trust the robot’s judgment and may
believe the robot may have a more accurate model of the
task). Thus, when the trust increases, it is expected that the
human’s monitoring and intervention rate decreases. We can
say monitoring rate, as well as intervention rate being a func-
tion of the current trust (even being inversely proportional).
So, given the trust level human has on the robot, the robot
can reason about the monitoring and intervention rate of the
human supervisor.

Base Decision-Making Problem
As mentioned earlier, here, each individual task assigned to
the robot can be modeled as a human-aware planning prob-
lem of the form 〈MR,MR

h 〉. Now given such a human-
aware planning problem, the robot has the following options.

1. In the simplest case, the robot could choose to execute ei-
ther its explicable plan (πexp) or its optimal plan (πopt).
Such that the cost of executing the explicable plan is guar-
anteed to be greater than or equal to the cost of the optimal
plan , Ce(πexp) ≥ Ce(πopt), where Ce(π) = C(π,MR)
is the cost of executing the plan inMR.

2. Now, if the robot chooses to follow its optimal plan, then
it could augment that plan with an explanation (which
is expected to be provided upfront before the plan gets
executed). Now the robot could choose to provide ei-
ther an MCE εMCE , or an explanation that merely in-
creases the explicability of a trace and doesn’t guaran-
tee that the plan would be optimal in the updated hu-
man model. We will denote such explanations as ε̃. The
cost of following such a strategy for a robot is given as
Ce(〈ε, π〉) = C(ε) + C(π,MR), where C(ε) is the cost
of communicating the explanation.

To simplify the discussion, we will assume that for each trust
level, the robot has to perform a fixed task. So if there are k-
levels of trust, then the robot would be expected to solve k
different tasks. Moreover, if the robot is aware of these tasks
in advance, then it would be possible for it to precompute
solutions for all these tasks in advance and make the choice
of following one of the specific strategies mentioned above
depending on the human’s trust and the specifics costs of
following each strategy.

Meta-MDP Problem
Next, we will talk about the decision-making model we will
use to capture the longitudinal reasoning process the robot
will be following to decide what strategy to use for each
task. The decision epochs for this problem correspond to the
robot getting assigned a new problem. The cost structure of
this meta-level problem includes not only the cost incurred
by the robot in carrying out the task but team level costs

related to the potential failure of the robot to achieve the
goal, how the human supervisor is following a specific
monitoring strategy, etc. Specifically, we will model this
problem as an infinite horizon discounted MDP of the form
M = 〈S,A,P,C, γ〉, defined over a state space consisting
of k states, where each state corresponds to the specific
trust level of the robot. Given the assumption that each
of the planning tasks is independent, the reasoning at the
meta-level can be separated from the object-level planning
problem. In this section, we will define this framework
in detail, and in the next section, we will see how such
framework could give rise to behavior designed to engender
trust.

Meta-Actions A: Here the robot has access to four
different actions, corresponding to four different strategies
they can follow, namely, use the optimal plan πopt, the
explicable plan πexp, follow πopt while providing an expla-
nation that improves the explicability score 〈ε̃, πopt〉 and
finally providing MCE for the optimal plan 〈εMCE , πopt〉.

Transition Function P: The transition function captures
the evolution of the human’s trust level based on the robot’s
action. In addition to the choice made by the robot, the tran-
sition of the human trust also depends on the user’s mon-
itoring strategies, which we take to be stochastic but com-
pletely dependent on the human’s current level of trust and
thus allowing us to define a markovian transition function.
In this model, for any state, the system exhibits two broad
behavioral patterns, the ones for which the plan is perfectly
explicable in the (potentially updated) human model and for
those in which the plan may not be perfectly explicable.

• Perfectly explicable plan: The first case corresponds to
one where the robot chooses to follow a strategy the hu-
man accepts to be optimal. Here we expect the human
trust to increase to the next level in all but the maximum
trust level (where it is expected to remain the same). The
most common case where this may happen is when the
robot chooses to provide an MCE explanation. Though
there may also be cases where the explicable plan also
perfectly matches up with the human’s expected plan.

• Other Cases: In this case, the robot chooses to follow a
plan with a non-perfect explicability score E(π). Now for
any level that is not the maximum trust level, this action
could cause a transition to one of three levels, the next
trust level si+1, stay at the current level si, or the human
could lose trust on the robot and move to level si−1. Here
the probabilities for these three cases for a meta-level ac-
tion associated with a plan π are as given below

P (si, a
π, si+1) = (1− ω(i))

where ω(i) is the probability that the human would choose
to observe the robot at a trust level i. Thus for a non-
explicable plan, the human could still build more trust in
the robot if they notice the robot had completed its goal
and had never bothered monitoring it.

P (si, a, si) = ω(i) ∗ P(E(π))

That is, the human’s trust in the robot may stay at the
same level even if the human chooses to observe the robot.
Note the probability of transition here is also dependent
on a function of the explicability score of the current plan,
which is expected to form a well-formed probability dis-
tribution (P(·)). Here we assume this is a monotonic func-
tion over the plan explicability score; a common function
one could adopt here is a Boltzmann distribution over the
score (Sreedharan et al. 2020b). For the maximum trust
level, we would expect the probability of staying at the
same level to be the sum of these two terms. With the re-
maining probability, the human would move to a lower
level of trust.

P (si, a, si−1) = ω(i) ∗ (1− P(E(π)))

Cost function C: For any action performed in the meta-
model, the cost function (C : S × A → R) depends on
whether the human is observing the robot or not. Since
we are not explicitly maintaining state variables capturing
whether the human is monitoring, we will capture the cost
for a given state action pair as an expected cost over this
choice. Note that the use of this simplified cost model does
not change the optimal policy structure as we are simply
moving the expected value calculation over the possible out-
come states into the cost function. Thus the cost function
becomes

C(si, aπ) = (1− ω(i)) ∗ (Ce(π)) + ω(i) ∗ C〈MR,MR
h 〉

Where Ce(π) is the full execution cost of the plan (which
could include explanation costs) and the C〈MR,MR

h 〉
represents the cost of executing the selected strategy under
monitoring. For any less than perfectly explicable plan,
we expect the human observer to stop the execution at
some point, and as such, we expect C〈MR,MR

h 〉
to further

consist of two cost components. The cost of executing the
plan prefix till the point of intervention by the user and the
additional penalty of not completing the goal.

Discounting γ: Since in this setting, higher trust levels
are generally associated with higher expected values, one
could adjust discounting as a way to control how aggres-
sively the robot would drive the team to higher levels of
trust. With lower values of discounting favoring more rapid
gains in trust.

Remark: One central assumption we have made through-
out this paper is that the robot is operating using the correct
model of the task (in so far as it is correctly representing
the true and possibly unknown task modelM∗). As such, it
is completely acceptable to work towards engendering com-
plete trust in the supervisor, and the human not monitoring
the robot shouldn’t lead to any catastrophic outcome. Obvi-
ously, this need not always be true. In some cases, the robot
may have explicit uncertainty over how correct its model is
(for example, if it learned this model via Bayesian meth-
ods), or the designer could explicitly introduce some un-
certainty into the robot’s beliefs about the task (this is in
some ways parallel to the recommendations made by the

off-switch game paper (Hadfield-Menell et al. 2016) in the
context of safety). In such cases, the robot would need to
consider the possibility that when the human isn’t observ-
ing, there is a small probability that it will fail to achieve its
task. One could attach a high negative reward to such scenar-
ios, in addition to a rapid loss of trust from the human. De-
pending on the exact probabilities and the penalty, this could
ensure that the robot doesn’t engender complete trust when
such trust may not be warranted (thereby avoiding problems
like automation bias (Cummings 2004)).

Evaluation and Implementation
This section will describe a demonstration of our framework
in a modified rover domain instance and describe a user
study we performed to validate our framework. Throughout
this section, we will use the following instantiation for the
framework. We considered 4 states. For each of these trust
states, we associate a numerical value T (i) ∈ [0 1], that
we will use to define the rest of the model. Specifically,
the T (i) values we used per state were 0, 0.3, 0.6 and 1
respectively. For monitoring strategy, we used ω(i) as a
Bernoulli distribution with probability of (1 − T (i)), as
explicability score E(π) we used the negative of the cost
difference between the current plan and the optimal plan in
the robot model. For P(·), we have 1 for the explicable plan
and 0 for the optimal plan. For execution cost, we assumed
all actions are unit cost. We will ignore explanations in the
experiments and focus on cases where the choice of the
robot is limited between explicable and optimal plans.

Implementation We implemented our framework using
Python which was run on an Ubuntu workstation with an In-
tel Xeon CPU (clock speed 3.4 GHz) and 128GB RAM. We
used Fast Downward with A* search and the lmcut heuris-
tic (Helmert 2006) to solve the planning problems and find
the plans in all 4 problems, then we used the python MDP-
toolbox (Cordwell 2012) to solve the meta-MDP problem
for the robot’s meta decision. The total time for solving the
base problem was 0.0125s when applicable and 0.194s for
solving the meta-MDP problem.

Rover Domain Demonstration
Here, we used the updated version of IPC1 Mars Rover (The
Rover (Meets a Martian) Domain) in (Chakraborti, Sreed-
haran, and Kambhampati 2017) and changed it a little by
adding metal sampling to the domain as well. In the Rover
(Meets a Martian) Domain, it is assumed that the robot can
carry soil, rock, and metal at the same time and doesn’t need
to empty the store before collecting new samples and the
Martian (the supervisor in this scenario) isn’t aware of this
new feature. Also, the Martian believes that for the rover to
perform take image action; it needs to also send the soil and
metal data collected from the waypoint from where it is tak-
ing the image. So the Martian’s model of the rover has an
additional precondition (empty ?s) for actions sample soil,

1From the International Planning Competition (IPC) 2011: http:
//www.plg.inf.uc3m.es/ipc2011-learning/Domains.html

sample rock, and sample metal, and extra preconditions for
the action take image.

Now for each problem, the rover is expected to commu-
nicate soil, rock, metal, and images from a set of waypoints.
Given the additional preconditions in the Martian model,
the expected plan in the Martian model would be longer
than what is required for the rover. For example, in the first
problem, the rover goal consists of communicate metal data
waypoint0 and communicate metal data waypoint3. For this
problem, the explicable and optimal plan would be as fol-
lows
π1
exp =

(s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t3)
(c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t3 waypo in t3 waypo in t0)
(n a v i g a t e r o v e r 0 waypo in t3 waypo in t0)
(drop r o v e r 0 r o v e r 0 s t o r e)
(s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t0)
(n a v i g a t e r o v e r 0 waypo in t0 waypo in t3)
(c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t0 waypo in t3 waypo in t0)

π1
opt =

(s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t3)
(c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t3 waypo in t3 waypo in t0)
(n a v i g a t e r o v e r 0 waypo in t3 waypo in t0)
(s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t0)
(n a v i g a t e r o v e r 0 waypo in t0 waypo in t3)
(c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t0 waypo in t3 waypo in t0)

For a set of four sample tasks from this domain, the meta-
policy calculated by our system is as follows {π1

exp, π2
exp,

π3
exp, π4

opt}. Note how the policy prescribes the use of the
explicable plan for all but the highest level of trust, this is
expected given the fact that the optimal plans here are inex-
ecutable in the human model, and if the supervisor observes
the robot following such a plan, it is guaranteed to lead to a
loss of trust. The rover chooses to follow the optimal plan at
the highest level since the supervisor’s monitoring strategy
at these levels is never to observe the rover. The expected
value of this policy for the lowest level of trust is −179.34,
while if the robot were to always execute the explicable plan,
the value would be −415.89. Thus, we see that our trust-
adaptive policy does lead to an improvement in the rover’s
total cost.

Human Subject Experiment
To evaluate the performance of our system, we compared
our method (Trust-Aware condition) against two baseline
cases,
(1) Always Explicable: Under this condition, the robot al-
ways executes the plan, which is explicable to humans.
(2) Random Policy: Under this condition, the robot ran-
domly executes the explicable or inexplicable plan.
In particular, we aim to evaluate the following hypotheses

H1- The team performance, i.e., the total cost of plan ex-
ecution and human’s monitoring cost in the trust-aware
condition, will be better than the team performance in the
always explicable condition.

H2- The level of trust engendered by the trust-aware con-
dition will be higher than that achieved by the random
policy.

Experiment Setup We designed a user interface that gam-
ifies the human’s decisions to monitor the robot or not. The

participants thus play the role of the supervisor and are re-
sponsible for making sure the robot is performing its as-
signed tasks and is achieving its goals. Each participant has
10 rounds of the robot doing tasks. Depending on the choices
made by the participants, they either gain or lose points.
They are told that they will be awarded 100 points if the
robot does the task right and achieves the assigned goal. At
the beginning of each round, they can either choose to mon-
itor the robot to make sure it does its job2 or they can choose
to perform another task (thereby forgoing monitoring of the
robot) to make extra points. In this case, the extra task was
labeling images for which they will receive 100 points (in
addition to the points they receive from the robot doing its
tasks successfully). However, if they choose to label images,
and the robot fails to achieve its goal, they lose 200 points
(−200 points). Also, if they choose to monitor the robot, and
they see the robot is doing something invalid or wrong, they
can choose to stop the robot. If this happens, they only re-
ceive 50 points. But if they let the robot finish a potentially
invalid plan, and if the robot couldn’t achieve the goal at the
end, then they again lose points (−200 points).
In this study, we again considered a curriculum of 4 trust lev-
els and 4 different tasks for the robot. Each task consists of
the robot operating on a grid map with different goals such
as moving to a certain location and bringing coffee from a
place to another place.3 For each problem; the map is shown
to the participants are different from the robot’s map. As
a result, the plan the human expects is different from the
robot’s optimal plan. Thus, in each task, the robot can ei-
ther execute a costly but explicable plan or an optimal but
inexplicable plan.

Robot Tasks Figure 1(a) presents the robot and human
map corresponding to each of the tasks used in the study. For
each map, we also highlight the explicable and optimal plan
(π1 and π2 respectively) in the figure. As part of the study,
each participant is presented with the human map and is told
to expect the robot to follow the shortest possible path. Ad-
ditionally, we also provide a key describing the semantics
of each of the visual elements that are part of the map (as
shown in Figure 1(b)). The tasks are as follows.

Task 1. The robot task is to reach the red point on the map

Task 2. The robot task is to bring coffee to the room

Task 3. The robot task is to bring coffee to the room4

Task 4. The robot task is to take coffee from room 1 and
bring it to room 2

For each round, if the participant chooses to monitor, a
step-by-step plan execution is shown to them and with an
option to stop the robot at any step. At the end of each
round, a four-item trust scale of Muir questionnaire (Muir
1994) is given to them, which measures their trust in that

2Their primary responsibility is to ensure the robot completes
its task

3All the details of user experiment setup, including the tasks are
provided in the supplementary materials

4Tasks 2 and 3 are different because the maps (and conditions)
are different.

round based on the robot’s predictability, dependability,
faith, and trust. Then, based on the measure of trust, a
new robot’s task is shown to them. In the user study to
localize user trust, we will associate each level with a
specific discretization of this range. Specifically, we will
consider the following intervals for each of the levels,
{[0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1]}. Depending on
the condition the participant belonged to, they are either
shown an action selected by a policy calculated from
our method (for Trust-aware condition), or an explicable
plan (for Always explicable condition) or is randomly
shown either the optimal or explicable plan with an equal
probability (for Random Policy condition).

Human Subjects We recruited a total of 62 participants,
of whom 38% were undergraduate, and 62% were graduate
students in Computer Science, Engineering, and Industrial
Engineering at our university. We paid them a base of $10
for the study and a bonus of 1¢ per point, given the total
points they will get in ten rounds. From the participants, 24
were assigned to the trust-aware condition, 18 to always ex-
plicable condition, and finally 20 to the random policy con-
dition. Then, we filtered out any participants who monitored
the robot in less than four rounds because they wouldn’t have
monitored the robot long enough to have a correct expecta-
tion in regards to the robot behavior.

Results Across all the three conditions, we collected
(a) participants’ trust measures in each round, (b) robot’s
total plan execution cost, and (c) participants’ monitoring
cost. For the monitoring cost, we consider the minutes
participants spent on monitoring the robot in each round,
which was approximately 3 minutes for each round of
monitoring. As shown in Figure 2, we can see that the total
cost (the robot’s plan execution cost and the participant’s
monitoring cost) when the robot executes trust-aware
behavior is significantly lower than the other two cases
which means that following trust-aware policy allows the
robot to successfully optimize the team performance. From
Figure 3, we also observe that the trust (as measured by
the Muir questionnaire) improves much more rapidly when
the robot executes trust-aware policy as compared to the
random policy. Though the rate for the trust-aware policy
is less than the always explicable case, we believe this
is an acceptable trade-off since following the trust-aware
policy does result in higher performance. Also, we expect
trust levels for trust-aware policies to catch up with the
always-explicable conditions over longer time horizons.

Statistical Significance–We tested the two hypotheses
by performing a one-tailed p-value test via t-test for inde-
pendent means with results being significant at p < 0.05
and find that results are significant for both hypotheses. 1)
For the first hypothesis H1, we tested the mean cost with
the null hypothesis of team performance cost has a mean
of 3170.199 (using data from the ”always explicable” sce-
nario), we find that p-value is less than 0.00001. 2) For the
second hypothesis H2, we tested the mean trust value for the
last round and mean value over last two rounds with the null
hypothesis being the trust value has a mean of 0.5458 and

(a) (b)

Figure 1: (a) The human and the robot model of the map for the four different tasks, (b) The map description

0.5416 in the last round and and last two rounds respectively
(using the data from ”Random” scenario), we find that the p-
values are 0.03174 and 0.03847 respectively. So, the results
are statistically significant and show the validity of our hy-
potheses.
Also, we ran Mixed ANOVA test to determine validity of
second hypothesis H2, and we found that there was a signifi-
cant time (round)5 by condition interaction F (1, 27) = 4.72,
p = 0.039, η2p = 0.15. Planned comparison with paired
sample t-test revealed that in participant in Trust-Aware con-
dition, trust increases significantly in round 10 compare to
round 1, t = 3.55, p = 0.002, d = 0.84. There was however
no difference in trust increase between round 1 and round
10 in the Random Policy condition t = −0.15, p = 0.883,
d = −0.046. Both of these results follow our expectation
about the method. Moreover, we ran Mixed ANOVA test on
Trust-Aware vs. Always Explicable condition to check trust
evolution over time, and we found that there was no signifi-
cant time (round) by condition interaction F (1, 26) = 2.21,
p = 0.149, η2p = 0.08. Planned comparison with paired
sample t-test revealed that in participant in Trust-Aware con-
dition, trust increases significantly in round 10 compare to
round 1, t = 3.55, p = 0.002, d = 0.84. There was also
significant difference in trust increase between round 1 and
round 10 in the Always Explicable condition t = 5.04,
p = 0.001, d = 1.59. This seems to imply that there isn’t
a significant difference between our Trust-aware method
(which is a lot more cost efficient) and Always Explicable
case with regards to engendering trust.

5We considered the change over first and last rounds

Figure 2: Team performance as cumulative plan execution cost and
participants’ monitoring cost (Mean ± std of all participants).

Conclusion and Discussion
In this paper, we presented a computational model that the
robot can use to capture the evolution of human trust in lon-
gitudinal human-robot interactions. This framework allows
the robot to incorporate human trust into its planning pro-
cess, thereby allowing it to be a more effective teammate.
Thus our framework would allow an agent to model, foster,
and maintain the trust of their fellow teammates. Thereby
causing the agent to engage in trust engendering behavior
earlier in the teaming lifecycle and be able to leverage trust
built over these earlier interactions to perform more efficient
but potentially inexplicable behavior later on. As our ex-
perimental studies show, such an approach could result in a

Figure 3: Trust evolution (as measured by the Muir questionnaire)
through robot interactions with participants (Mean ± std of all par-
ticipants).

much more efficient system than one that always engages in
explicable behavior. We see this framework as the first step
in building such a longitudinal trust reasoning framework.
Thus a natural next step would be to consider POMDP ver-
sions of the framework, where the human’s trust level is a
hidden variable. We also plan to investigate methods to ef-
fectively learn the various parameter of our Meta-MDP or
perform direct RL over this MDP.

Acknowledgments. This research is supported in
part by ONR grants N00014-16-1-2892, N00014-18-1-
2442, N00014-18-1-2840, N00014-9-1-2119, AFOSR grant
FA9550-18-1-0067, DARPA SAIL-ON grant W911NF-19-
2-0006, NASA grant NNX17AD06G, and a JP Morgan AI
Faculty Research grant.

References
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2017.
Balancing explicability and explanation in human-aware
planning. arXiv preprint arXiv:1708.00543 .

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. arXiv preprint
arXiv:1701.08317 .

Chen, M.; Nikolaidis, S.; Soh, H.; Hsu, D.; and Srinivasa, S.
2018. Planning with trust for human-robot collaboration. In
Proceedings of the 2018 ACM/IEEE International Confer-
ence on Human-Robot Interaction, 307–315.

Chen, M.; Nikolaidis, S.; Soh, H.; Hsu, D.; and Srinivasa, S.
2020. Trust-aware decision making for human-robot collab-
oration: Model learning and planning. ACM Transactions on
Human-Robot Interaction (THRI) 9(2): 1–23.

Cordwell, S. 2012. Markov Decision Process (MDP)
Toolbox for Python. https://github.com/sawcordwell/
pymdptoolbox.

Cummings, M. 2004. Automation bias in intelligent time
critical decision support systems. In AIAA 1st Intelligent
Systems Technical Conference, 6313.

Guo, Y.; Zhang, C.; and Yang, X. J. 2020. Modeling Trust
Dynamics in Human-robot Teaming: A Bayesian Inference
Approach. In Extended Abstracts of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, 1–7.

Hadfield-Menell, D.; Dragan, A.; Abbeel, P.; and Rus-
sell, S. 2016. The off-switch game. arXiv preprint
arXiv:1611.08219 .

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26: 191–246.

Kulkarni, A.; Sreedharan, S.; Keren, S.; Chakraborti, T.;
Smith, D. E.; and Kambhampati, S. 2019. Design for Inter-
pretability. In ICAPS Workshop on Explainable AI Planning
(XAIP).

Liu, R.; Jia, F.; Luo, W.; Chandarana, M.; Nam, C.; Lewis,
M.; and Sycara, K. P. 2019. Trust-Aware Behavior Reflec-
tion for Robot Swarm Self-Healing. In AAMAS, 122–130.

Muir, B. M. 1994. Trust in automation: Part I. Theoretical
issues in the study of trust and human intervention in auto-
mated systems. Ergonomics 37(11): 1905–1922.

Rousseau, D. M.; Sitkin, S. B.; Burt, R. S.; and Camerer, C.
1998. Not so different after all: A cross-discipline view of
trust. Academy of management review 23(3): 393–404.

Sengupta, S.; Zahedi, Z.; and Kambhampati, S. 2019. To
monitor or to trust: observing robot’s behavior based on a
game-theoretic model of trust. In Proceedings of the Trust
Workshop at AAMAS.

Soh, H.; Xie, Y.; Chen, M.; and Hsu, D. 2020. Multi-task
trust transfer for human–robot interaction. The International
Journal of Robotics Research 39(2-3): 233–249.

Sreedharan, S.; Chakraborti, T.; Muise, C.; and Kambham-
pati, S. 2020a. Expectation-Aware Planning: A Unifying
Framework for Synthesizing and Executing Self-Explaining
Plans for Human-Aware Planning. AAAI.

Sreedharan, S.; Kulkarni, A.; Chakraborti, T.; Smith, D. E.;
and Kambhampati, S. 2020b. A Bayesian Account of Mea-
sures of Interpretability in Human-AI Interaction. arXiv
preprint arXiv:2011.10920 .

Wang, X.; Shi, Z.; Zhang, F.; and Wang, Y. 2015. Dynamic
real-time scheduling for human-agent collaboration systems
based on mutual trust. Cyber-Physical Systems 1(2-4): 76–
90.

Wang, Y.; Humphrey, L. R.; Liao, Z.; and Zheng, H. 2018.
Trust-based multi-robot symbolic motion planning with a
human-in-the-loop. ACM Transactions on Interactive Intel-
ligent Systems (TiiS) 8(4): 1–33.

Xu, A.; and Dudek, G. 2012. Trust-driven interactive visual
navigation for autonomous robots. In 2012 IEEE Interna-
tional Conference on Robotics and Automation, 3922–3929.
IEEE.

https://github.com/sawcordwell/pymdptoolbox
https://github.com/sawcordwell/pymdptoolbox

Xu, A.; and Dudek, G. 2015. Optimo: Online probabilistic
trust inference model for asymmetric human-robot collabo-
rations. In 2015 10th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), 221–228. IEEE.
Xu, A.; and Dudek, G. 2016. Maintaining efficient collabo-
ration with trust-seeking robots. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3312–3319. IEEE.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explicabil-
ity and predictability for robot task planning. In Robotics
and Automation (ICRA), 2017 IEEE International Confer-
ence on, 1313–1320. IEEE.

Deliberation and Plan Execution for Intra-vehicle Robotic Activities in Space

J. Benton, Abiola Akanni, Robert Morris
Intelligent Systems Division

NASA Ames Research Center
{j.benton,abiola.o.akanni,robert.a.morris}@nasa.gov

Abstract

Intra-Vehicular Robotics (IVR) for space exploration vehicles
describes robotic capabilities to perform Intra-vehicle activity
(IVA) in an autonomous or remotely operated manner. This
paper focuses on autonomy, and more specifically, on the po-
tential application of deliberation functions and plan execu-
tion in robotics to enable autonomous IVR. We provide an
overview of the capabilities required to enable goal-directed
operations, robotic systems’ ability to autonomously transfer
a high-level goal into a set of tasks to accomplish them.

Introduction
Intra-Vehicular Robotics (IVR) for space exploration vehi-
cles refers to robots capable of performing Intra-vehicle ac-
tivity (IVA) in an autonomous or remotely operated man-
ner. IVAs include state assessment (including inspection, in-
ventory, anomaly detection), logistics (moving and stowing
cargo), fault management (all phases), and science opera-
tions. NASA researchers explore IVR on Gateway, a space-
port in lunar orbit that will serve as a gateway to deep space
and the lunar surface. Since Gateway will primarily be un-
crewed for nine to eleven months out of the year, IVR is
critical and essential to maintain and protect the vehicle.

This position paper focuses on autonomous IVR/IVA, and
more specifically, on the potential application of automated
planning, plan execution, and other deliberation functions
in robotics. Deliberative functions include planning, acting
(refining actions into sensory-motor control), plan execu-
tion monitoring, observing, and learning. For plan execu-
tion monitoring, we have begun considering a robust dis-
tributed plan monitoring approach. This work has produced
an architectural design and closed-loop framework of a sys-
tem for goal-directed commanding, automated goal manage-
ment, task planning, robust execution, execution monitoring,
and replanning.

Our main contribution of this paper is to define and illus-
trate the role of planning and execution for IVR. The rest
of the article is structured as follows: we define vehicle sys-
tem management and use the Gateway mission as a working
example; then, we define a set of requirements and techni-
cal challenges in planning and execution for IVR. The work

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: R2 robotic assistant on the International Space Sta-
tion

Figure 2: Astrobee Free Flying Robot

summarized here encapsulates a multi-year effort to demon-
strate the effective use of task planning in IVR science ac-
tivities for robotic manipulators.

Exploration Vehicle Management
Space vehicle system management is a joint effort of ground
systems and personnel, vehicle systems, robotic systems,
and vehicle crew. IVR services support all types of oper-
ations and vehicle system management. Two vehicle sys-
tems management methods are emerging: the first is nec-
essary when a team is on board and operating the vehi-
cle but requires support that the ground controllers cannot

give. The second involves vehicle control when no one is
on board. Uncrewed vehicle management includes so-called
“dormant” periods, when the vehicle is in a state when only
the minimal subsystems are required to maintain system
health, as well as periods of fully operational autonomous
operations (Badger, Strawser, and Claunch 2019).

Exploration Missions (EMs) will extend human presence
into deep space. Current designs for EMs include incre-
mentally building infrastructure, operational experience, and
testing of systems required for long-duration missions in
deep space. These activities will be conducted on the Deep
Space Gateway (DSG) (Gateway 2018). DSG is a spaceport
in cislunar orbit that will serve as a vehicle to deep space
and the lunar surface.

Intra-Vehicle Activity (IVA) includes the following:

• State assessment, including inspection of vehicle, inven-
tory, and detection of off-nominal conditions;

• Logistics, including cargo transport and stowage and
opening and closing hatches;

• Integrated fault management, including detection, isola-
tion and repair; and

• Science operations, for example, biological experiments
involving the manipulation and imaging of biological
samples.

Each of these activities potentially involves complex, co-
ordinated planning. Furthermore, some activities can be
viewed as routine (predictable, performed periodically). In
contrast, others might be conducted in response to an off-
nominal event, such as detecting a leak or unexplained noise.
This suggests the need for continuous operations planning,
the ability to accept new goals at any time during operations
(Brenner and Nebel 2009).

This work is being applied as part of the Integrated Sys-
tem for Autonomous and Adaptive Care-taking (ISAAC)
program, a system for monitoring the telemetry from the
International Space Station (ISS) systems, and, eventually,
on the DSG. The goal of the ISAAC program is to provide
autonomous spacecraft caretaking during uncrewed periods.
The focus of ISAAC is to integrate AI Task Planning with
robot behaviors to enable goal-based operations: the ability
to command the robots at a high level of abstraction (set-
ting goals) and having the robots deliberate autonomously
to plan the execute to accomplish the goals.

To illustrate the technical challenges of IVR for EMs, use
cases involving cargo transport logistics and integrated fault
management are evaluated. The following summarizes these
use cases.
Transporting Cargo Bags: In this scenario, one or more
Cargo Transfer Bags (CTBs) need to be retrieved and trans-
ported between a cargo vehicle and a Gateway module. A
typical logistics task might require the robot to approach and
grasp a CTB with a magnetic gripper. The CTB is equipped
with a bag fixture that enables magnetic gripping, and the
stowage location is equipped with a berth fixture to hold the
item.

Following the grasp, the bag is magnetically released
from its stowage location. The robot transports the CTB to

its targeted location on Gateway, at which time it is stowed
on a new stowage location, using a similar sequence that
involves magnetic connectors. In addition to the routine
grasp/ungrasp/transport actions, solving logistics can also
involve set-up tasks such as installing bag fixtures or berth
fixtures. Logistics may involve the coordination of multiple
robots performing different sub-tasks. For example, some
robots cannot traverse certain areas of Gateway. In this case,
the robot must place the CTB in a staging area for another
robot to then pick up the CTB and move it to its final goal
location.
Integrated Fault Management: In this scenario, a micro-
meteoroid strike has caused a leak in a Gateway module dur-
ing an uncrewed mission phase. The leak must be patched
within a matter of hours to avoid significant impacts, such
as losing pressurized payloads that cannot tolerate depres-
surization.

There are three leak management phases: detection, local-
ization, and mitigation. During the detection phase, vehicle
sensor information such as pressure sensor trend analysis or
the sound of thrust generated by the leak is used to signal the
presence of a leak.

The second phase is localization, which works through
several mechanisms. It uses coarse localization, where
coarse sensor data is used to localize within, say, a 2 by
2-meter area. It begins with a survey procedure, requiring
preparation actions like turning off noisy systems that mask
the leak noise. We then perform preparation, where a mo-
bile inspection robot with ultrasound sensors can find noise
sources indicating the leak. Finally, during report and con-
firmation, the robot communicates precise leak location and
may confirm using other sensor data.

During the mitigation phase, and depending on the loca-
tion and type of leak, a mobile manipulator robot may patch
it using a patch kit. Otherwise, mitigation would focus on
steps like moving sensitive equipment out of the affected
module and closing hatches to isolate it from the rest of the
vehicle.

IVA Technical Challenges for Planning and
Execution

In this section we consider autonomous IVR from three per-
spectives: from a consideration of features of the planning
problem; from a plan-based robotic architecture point of
view; and briefly considering interfaces with other human
and automated systems. Each of these topics overlaps with
topics of interest to the AI planning community.

Summary of Technical Challenges for IVA
The examples above illustrate several challenges for plan-
ning and execution systems for IVR. Among those chal-
lenges are:
• Planning and acting under uncertainty; in particular, the

state of the world is only partially known at planning time
and may change unpredictably during execution; the ac-
tions may be stochastic, in that the effect of an action may
not be known with certainty; and durations of actions may
not be known with certainty;

Figure 3: RosPlan Architecture

• An activity may be time-critical; a sequence of actions
must be performed before a deadline.

• Planning is continuous: new activities may be posted
while others are being executed; and

• Coordination of knowledge and actions is required to at-
tack and solve the problem. This coordination may be
robot-robot, or robot-ground system, or robot-vehicle.

Plan-based Robotic Architectures
Robot architectures for deliberation have been developed for
many years (Ingrand and Ghallab 2017). There has been a
consensus that robotic architectures are layered, with sepa-
rate components for planning, execution, sensing and con-
trol. An example of a layered architecture is the ROSPlan
framework (Cashmore et al. 2015), illustrated in Figure 3,
which we are currently using for ISAAC task planning.
ROSPlan consists of basic ROS capabilities for problem
generation, PDDL planning, plan execution and knowledge
management. It provides action interface components for
mapping atomic PDDL actions to commands to robots. In
previous work (Azimi, Zemler, and Morris 2019) we ex-
panded the capabilities to include a simple goal management
and execution management and replanning system.

To this point, we have used ROSPlan to solve simple lo-
gistics scenarios involving coordinated bag transfer IVAs
with R2 and Astrobee. These have been tested in Gazebo
simulation (see Figure 4). A number of critical challenges to
be explored as we scale up to more complex scenarios in-
clude the following topics of relevance to the AI planning
community:

Support for continual planning and goal management
IVA requires planners to make decisions online, while pre-
vious plans are being executed. Frameworks for goal prior-
itization, plan preemption, and re-planning are potentially
needed in these contexts.

Scalable planning Although AI planning algorithms have
matured over the years, it is not clear whether complex
problems combining multiple agents and uncertainty can be
solved effectively with current systems.

Robust Monitoring and Execution Developing robot ar-
chitectures for IVA will require design decisions to be made
about achieving robust deliberative behavior through a bal-
ance between expressive plan domain models and languages
and robust techniques for plan execution monitoring. It is
not clear yet where that balance resides and more testing of
different designs are required.

Task and Motion Planning IVA is a good example of the
need for architectures for combined task and motion plan-
ning (TAMP). A large and growing body of work is ad-
dressing fundamental challenges raised by TAMP, such as
reasoning jointly with symbolic and continuous domains,
and at different levels of abstraction (Mansouri, Pecora, and
Schüller 2021).

Interfaces to Other Deliberation Systems
Robotic planning and acting for IVA are never isolated in-
dividual activities. It is necessary to consider interfaces be-
tween robotic and other deliberation systems:

• ground operator-robot: developing hybrid interfaces
combining a range of tele-operation and goal-based op-
erations (Dvorak et al. 2012)

• crew-robot: human-robot coordination; for example,
robot assistants in space (Chang and Mogg 2018)

• vehicle-robot: robotic systems integrated into vehicle au-
tonomy (Badger, Strawser, and Claunch 2019)

• robot-robot: Some IVAs need to be solved through coor-
dination of multiple robots. (Yan, Jouandeau, and Cherif
2013)

Figure 4: R2 Robot in Gazebo Simulating a Bag Transfer Scenario on the ISS

Each of these combinations potentially involves the need
to consider design options for extending plan-based archi-
tectures. As an illustration, the authors are in the processing
of testing modifications to ROSPlan (Figure 3) to enable dis-
patching of plans using multiple dispatchers, one for each
robot. Distributed decision-making requires an infrastruc-
ture for coordination. To that end, we’re currently exploring
coordinated scheduling in ROSPlan using a centralized STN
dispatcher (Smith, Gallagher, and Zimmerman 2007).

Summary

This position paper has provided an overview of deliberation
systems for Intra-Vehicle Robotic systems on future explo-
ration vehicles. We have sketched how we are using AI plan-
ning and execution systems to solving IVA planning. Many
challenges remain and we encourage the community to in-
vestigate these problems.

Acknowledgements

This work was performed under NASA’s Integrated Sys-
tem for Autonomous and Adaptive Care-taking (ISAAC)
Project. The rest of the ISAAC team: Trey Smith, Maria
Bualat, Oleg Alexandrov, Brian Coltin, Terry Fong, Janette
Garcia, Kathryn Hamilton, Lewis Hill, Marina Mor-
eira,Nicole Ortega, Joseph Pea1, Jonathan Rogers, Misha
Savchenko, Khaled Sharif.

References
Azimi, S.; Zemler, E.; and Morris, R. A. 2019. Autonomous
Robotics Manipulation for In-space Intra-Vehicle Activity.
In Workshop on Planning and Robotics (PlanRob).
Badger, J. M.; Strawser, P.; and Claunch, C. 2019. A Dis-
tributed Hierarchical Framework for Autonomous Space-
craft Control. In 2019 IEEE Aerospace Conference, 1–8.
Brenner, M.; and Nebel, B. 2009. Continual Planning and
Acting in Dynamic Multiagent Environments. Journal of
Autonomous Agents and Multiagent Systems 19: 297–331.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Huros, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, 333–341. ICAPS.
Chang, L.; and Mogg, T. 2018. SpaceX delivers CIMON,
along with berries and ice cream, at ISS. In Emerging Tech.
Digital Trends.
Dvorak, D. D.; Ingham, M. D.; Morris, J. R.; and Gersh, J.
2012. Goal-Based Operations: An Overview. Journal of
Aerospace Computing, Information and Communication .
Gateway. 2018. Q&A: NASA’s New Spaceship. https://www.
nasa.gov/feature/questions-nasas-new-spaceship.
Ingrand, F.; and Ghallab, M. 2017. Deliberation for Au-
tonomous Robots. Artif. Intell. 247(C): 10–44. ISSN 0004-
3702. doi:10.1016/j.artint.2014.11.003. URL https://doi.
org/10.1016/j.artint.2014.11.003.

Mansouri, M.; Pecora, F.; and Schüller, P. 2021. Combin-
ing Task and Motion Planning: Challenges and Guidelines.
frontiers in Robotics and AI .
Smith, S. F.; Gallagher, A.; and Zimmerman, T. 2007. Dis-
tributed Management of Flexible Times Schedules. In Pro-
ceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’07.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9788190426275. doi:10.1145/1329125.1329215.
URL https://doi.org/10.1145/1329125.1329215.
Yan, Z.; Jouandeau, N.; and Cherif, A. A. 2013. A Survey
and Analysis of Multi-Robot Coordination. International
Journal of Advanced Robotic Systems 10(12): 399. doi:10.
5772/57313. URL https://doi.org/10.5772/57313.

Compiling Contingent Planning into Temporal Planning for Robust
AUV Deployments

Yaniel Carreno1,2.3, Yvan Petillot1,2, Ronald P. A. Petrick1,2

1Edinburgh Centre for Robotics, Edinburgh, United Kingdom
2Heriot-Watt University, Edinburgh, United Kingdom

3University of Edinburgh, Edinburgh, United Kingdom
{y.carreno, y.r.petillot, r.petrick}@hw.ac.uk

Abstract

Autonomous Underwater Vehicles (AUVs) are increasingly
used to implement complex missions that require robots with
a high level of operational autonomy. AI temporal planners
are particularly well suited to solve a large number of these
real-world problems which often involve temporal and nu-
meric constraints. However, the applicability of such solvers
is limited in cases where certain aspects of the domain are in-
complete or unknown. In this work, we present a general ap-
proach to task planning based on the combination of temporal
planning, contingent planning and run-time sensing. We in-
troduce an approach which solves contingent problems using
offline temporal planning, which reduces the risks associated
with replaning in non-quiescent environments. This transla-
tion extends the range of problems that can be solved by
temporal planners. We demonstrate the effectiveness of our
approach with a new set of temporally-contingent planning
problems from a real underwater domain.

1 Introduction and Motivation
As automated planning approaches have matured over the
past decade, we have seen their introduction in a wide
range of real-world applications, including AUV missions
(Thompson and Guihen 2019) interested in ocean sampling,
maintenance of offshore structures, emergency response,
and military intervention. This can be attributed to the gen-
eral applicability of planning algorithms (Kerschke et al.
2019) and the variety of input languages available for mod-
elling different types of planning problems (e.g., classical
(McDermott et al. 1998), temporal (Fox and Long 2003),
contingent (Edelkamp and Hoffmann 2004), etc.). Regard-
less of the language, planning models must represent the
domain properties, goals, constraints, and costs in order that
the generated plan—a structured sequence of actions that
guides the initial world state to a goal state—is suitable for
execution in the world. As a result, planning models for real-
world applications can be complex, representing numeric
and temporal constraints and domain uncertainty.

Temporal planning solutions have proved to be effective
for implementing AUV missions (Cashmore et al. 2014;
Buksz et al. 2018; Carreno et al. 2021) as they provide
knowledge about the activity schedule, deal with concurrent

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An offshore energy domain including a wind farm
scenario. The domain presents multiple AUVs that are used
for maintenance and inspection tasks. The AUVs embed a
cavitation cleaning technology to remove biofouling from
a Boat Landing Area (BLA) at the wind turbine base. The
BLA state is unknown at planning time.

actions, and consider numeric constraints. However, such
planners are based on deterministic planning models with
predictable outcomes and completely known initial states,
limiting their applicability in real-world domains that are of-
ten incomplete or unknown. One option for mitigating these
issues is to introduce robust execution monitoring and on-
line replanning, in order to detect and reactively respond to
unexpected changes in the world. However, the replanning
process requires additional computational effort during plan
execution. In non-quiescent domains (i.e., underwater), re-
planning introduces delays associated with the generation of
new plans that can lead to a plan no longer being valid for
the AUV’s current state when execution begins.

Another solution to deal with knowledge incompleteness
is the application of contingent planning approaches. Con-
tingent planning (Peot and Smith 1992; Weld, Anderson, and
Smith 1998) copes with certain types of incomplete informa-
tion by treating the plan output as a decision tree with a set
of different contingent branches that could arise. Unlike the
replanning approach, contingent planning has more offline
computation and generates a plan solution that considers de-
cision points predicated on sensing outcomes. A contingent
plan guides the agent to act conditionally to achieve the goal,

with sensing actions in the decision tree enabling the planner
to decide which branch to take. However, these planners are
not usually suitable for solving problems with numeric and
temporal constraints. This paper focuses on temporal plan-
ning problems with numeric conditions where the action se-
quences required to reach the goals give rise to conditional
plans and reasoning about incomplete information resulting
from sensing actions. Consider the following example:

Example 1 (Biofouling Cleaning). An offshore underwa-
ter scenario (see Figure 1) includes an energy structure and
a wind farm with several turbines that require regular in-
spection and maintenance. One common problem for wind
turbines is biofouling that causes degradation in the base, se-
riously affecting the boat landing area (BLA) and obstruct-
ing the transportation of operators to work in other parts of
the structure. The mission goal is to clean the BLA of three
turbines (t1, t2 and t3). An AUV with underwater monitor-
ing equipment and cavitation cleaning equipment is used to
inspect the BLA regularly, evaluate its state (obstructed/non-
obstructed) and implement cleaning actions in the area if this
is required. In the initial state, the robot is at the docking
point. From there, it is possible to navigate to the BLA, and
from there, the AUV inspects the area. The AUV’s action de-
pends on the area’s state: if the area presents biofouling (ob-
structed), then the AUV should clean it, which is a highly en-
ergy consuming action; if the area is clean (non-obstructed),
then the AUV does not need to perform any further action
associated to this goal. The state of the BLA is unknown at
planning time and can be checked using a sensing action.
The robot needs to recharge the battery by sharing a dock-
ing point with other AUVs with scheduled recharging times.
Finally, the robot has to communicate to the operation centre
every time a cleaning action is completed.

We note that no sequence of actions allows the AUV to
achieve the goals without first gathering additional knowl-
edge from the BLA, which requires reasoning about incom-
plete sensing information. Since domain incompleteness is
limited to a few possible states for the BLA, the problem
is suitable for contingent planning. In addition, the prob-
lem involves temporal and numeric conditions. Temporal
constraints are essential for scheduling the recharging tasks
with the docking point unavailable for specific time slots
while other AUVs are recharging. Our robot would also need
to recharge at different times depending on the number of
cleaning actions it has to implement and the goal locations.
Finally, the domain presents numeric constraints associated
with reporting the cleaning actions to the operation centre.

This paper proposes an approach for compiling contingent
plan construction into a temporal planning framework for
AUV missions. We present a new planning solution which
can reason about incomplete knowledge while meeting the
temporal and numeric constraints of the problem. We test
our approach by solving contingent problems offline using
temporal planners. We also provide a new AUV planning do-
main (inspired by Example 1) that we use to evaluate the per-
formance of our solver in simulated and real scenarios. This
translation introduces additional flexibility in the plan con-
struction when performing tasks in dynamic environments.

2 Related Work
The planning community has had a long-standing interest
in the problem of planning with incomplete information
and sensing actions. Examples of early offline contingent
planners which address these problems are PKS (Petrick
and Bacchus 2002), Contingent-FF (Hoffmann and Brafman
2005), CLG (Albore, Palacios, and Geffner 2009), and DNF
and CNF (To, Pontelli, and Son 2011). These planners are
able to search and deliberate, have the capacity to avoid
deadends, and also support the generation of high-quality
optimised plans. Palacios, Albore, and Geffner (2014); Braf-
man and Shani (2012); Bonet and Geffner (2014) present
compilation-based approaches that computes full offline so-
lutions using classical planning. However, finding solu-
tions for all contingent branches is conditioned by classi-
cal planning heuristic generation methods. Other approaches
(Muise, Belle, and McIlraith 2014; Camacho, Muise, and
McIlraith 2016) generate smaller and faster conditional
plans by treating the problem as Fully Observable and Non-
Deterministic (FOND). None of these contingent planners
reason explicitly about time. We connect contingency anal-
ysis with temporal reasoning in our approach which is an
understudied area of research.

Few approaches in the literature consider both incomplete
information and explicit notions of time. Temporal plan-
ning with solvers based on heuristic forward search have
shown the best performance while generating and executing
real underwater deployments (Cashmore et al. 2014; Buksz
et al. 2018). Examples of planners reasoning about time are
POPF (Coles et al. 2010), and OPTIC (Benton, Coles, and
Coles 2012). These approaches solve a large number of well-
established domains (Long and Fox 2003) that require tem-
poral and numeric analysis, providing good scalability per-
formance. However, their solutions do not consider model’s
uncertainty. Tsamardinos, Vidal, and Pollack (2003) pro-
posed the CPT formalisation, which adds observation nodes
and attaches labels to all nodes to indicate conditions for a
node’s execution. CPT allows reasoning about the construc-
tion of conditional plans with temporal constraints. This for-
malisation is further extended by the TCP framework (Foss
and Onder 2005) to cope with parallel plans, non-temporal
metrics and multiple planner goals. TCP is a greedy itera-
tive algorithm that inserts branches based on time rather than
world conditions. This differs from our approach, where the
acquisition of unknown world information leads to a plan
solution. Strategies based on Simple Temporal Networks
with Uncertainty (STNU) such as (Cimatti et al. 2014) are
used as temporal scheduling tools where conditions and de-
cisions can be added to STNUs (Combi, Hunsberger, and
Posenato 2013; Zavatteri and Viganò 2019). Combi et al.
(2019) present an encoding to Conditional Simple Tempo-
ral Networks with Uncertainty and Resources (CSTNURs)
with promising results in a set of applications. These so-
lutions do not focus on solving problems where incom-
plete information is acquired using sensing actions. Finally,
some work associated with temporal plan merging (Hashmi
and Seghrouchni 2010) and opportunistic planning consider
temporal (Cashmore et al. 2017) and resource (Coles 2012)
constraints. However, these approaches aim to generate al-

ternative branches to achieve soft goals, which differs from
our solution where hard goal completion requires contingent
reasoning.

3 Temporally-Contingent Planning
In this section we formulate the temporally-contingent plan-
ning (TCP) problem and review the policy solving the
model. In this work we adopt the Planning Domain Defi-
nition Language (PDDL) (McDermott et al. 1998).

Problem Definition. Considering PDDL2.1 (Fox and Long
2003), Definition 1 defines a propositional temporal plan-
ning problem, with Timed Initial Literals (TILs) (Cresswell
and Coddington 2003).

Definition 1. A temporal planning problem is a tuple
PT := 〈P,F ,AT , IT ,GT , T 〉, where P is set of atomic
propositions describing the state of the world; F is a set of
task numeric variables called fluents; AT is a set of instan-
taneous and durative actions, with controllable and known
duration; IT : P ∪ F → {>,⊥} ∪ R is a total func-
tion describing the initial state of predicates and functions;
GT : P ∪ F → {>,⊥} ∪ R is a (possibly) partial func-
tion that describes the goal conditions, where each goal
g ∈ GT is a p, where p ⊆ P; and T is a set of time win-
dows. Each time window is defined using timed initial liter-
als (TILs). Let Z be the (finite) set of all TILs, where each
TIL l = 〈t(l), lit(l)〉 ∈ T defines the time t(l) and the lit-
eral lit(l), specifying which proposition p becomes true (or
false) at time t(l), where p ∈ P .

Definition 2. An instantaneous action ait, where ait ∈ AT

is a tuple 〈aitpre
aiteff
〉; aitpre

is a set of preconditions that
must hold for the action to be applicable; and aiteff

is the
set of action effects of type: positive effects (a+iteff

), negative
effects (a−iteff

) and numeric effects (aniteff
).

Definition 3. A durative action adt, where adt ∈ AT is
a tuple 〈adtpre

, adteff
, adtdur

〉; adtpre
is a set of conditions

that must hold for the action to be applicable of type: at-
start (adtpre`), over-all (adtpre↔), and at-end (adtprea); adteff

is the set of action effects of type: positive starting effects
(a+dteff `), negative starting effects (a−dteff `), numeric starting
effects (andteff `), continuous numeric effects (andteff↔), posi-
tive ending effects (a+dteff a), negative ending effects (a−dteff a),
numeric ending effects (andteff a); and adtdur

is a set of dura-
tion constraints.

For the scope of this paper, temporal plans consider se-
quences of durative actions that are bounded by a starting
and ending time. We call these plan solutions time-aware
plans (ΠT). Figure 2a shows a fragment of a sequence of
actions that describe the solution of Example 1 where the
problem does not present incomplete knowledge in the ini-
tial state IT . Therefore, the planning problem PT considers
P contains a proposition p which defines the state of the
BLA at turbine t1 as (bla obstructed t1) (require bio-
fouling cleaning) and p ∈ IT . The plan structure in this case
is a single sequence of durative actions (defined by the ar-
rows) which transform the initial state S0 to a goal state Sg .

In this case no contingent branches are required to reach the
goal state as the problem is completely known and the sens-
ing action is not required to achieve incomplete information.

We now define the contingent planning problem. To do
so, we consider partial observability and the existence of
non-deterministic (sensing) actions. Contingent planning
approaches do not consider temporal notions. Therefore, the
reasoning around action duration is relegated to the run-time
plan implementation. Additionally, we make a distinction
between sensing actions and physical actions to simplify the
notation. For instance, in Figure 2b, action inspect-area
is a sensing action that provides the type of information re-
quired to generate contingent branches. On the other hand,
physical actions such as navigation are ordinary planning
actions that support goal implementation but do not con-
tribute to contingent branch construction. Physical actions
are instantaneous actions (see Definition 2).

Definition 4. A contingent planning problem is a tuple
PC := 〈P,AC ,Φ, IC ,GC〉, where P is set of atomic propo-
sitions describing the state of the world; AC is a set of in-
stantaneous physical actions providing the means of change
in the domain; Φ is a set of sensing actions (observations),
separate from AC such that Φ ∩ AC = ∅; IC is the set of
clauses over P that denotes the initial state; and GC is a set
of literals over P representing the goals.

Definition 5. A sensing action φi, where φi ∈ Φ is a tuple
〈φpre , φeff 〉; φpre is a set of conditions that must hold for
the action to be applicable; and φeff reveal the truth value
of a proposition p, p ∈ P .

The contingent planning problem PC presents two action
types that have as preconditions a conjunction of literals.
These two action types reveal differences in the action ef-
fects. A physical instantaneous action aic ∈ AC , is mod-
elled by aic : aicpre

→ aiceff
, where aicpre

(a set of literals)
characterises the preconditions and aiceff

(a set of literals) is
the set of conditional effects. The effect of a physical action
is defined by φeff . A literal l is a proposition p ∈ P or its
negation ¬p. A set of literals L is consistent if the condition
{p, ¬p} * L holds; and complete if {p, ¬p} ∩ L 6= ∅ holds
for every p ∈ P . A state s is defined as a consistent and
complete set of literals. A belief state b represents the set of
world states that are possible.

A contingent plan solution ΠC for PC is a branching
structure called a transition tree constructed from the ac-
tions and observations of P . In practice, observations are
treated as sensing actions. Figure 2b shows fragment of a
contingent plan solution for Example 1. Note ΠC does not
contemplate the action duration and therefore the solution is
limited for problems with temporal requirements. The AUV
cannot reason about the recharging time limitations imposed
for sharing the docking point. If the robot needs to recharge
and the point is occupied the AUV will need to wait con-
sidering it is not possible to establish previous reasoning to
optimise the position of the action in the plan. The recog-
nition of the domain incompleteness support the generation
of branches that respond to all possible outcomes of the un-
known proposition. A temporally-contingent planning prob-
lem PTC is PTC = PT ∪ PC .

(a) (b) (c)

Figure 2: In (a), fragment of a temporal plan ΠT . In (b) fragment of a contingent plan. In (c) fragment of a contingent plan
with temporal constraints ΠTC for Example 1. ΠT and ΠTC contains nodes representing durative actions and edges [t,d]
representing the action starting time and duration. ΠC and ΠTC contain nodes (green) sensing actions (inspect-area), which
lead to multiple sub-plans, and edges showing action’s connections.

Definition 6. A temporally-contingent planning problem is
a tuple PTC := 〈P,F ,A,∆, IT ,GT , T 〉, where P is set of
atomic propositions describing the state of the world; F is
a set of task numeric variables called fluents; A is a set of
instantaneous (ait) and durative (aid) physical actions with
ait = aic; ∆ is a set of durative sensing actions, where
δ ∈ ∆ is a sensing action defined as 〈δpre , δeff , δdur〉 with
δpre the preconditions required for sensing action δ being
executable, δeff defines the sensing action effects, where a
literal l (a proposition p) in the set δeff : L reveals the truth
value of the unknown atomic proposition p ∈ P at the end
of the action, and δdur parameter representing a set of dura-
tion constraints (controllable and known), δ holds the same
action precondition and effect types than a durative action
adt; IT is the set of clauses over P ∪F that denotes the ini-
tial state; GT is a set of literals over P ∪F representing the
goals; and T is a set of time windows. Each time window is
defined using timed initial literals (TILs).

State Model for PTC . The PTC defines the state model
S(PTC) = 〈S,SI ,SG ,M,O〉; where S represents a finite
set of states over the propositions and fluents P ∪ F ; SI is
the set of possible initial states, SI ⊆ S; SG is the set of goal
states, SG ⊆ S;M is a set of actions withM(s) denoting
the actions inM (A and ∆) that are applicable in the state s
(actions with preconditions true in s); O is a set of observa-
tion tokens. An action a or δ applicable in a state s changes
the state to s′ = f(a, t, s) at time t and results in a observa-
tion token o(s′, t, a) ∈ O. f(a, t, s) is the state-transition
function determined by the conditional effects associated
with physical and sensing actions in M and the time t the
conditional effects occur; and o(s, t, a) is > for a ∈ A, and
o(s, t, δ) is > or ⊥ according to the truth value of propo-
sition p in state s for δ ∈ ∆. Executions are sequences of
action-time-observation sets (m0, tm0

, o0)...(mn, tmn
, on),

where m ∈ M. An execution is possible in the model S
if, starting from the initial belief b0, each action mn is ap-
plicable in the belief bn resulting from the execution up to
mn; and the minimum time tmn−1

at which an applicable
action mn−1 can start is tmn−1

= tmn−2
+ dmn−2

, where
mn−2 is a parent action, mn−1 is a child action, tmn−2 is
mn−2 starting time, and dmn−2 its duration. A tree policy
π is a function mapping executions into actions. The execu-
tions induced by a tree policy π are the possible executions
in which ai is the action dictated by the policy given the the
execution up to ai. A policy solves the model if all such ex-
ecutions reach a goal belief state, i.e., a belief state b ⊆ SG .
The solution to this planning problem requires a solver ca-
pable of solving a time-knowledge aware plan ΠTC . A plan
solution for the temporally-contingent planning problem is
shown in Figure 2c. The branched plan shows the solution
deals with the domain incompleteness. In addition, ΠTC rea-
sons about the temporal requirements allowing the schedul-
ing of actions in the plan with numeric and temporal con-
straints. The state model S(PTC) handles the deterministic
temporally-contingent planning.

4 Problem Translation and Planning
This section describes the methodology for translating tem-
porally contingent planning problems PTC to temporal
problems PT that can be solved for a temporal planner. This
strategy takes as initial reference the work implemented in
(Palacios, Albore, and Geffner 2014) where authors propose
two alternative translations of contingent into classical prob-
lems. Our approach introduces a set of changes regarding
the second translation presented in mentioned work. First,
we insert the temporal notions into the contingent problem.
Second, we remove the axioms from the translation, which
increases the number of fluents and actions. Finally, the

sensing action is the only source of uncertainty in the origi-
nal temporally-contingent planning problem, similarly to the
problems analysed by Muise, Belle, and McIlraith (2014).
The sensing action reveals the truth value of a proposition
while introducing a set of other conditional effects. For in-
stance, the effect of executing action (inspect-area auv
camera t1) can be ¬(bla obstructed t1) (the BLA is
clean) and (available auv) (the AUV is ready to exe-
cute the next action). The approach accounts for the actions
in one specific traversal of the policy tree, building a tem-
poral solution for each conditional branch. An example of
a specific traversal is the temporal plan in Figure 2a where
the BLA is assumed to require biofouling cleaning. We use
the stack element defined by Palacios, Albore, and Geffner
(2014), which pushes the states that predict p to be false to be
analysed after finishing with all true p, where p ∈ P . A stack
size of H will suffice to obtain temporally-contingent plans
with branches that accommodate up to H observations. The
H value should be small considering the size of contingent
plans represented by trees is exponential in the maximum
number of observations. However, the source of uncertainty
in our problem is limited to sensing action which substan-
tially reduce the translation complexity.

Definition 7. The translation T (PTC) of PTC , where
PTC := 〈P,FA,∆, IT ,GT , T 〉 and the stack parameter
H > 0 is the temporal planning problem with subproblems
(or instances) T (PTC) = 〈P ′,F ′,A′,∆′, I ′T ,G′T , T ′〉 sup-
porting the translation, where

• P ′ = {L/s,m(s), lev(l), stack(s, l) : L ∈ P, s ∈
bIT , l ∈ [0,H]},

• F ′ = F ,
• I ′T = {L/s,m(s), lev(0) : L ∈ P, s ∈ bIT , s |= L},
• G′T = GT ,
• T ′ = T ,
• Actions:

– A′ = A ∪ {a(p, l, t) : a(p, t) ∈ δ, l ∈ [0,H]}, precon-
ditions L of a ∈ A replaced by XL and ¬XG; effects
a : C −→ E replaced by a : C/s,m(s) −→ E/s for each
s ∈ bIT , where C and E are sets (conjunction) of lit-
erals, aitpre and adtpre are enclosed in C, and aiteff

and
adteff

are enclosed in E ,
– ∆′ = ∆ ∪ {δ(p, l, t) : δ(p, t) ∈ ∆, l ∈ [0,H]}, pre-

conditions L of δ(p) ∈ ∆ become preconditions XL
for δ(p, l, t) in addition to lev(l), ¬XG, ¬Xp, ¬X¬p;
effects of δ(p, l, t) are ¬lev(l), lev(l + 1), and condi-
tional effect m(s), ¬p/s −→ stack(s, l + 1), ¬m(s),

– Pop actions preconditions of pop(l) are lev(l) andXG:
effects are ¬lev(l), lev(l − 1) and conditional effects
m(s) → ¬m(s) and stack(s, l) → ¬stack(s, l) for
each s ∈ bIT

The action following a sensing actions δ(p) where p is
true is considered first and the ordering is decided using H.
The translation T (PTC) contains propositions L/s for the
literals L in PTC and the possible initial states s ∈ bIT
where bIT = S0. Literals in PTC have the form p and ¬p
for p ∈ P . The literals L/s represent that L is true under

(:unknown-prop

(state on v1) (state on v2)

(bla obstructed t1) (bla obstructed t2) (...)

)

Figure 3: Construct unknown-prop defining the unknown
propositions in the PTC .

(:knowledge-updates

(oneof (state on v1)

(and (not (state on v1)) (valve_closed wp32)))

(oneof ...)

)

Figure 4: Construct knowledge-updates defining the pos-
sible outcomes associated to the unknown proposition.

the assumption that s is the true hidden initial state. Proposi-
tions m(s) are responsible for tracking of the set of possible
initial states s at any time. XL defines preconditions where
the context given by the hidden state s is implicit. The stack
is represented by propositions lev(l) to indicate the top of
the stack, stack(s, l) to indicate that the hidden state s has
been pushed onto the stack at level l, and static propositions
next(l, l + 1) that represent that one level follows the other.
We assume, static propositions are true for each l ∈ [0,H]
where H + 1 is the max stack level and G is a single propo-
sition.

The number of actions in the translation isO(|A|+H·|∆|)
whereH+ 1 is the stack size, the number of propositions is
O((|P|+H) · |bIT |), while the maximum number of condi-
tional effects per action is O(|S| · |P|). The translation en-
codes the accessibility relations among worlds by the m(s)
literals that represent the set of hidden initial states that are
possible given the current execution. The approach uses a
stack where the hidden states s that predict ¬p after the exe-
cution of the sensing action a(p, l, t) are stored. The transla-
tion makes also sure that p is not known either true or false
by adding the literals ¬Xp and ¬X¬p in the action precon-
dition. Finally, goals can be reached in the form of the XG
literal, so that the executions associated with hidden states
that have been pushed onto the stack become current and
can be extended to reach the goal as well.

Encoding the Unknown Propositions. Hidden literals
defining the possible initial states are externally defined and
used by the framework to generate the translation and the
plan solution. Example of representing unknown informa-
tion for the Simulation Scenario is presented in Figure 3. The
unknown propositions indicate that the (state on v1) and
(state on v2) are unknown in the initial state. The gener-
ation of the contingent sub-plans (branches) that model the
real value of an unknown literal l at the planning time takes
the information from the possible knowledge updates. Fig-
ure 4 shows a constructed example that defines the updates
associated with the incomplete information that will be true
in each branch. The updates are a complex nesting of and
and oneof clauses. Some of the nondeterminism is indepen-
dent, and others contain dependencies defined by the ands.

Temporal Reasoning. When translating the temporally-
contingent planning problem PTC it is required to find a
policy that guarantees the validity of the solution for all in-
stances of T (PTC) that provide the full solution. We assume
the durative sensing and physical actions in the tree require
the maximum duration to complete. First, we identify a seed
plan by considering there are not states that predict p to be
false modelling the plan’s actions. Resulting from the trans-
lation we know the points in the seed plan where p becomes
false and we use this to insert contingency branches asso-
ciated to particular T (PTC) instances. The system adds or-
dering constraints. An action aq is applicable in a plan if
its effects do not delete the propositional invariants of any
previous actions in the course to be completed at the time
aq ended. Following this dynamic, each action included in
the partial plan adds a new set of propositions that lead to a
new state. This analysis consider building a sequential tem-
poral plan for each possible T (PTC) instance. We ensure a
temporal instance Γ is sequential if there exists a sequential
plan πn solving Γ. Our approach solves all instances trans-
lated from PTC as sequential temporal instances consider-
ing the computation of the plan solution and its scheduling.
The scheduling considers tb1 = tseedSA

, where tseedSA
is

the time in the seed branch where the hidden l is revealed,
and tb1 is the branch starting time. The action order depends
on the time propositions hold in the seed plan and in the sub-
plans (branching plans) section before the current state. We
do not allow an action to move (or being scheduled) before
a branch starts (assuming it is needed in that branch and it
is not part of the seed plan) to avoid the movement inter-
fere with other branches. Our system can just move actions
earlier in a plan if there is correspondence in the sequence.
Definition 8. There is correspondence between plan steps
if step PS-1 is possible after plan step PS-0 in at least one
topological sort of the plan graph. A topological sort of a
plan’s graph is a linear ordering of the graph’s steps that re-
spect the temporal constraints denoted by the graph’s causal
links, conditioning links, and the ordering constraints.

Plan Generation. Algorithm 1 generalises our approach
which focuses in five steps: (i) take the problem and encode
it into a temporal planning problem, (ii) solve the result-
ing temporal planning problem, (iii) decode the plan into
a temporal contingent plan, and (iv) if an uncovered dis-
crepancy is found, refine model/initial state. The unknown
knowledge UK associated with individual propositions are
processed (line 2) to extract all true values following the
idea mentioned when the stack parameter was introduced
in this section. This information is used alongside the ini-
tial state SIT to generate a plan (line 3). This plan contains
then all sensing actions that potentially lead to the creat-
ing of additional branches. Then the structure of the plan
is represented as a tree (Q,U) (line 4). Each q ∈ Q is an
action in the plan with q0 the root of the tree that corre-
sponds to the first plan step and (e, b) ∈ U . The algorithm
evaluates the sensing action in the plan in an ordered man-
ner (line 6) to build all additional branches. The state is
the query for a different outcome of the sensing action to
construct the extensions or branches (line 7-8). The Build-

Algorithm 1: Planning Compiler
Input: SI : Problem Initial State.
Input: UK: Unknown Knowledge
Output: Πtc: Branched Plan.

1 begin
2 Y ← ExtractTrueUnknownKnowledge(UK)
3 Πtc ← GeneratePlan(Y , SI)
4 (Q,U)← tree for Πtc

5 S ′ ← S
6 for each ordered δ ∈ Πtc do
7 S ′ ← δ.apply(S ′)
8 (Q′,U ′)← BuildBranch(S ′)
9 if Q′ 6← ∅ then

10 F ← CheckUnknownKnowledge(UK)
11 e← Root(Q′,F)
12 b′ ← b+ 1
13 while e′ = b′ do
14 b′ ← Increment(b′, 1)
15 e← Increment(e, 1)

16 e← Root(Q,U ,F)
17 e← AddSubtree(Q′,U ′)
18 Q ← Add (b′ − 1, e)

19 return Πtc

Branch function in our method is associated with evaluat-
ing the current state for a different possible outcome of the
unknown proposition. If this return is non-empty (line 9),
the algorithm keeps evaluating the branch until reaching the
goal state (line 13-14). During branch evaluation, the tree is
rooted (line 15). Considering it might be the case, we found
additional branches in the actual subbranch we are expand-
ing (line 16). The algorithm keeps iteratively working on ex-
panding all subtrees until no further sensing actions require
expansion. Then Planning Compiler returns the temporally-
contingent plan solution Πtc (line 18).

Lemma 1. Correctness. We adopt a notion of correctness
considering: at run-time, the planner must have all neces-
sary knowledge at every step for plan’s execution, and if the
solver returns a plan ΠTC , the plan solve the temporally-
contingent planning problem. Following this the approach
returns a plan just when all sensing actions have been totally
expanded. The introduction of the check onQ ensures we ex-
plore all possible branches and the solution only exists if the
approach successfully evaluates all nodes in the policy tree.
If in the policy tree no nodes precedes its parents and chil-
dren nodes associated with positive observations are come
first. Let π(nN) represent the action performed by the pol-
icy at time t in node nN , V(nN) represents the set of hidden
states in the initial state, compatible with the execution up to
nN , and lev(nN) the level of the node in the tree. If the lev-
els are not greater thanH+ 1, and the time tnN+1

at which
node nN+1 starts is always tnN + dnN , where dnN repre-
sents the duration of executing node nN then the sequence
of actions π′(n0), ..., π′(nN), π′(nN+1) is a temporal plan
for T (PTC).

Figure 5: System Architecture for high-level task planning
in the AUV. The Plan Dispatcher takes information from
the Sensor Interface to determine the dispatch by consider-
ing sub-plans obtained in the (offline) planning phase. The
Planning Interface connects the Contingent Analyser with a
Goal-Based Temporal Planner to generate a branching solu-
tion that respond to all possible outcomes of the unknown
properties which are listed as inputs to the system.

Lemma 2. Soundness. Let r0, ..., rk be a temporal plan for
PTC such that mi(s) represents the status of the m(s) flu-
ents when the action rN is applied at time tN . Let the se-
quence of nodes n0, ..., nk−1, nk, where parent node nN at
time tN always come first than child node nN+1 at time
tN+1 such that tN < tN + dN < tN+1 and dN represents
the duration of executing the node nN . There is a state s
such that both mnN (s) and mnN+1

(s) are true and there is
no k, N < k < N + 1, such that mk(s) is true as well. In
such a case, the edge from nN to nN+1 is > for δ ∈ ∆ and
a ∈ A and N+1 > N . Else, the edge from nN to nN+1

is ⊥. Finally, the policy π(nN) over the nodes of the tree
solves PTC .

5 System Architecture
In this section, we describe the main elements of the
AUV system architecture that supports the execution of
temporally-contingent plans. The set of possible sub-plans
(branches) is generated offline using the strategy defined in
Section 4. The execution of a particular branch is decided
online based on the information gathered. Figure 5 shows
the system architecture. The system contains four modules
that are interconnected at different levels with the World: (i)
Mission Interface, (ii) Planning Interface, (iii) Execution In-
terface, and (iv) Robot Interface.

Mission Interface. Includes the PDDL domain and prob-
lem that describes the initial state SI requirements. In addi-
tion, this component embeds the Unknown Info., which en-
capsulates all the unknown domain information required to
build the contingent branches. For instance, Unknown Info.
contains the possible states of the valves and the BLA in

the Biofouling Cleaning domain (e.g., (state on v1) and
¬(state on v1), (bla obstructed t1), etc.)

Planning Interface. Includes all the available knowledge at
the planning time to generate the problem and plan solution.
For this work, a Contingent Analyser takes the information
available in the Unknown Info. component to implement the
compilation of temporal planners into a contingent planning
structure that allows the obtain a temporally-contingent plan
solution. The Contingent Analyser interacts with the Prob-
lem Generator and a temporal planner (we use OPTIC (Ben-
ton, Coles, and Coles 2012)) to generate the branches that
respond to all possible values of the unknown propositions.
We built a parser to evaluate the plan solution before start-
ing the action dispatch that connects the Planning Interface
directly with the Execution Interface.

Execution Interface. Takes the dispatched action from the
Planning Interface and translates it to action commands un-
derstandable for the AUV. The Execution Interface acts as
a bridge providing the Sensing Information used to deter-
mine the actual value of the incomplete information at the
execution time. This component checks the sensing action’s
implementation closely to provide feedback to the Action
Dispatcher and decide the following action to execute.

Robot Interface. Includes the robotic platforms we can use
in the mission. This interface provides all necessary data to
evaluate the mission’s execution. This architecture extends
the actual ROSPlan (Cashmore et al. 2015) Action Interface
introducing a set of features to support the implementation
of conditional plans with durative actions. The planer pro-
duces plans using a domain model and a problem which are
inputs to the Knowledge Base (KB). In case of failures, the
system is able to react and replan considering the unfinished
goals. This architecture allows to integrate our system in
multiple robotic platforms. We implement the approach in
simulation using a RexROV2 (see Figure 6a), and in a real
environment using BlueROV2 (see Figure 6b).

6 Domain and Problem Definition
This section describes the main properties of two underwater
domains1 where the AUVs RexROV2 and BlueROV2 have
to complete missions in the presence of incomplete informa-
tion, numeric and temporal constraints. As a running exam-
ple, we consider an AUV which is used to implement multi-
ple tasks in the underwater domain such as: (i) seabed map-
ping, (ii) structure reconstruction, (iii) inspection of valves,
(iv) manipulation of their handles, and (v) cleaning of the
biofouling at the BLA. Figure 6a shows the simulation sce-
nario and Figure 6b shows a real environment.

Domain Description (Simulation Scenario). An offshore
scenario called Biofouling Cleaning (Figure 6a) includes a
set of blowout preventers (BOPs), structures with a valve at-
tached that can be open or closed (the valve state is unknown
at planning time). In addition, the environment presents mul-
tiple wind turbines which require regular inspection of their

1In https://github.com/YanielCarreno/tcp-domains.git you can
find the domains and problems we analyse in this paper.

(a) (b)

Figure 6: In (a) the Biofouling Cleaning domain with multiple turbines that require inspection. The AUV-1 generates a plan
solution to solve mission goals while keeping battery levels at adequate levels. In (b) the BlueROV2 operates as an AUV
implementing inspection and manipulation missions with incomplete information of the initial state.

bases and the execution of maintenance around the BLA that
is usually affected by the biofouling effects. The structure’s
coordinates are known, and the AUV (RexROV2) does not
have any initial knowledge about the seabed characteristics.
This scenario allows the implementation of missions that
cover all types of tasks described in this section. The se-
quence of actions the AUV should implement depends on
the sensing action outcomes. This domain was partially de-
scribed in Example 1. Therefore, all mission requirements
defined in Example 1 holds in this domain. The only addi-
tion to this domain concerning the example is the valves (v1
and v2) inspection, which must be closed at the mission end.

In this example, the action sense-valve adds
knowledge related to possible valve states. The action
close-valve presents the precondition (valve state
?v state on). Therefore, the run-time plan execution
determines if the valves requires to be manipulated if during
plan execution the AUV identifies state on the branch to
choose should have the close-valve action. This domain
includes temporal constraints to support recharging. In
addition, the domain introduces numeric constraints associ-
ated with data communication. Action sense-valve has
an effect that increases (data acquired ?r - robot)
if the valve is open. In addition, the action sense-valve
is conditioned by the robot’s data capacity. This constraint
makes the robot navigate to the surface and communicate
data, using action broadcast-data, before executing a
new sensing action if data was previously acquired. There-
fore, the ¬state on plan solution presents a completely
different sequence of actions.

Temporal constraints are essential for scheduling recharg-
ing activities due to the docking point availability. There is
no sequence of actions that allows the AUV to achieve the
goal without knowledge of the valve states: choosing the
correct action to execute after sensing the valve state de-
pends on the (run-time) result of whether the valve is open or
closed. The characteristics of this problem where the solu-
tion requires temporal and numeric constraints and incom-
plete sensing information make it a temporally-contingent
planning problem. Figure 7 shows a fragment of the plan
for the Biofouling Cleaning problem of closing two valves.
The plan presents a set of branches that lead to different ac-

Time: (Action Name) [Duration]

0.00: (navigation auv base v1) [100.00]

100.01: (sense-valve auv camera1 v1) [30.00]

<BRANCH, 1, true, (state_on v1)>

130.02: (close-valve auv v1) [50.00]

180.03: (navigation auv v1 surfc.3) [67.00]

247.04: (recharge-battery auv surfc.3) [43.80]

290.85: (broadcast-data auv surfc.3) [10.00]

300.86: (navigation auv surfc.3 v2) [70.10]

370.97: (sense-valve auv camera1 v2) [30.00]

<BRANCH, 2, true, (state_on v2)>

400.98: (close-valve auv v2) [50.00]

450.01: (navigation auv v2 base) 160.00]

610.02: (broadcast-data auv base) [10.00]

620.03: (recover-robot auv base) [1.00]

<BRANCH, 2, false, (state_on v2)>

400.98: (navigation auv v2 base) [260.00]

606.99: (recover-robot auv base) [1.00]

<BRANCH, 1, false, (state_on v1)>

130.02: (navigation auv v1 v2) [280.00]

410.03: (sense-valve auv camera1 v2) [30.00]

<BRANCH, 2, true, (state_on v2)>

440.04: (close-valve auv v2) [50.00]

490.05: (navigation auv v2 surfc.5) [140.00]

630.06: (recharge-battery auv surfc.5) [42.00]

672.07: (broadcast-data auv surf.5) [10.00]

682.08: (navigation auv surf.5 base) [320.00]

1002.09: (recover-robot auv base) [1.00]

Figure 7: A fragment of a temporally-contingent plan for the
Biofouling Cleaning domain where the AUV needs to close
two valves. The plan considers action start times and dura-
tions. The sensing action sense-valve leads to conditional
plan branches that consider the set of possible outcomes.

tion sequences depending on the output of the sensing ac-
tion. In addition, the recharging action is implemented at
other times. Another mission goal is to implement the main-
tenance of the BLA at one of the wind farm turbines. The
actions to implement this goal are considered in Example
1. The AUV should use its sensory system to evaluate the
BLA’s state. If the condition is optimal (non-obstructed), the
robot already completes the goal. On the other hand, if the

Figure 8: A layered temporally-contingent plan modelling
an AUV in a valve turning mission, with simplified states.

area is dirty, the AUV should implement cleaning labours
to leave the area ready for the boats. The implementation of
the cleaning action consumes a substantial amount of energy
which might force the AUV to go for recharging with high
frequency if more goals are allocated.

Domain Description (Real Scenario): A real underwater
scenario called Underwater Structure (Figure 6b) was built
in the Ocean Systems Laboratory at Heriot-Watt University.
The domain presents two structures, the AUV (BlueROV2)
knows the structures’ positions but lacks knowledge about
the remaining features that define the environment (e.g.,
structure’s shapes, floor irregularities, obstacles, etc.). This
scenario is restricted to missions associated with structure
mapping and exploration. Our AUV is equipped with elec-
trical manipulators, stereo cameras and sonar.

Figure 8 shows a branch representation of a possible
plan solution where the Underwater Structure domain for-
malises a single valve operation and introduces possible dis-
turbances in the model to be consider at the planning time.
The normal operation of the system (Initial-Approach) using
a temporal planner does not review the effect of the distur-
bances (while attempting to identify and underwater valve
embedded in one of the structures) and consider the state
of the valve known (S1 − S2 − S3 − S4). The introduc-
tion of the contingency elements into the system supports a
more realistic model of the environment which lead to mul-
tiple branches. Focusing on S2 the plan can introduce a set
of possible unsafe modes related to the non identification of
the valve. Most importantly, the plan can provide alterna-
tive solution to these problems in advance. Therefore, if the
system faces these problems at the execution time recovery
mechanism are already enclosed in the original plan.

7 Experiments and Results
Our domain and problems are encoded in PDDL. All ex-
periments in this section are run on Ubuntu 16.04, with an

Intel Core i7-8700, limiting the planner to 30 min (minutes)
of CPU@3.2GHz, 16GB of RAM, stack size H = 10. The
experiments focus on the domains described in Section 6
and evaluate the Temporally-Contingent Planning (TCP) ap-
proach. The TCP is defined as the combination of temporal
planner and the contingent analyser that allows the genera-
tion of a temporally-contingent plan solution.

Experiment 1 (Offline Planning). This experiment evalu-
ates the quality of the planning algorithm while generating
plans for 10 problem instances for the domains in Section 6.
Table 1 shows the results of the evaluation. In the first do-
main, the planner obtains solvable solutions for most prob-
lems that reflect different number of assets (A) of types tur-
bines or valves and battery levels (B-L). The approach does
not generate a solution for the last two problems consider-
ing the planning time limitations. A similar situation occurs
in the real scenario when the maximum number of mapping
failures associated with valve identifications is 10. The main
reason for time out—(TO) time limitation for planning—is a
large number of branches the system needs to create online
to cope with all possible states of the unknown properties
(e.g., valve’s location and valve’s state).

Results show the maximum makespan assuming the robot
takes the most extended branch (seed branch). We have no-
ticed the planning time is considerably affected by the in-
troduction of time slots for recharging. For the second do-
main, the plan solvability rate is also successful. We notice
the makespan is significantly smaller for this domain. Fail-
ures associated with the non-identification of the valve do
not increase mission makespan. This is a consequence of the
fact that the actions related to fixing the problems are primar-
ily static and require a short period. Planning time is short,
which is relevant since we aim to increase the complexity
and the size of the experiments as future work. This ex-
periment attempts to evaluate the robustness of the system.
Therefore, we extend the planning times for more extended
periods than we should have when implementing missions
considering the dynamic of the underwater domain.

Experiment 2 (Biofouling Cleaning Plan Execution). This
experiment evaluates the mission failure rate (FR), plan-
ning execution times (PET), and replanning times (RT)
when executing missions over long-term periods. Experi-
ment 2 considers the execution of the Biofouling Clean-
ing domain (Simulation Scenario) problems in Experiment 1
and presents the number of actions executed overall plans
generated to solve each problem for the benchmark solver
(A*) and the TCP (A**) approach. Table 2 shows our ap-
proach outperforms the benchmark planner in most of the
problems considering our system generates a plan that deals
with uncertainty levels not considered by the baseline sys-
tem. In addition, our method can reduce the risks of plan
unsolvability that appears due to the time constraints or lim-
itations in the resources the domain introduces. For instance,
the robot needs to communicate data every time the BLA is
cleaned. This can bring problems when the system takes the
current state for replanning as the data communication be-
came a hard goal. Its execution receives a high priority, af-
fecting the initial plan the AUV was implementing. In this

Biofouling Cleaning Underwater Structure

Prob. A B-L PT M F B-L PT M

1 2 60 1.3 701.2 1 50 1.2 43.4
2 4 60 1.2 834.7 2 60 1.6 51.9
3 5 90 1.3 870.2 2 70 1.1 54.2
4 7 80 2.0 1650.1 3 80 3.5 68.4
5 8 50 5.6 2050.3 4 90 2.6 67.5
6 8 90 4.2 1927.7 4 60 3.1 102.1
7 10 100 2.3 2872.8 6 90 1.4 177.0
8 10 70 4.7 3543.6 8 90 3.1 182.0
9 10 50 TO TO 10 60 TO TO

10 15 70 TO TO 10 90 TO TO

Table 1: Experiment 1: Results for planning time (PT) in min
and makespan (M) in min for multiple problem instances of
the (i) Biofouling Cleaning domain and the (ii) Underwater
Structure domain for different sets of assets (A) valves or
turbines battery levels (B-L) in %, and number of failures
(F). Time out (TO) while finding a solution.

Benchmark Planner TCP Approach

Prob. A*/A** FR PET RT FR PET RT

1 52/35 0.1 988.2 8.5 0.0 691.2 –
2 84/53 0.2 993.6 15.9 0.0 802.5 –
3 72/51 0.2 780.2 – 0.0 772.1 –
4 92/73 0.3 1756.8 139.4 0.0 1212.3 –
5 103/84 0.3 2073.3 37.1 0.1 2168.3 28.7
6 145/102 0.3 1909.8 12.4 0.0 1819.5 –
7 118/87 0.3 2956.1 92.3 0.0 2637.4 –
8 268/113 0.3 3598.2 127.3 0.0 3200.3 –
9 312/– 0.4 4109.2 161.9 TO TO TO
10 532/– 0.5 6230.1 235.1 TO TO TO

Table 2: Experiment 2: Failure Rate (FR) in %, Planning Ex-
ecution Times (PT) and Replanning Times (RT) in min when
evaluating a benchmark temporal planner and our Temporar-
ily Contingent Planning (TCP) approach is a set of 10 prob-
lems with different levels of complexity for the Biofouling
Cleaning domain. Time out (TO) while finding a solution.

type of settings, missions dealing with dynamic changes us-
ing uncertainty have a high risk of failure. Finally, the bench-
mark planner needs to replan multiple time in all problems
which increases the number of actions (A*) required to solve
the whole mission respect to our approach (A**).

Experiment 3 (Underwater Structure Plan Execution).
This experiment focuses on execution, and we evaluate the
system’s performance in a laboratory environment using
BlueROV2. Figure 9 analyses the mission execution time for
10 different problems with the introduction of 5 forced fail-
ures during the mission, associated with the valve state and
valve’s localisation. The generation of contingent branches
during the planning stage significantly improves mission im-
plementation times. This is mainly due to the time required
by the temporal planner (OPTIC) to replan to achieve a plan
that responds to the valve’s actual state or identification. Our

Figure 9: Experiment 3: Plan execution time in 10 problem
instances of the Underwater Structure domain over 10 runs.
Results show our approach solves problems with uncertainty
in the SI and temporal constraints.

approach reduces replanning in non-quiescent environments
since the algorithm can consider contingent effects at plan-
ning time. In addition, it deals with temporal and numeric
constraints. However, contingent plans suffer from small-
time variations associated with the delays resulting from the
system choosing the contingent branch to follow. We typi-
cally have conditional plans to handle problems that have a
high probability of occurring. This is the case of the domains
we presented in this work. Replanning shows promising re-
sult to maintain the mission’s survivability. However, it can
introduce unnecessary delays in the mission, mainly when
we can use alternative algorithms that deal with certain lev-
els of uncertainty in the domain.

8 Conclusions
We present a general approach to task planning based on the
combination of temporal planning, contingent planning and
run-time sensing. Our approach focuses on the translation
of temporally-contingent planning problems into temporal
problems. This idea enlarges the range of problems that tem-
poral planners can solve. We introduce an alternative so-
lution that solves temporally-contingent planning problems
using offline temporal planning, which reduces the risks as-
sociated with replaning in non-quiescent environments. We
demonstrate the effectiveness of our method of dealing with
AUV missions in simulated and real scenarios. We propose
a new type of domain environment that require solvers to
consider temporal reasoning, such as (i) timed initial liter-
als and deadlines and (ii) manage resources using numerical
fluents. Future work aims to extend the approach to more
challenging scenarios when the contingent planning reason-
ing requires considering other robots. In addition, we plan
to extend the system to deal with more significant size prob-
lems where the source of uncertainty can be associated with
exogenous events.

Acknowledgements
This work was funded and supported by the ORCA Hub
(orcahub.org), under EPSRC grant EP/R026173/1.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In ICAPS.
Bonet, B.; and Geffner, H. 2014. Belief tracking for planning
with sensing: Width, complexity and approximations. JAIR
50: 923–970.
Brafman, R. I.; and Shani, G. 2012. A Multi-Path Compila-
tion Approach to Contingent Planning. In AAAI. Citeseer.
Buksz, D.; Cashmore, M.; Krarup, B.; Magazzeni, D.; and
Ridder, B. 2018. Strategic-tactical planning for autonomous
underwater vehicles over long horizons. In 2018 IEEE/RSJ
IROS, 3565–3572. IEEE.
Camacho, A.; Muise, C. J.; and McIlraith, S. A. 2016. From
FOND to Robust Probabilistic Planning: Computing Com-
pact Policies that Bypass Avoidable Deadends. In ICAPS,
65–69.
Carreno, Y.; Scharff Willners, J.; Petillot, Y. R.; and Petrick,
R. P. A. 2021. Situation-Aware Task Planning for Robust
AUV Exploration in Extreme Environments. In Proceedings
of the IJCAI Workshop on Robust and Reliable Autonomy in
the Wild (R2AW).
Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-
azzeni, D. 2014. AUV mission control via temporal plan-
ning. In ICRA, 6535–6541.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and Rid-
der, B. 2017. Opportunistic planning in autonomous under-
water missions. IEEE Transactions on Automation Science
and Engineering 15(2): 519–530.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In ICAPS, volume 25.
Cimatti, A.; Hunsberger, L.; Micheli, A.; and Roveri, M.
2014. Using timed game automata to synthesize execution
strategies for simple temporal networks with uncertainty. In
AAAI, volume 28.
Coles, A. J. 2012. Opportunistic Branched Plans to Max-
imise Utility in the Presence of Resource Uncertainty. In
ECAI, volume 2012, 252.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In ICAPS.
Combi, C.; Hunsberger, L.; and Posenato, R. 2013. An al-
gorithm for checking the dynamic controllability of a condi-
tional simple temporal network with uncertainty. Evaluation
1(1).
Combi, C.; Posenato, R.; Viganò, L.; and Zavatteri, M. 2019.
Conditional simple temporal networks with uncertainty and
resources. JAIR 64: 931–985.
Cresswell, S.; and Coddington, A. 2003. Planning with
timed literals and deadlines. In UK PlanSIG, 23–35.

Edelkamp, S.; and Hoffmann, J. 2004. PDDL2. 2: The lan-
guage for the classical part of the 4th international planning
competition. Technical report, Technical Report 195, Uni-
versity of Freiburg.
Foss, J. N.; and Onder, N. 2005. Generating temporally con-
tingent plans. In IJCAI Workshop on Planning and Learning
in A Priori Unknown or Dynamic Domains.
Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR 20:
61–124.
Hashmi, M. A.; and Seghrouchni, A. E. F. 2010. Merging of
temporal plans supported by plan repairing. In 2010 22nd
IEEE International Conference on Tools with Artificial In-
telligence, volume 2, 87–94. IEEE.
Hoffmann, J.; and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS.
Kerschke, P.; Hoos, H. H.; Neumann, F.; and Trautmann, H.
2019. Automated algorithm selection: Survey and perspec-
tives. Evolutionary computation 27(1): 3–45.
Long, D.; and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. JAIR 20: 1–59.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language (Ver-
sion 1.2). Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.
Muise, C.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In AAAI.
Palacios, H.; Albore, A.; and Geffner, H. 2014. Compil-
ing contingent planning into classical planning: New trans-
lations and results. In ICAPS Workshop on Models and
Paradigms for Planning under Uncertainty.
Peot, M. A.; and Smith, D. E. 1992. Conditional nonlinear
planning. In AIPS, 189–197. Elsevier.
Petrick, R. P.; and Bacchus, F. 2002. A Knowledge-Based
Approach to Planning with Incomplete Information and
Sensing. In AIPS, 212–222.
Thompson, F.; and Guihen, D. 2019. Review of mission
planning for autonomous marine vehicle fleets. Journal of
Field Robotics 36(2): 333–354.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the effective-
ness of CNF and DNF representations in contingent plan-
ning. In IJCAI.
Tsamardinos, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8(4): 365–388.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998. Ex-
tending graphplan to handle uncertainty & sensing actions.
In AAAI, 897–904.
Zavatteri, M.; and Viganò, L. 2019. Conditional simple tem-
poral networks with uncertainty and decisions. Theoretical
Computer Science 797: 77–101.

Combining Task and Motion Planning through
Rapidly-exploring Random Trees

Abstract

Combined task and motion planning is a relevant issue in
robotics1. In path and motion planning, Rapidly-exploring
Random Trees (RRTs) have been proposed as effective meth-
ods to efficiently search high-dimensional spaces. On the
other hand, the deployment of these techniques to symbolic
task planning problems has been partially investigated. In this
paper, we explore this issue proposing a method to combine
task and motion planning based on RRTs. Our approach re-
lies on a metric space where both symbolic (task) and sub-
symbolic (motion) spaces are represented. The associated no-
tion of distance is then exploited by a RRT-based planner
to generate a plan that includes both symbolic actions and
obstacle-free trajectories. The proposed method is assessed in
several case studies provided by a real-world hospital logistic
scenario, where an omni-directional mobile robot is involved
in pick-carry-and-place tasks.

INTRODUCTION
Combining task and motion planning is a crucial issue in
robotics. These two planning problems are usually tackled
in a separated manner in order to exploit the complementary
features of the two planners. While task planners typically
work with high-level specifications of the problem, search-
ing for abstract actions, motion planners generate obstacle-
free motions in the configuration space taking into account
motion constraints. Therefore, the typical approach is to first
solve the task planning problem and then deploy the motion
planner to find the actual implementation of the abstract plan
in the configuration space. However, when the mission is
complex and/or the environment is highly constrained (nav-
igation in cluttered environments, manipulation problems,
etc.), this decoupling is no longer effective. In these cases,
since symbolic and motions constraints can be strictly in-
tertwined, the high-level plan can be easily unfeasible from
a motion perspective. In these circumstances, a unified ap-
proach to task and motion planning is needed (Ingrand and
Ghallab 2017).

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Notice that this work is currently under review for a robotics
conference, therefore, as suggested by the workshop policy, the
submission is anonymous to avoid possible conflicts.

Different approaches have been proposed in the litera-
ture to address combined task and motion planning (Dan-
tam et al. 2016; Erdem et al. 2011; Lagriffoul et al. 2014;
Choi and Amir 2009; Cambon, Alami, and Gravot 2009;
Kaelbling and Lozano-Pérez 2011; Barry, Kaelbling, and
Lozano-Pérez 2013; Bidot et al. 2017; Thomason and Knep-
per 2019). Following (Bidot et al. 2017), we can distin-
guish approaches where: motion planning is primary but
guided by task planning (Cambon, Alami, and Gravot 2009;
Plaku and Hager 2010; Barry, Kaelbling, and Lozano-Pérez
2013; Thomason and Knepper 2019); task planning is pri-
mary and motion planning is selectively invoked (Kaelbling
and Lozano-Pérez 2011); task planning and motion plan-
ning are interacting processes and a generated task plan
is iteratively expanded by the motion planner, which also
checks for action executability in the configuration space
(Dantam et al. 2016; de Silva, Pandey, and Alami 2013;
Erdem et al. 2011).

In this work, we explore a novel approach in which task
and motion planning are handled in a uniform manner by
a sampling-based planning algorithm. Specifically, we pro-
pose and investigate the effectiveness of a method which
fully relies on an extension of Rapidly-exploring Random
Trees (RRTs).

RRTs are widely exploited algorithms for motion plan-
ning in robotics (Lavalle and Kuffner 1999), since they en-
able an efficient search in non convex, high-dimensional
spaces. On the other hand, the deployment of these meth-
ods at the task level has been only partially exploited and
investigated. RRTs for discrete spaces have been explored
by (Morgan and Branicky 2004), but symbolic task planning
was not considered. A RRT-based approach to symbolic task
planning in STRIPS has been proposed by (Burfoot, Pineau,
and Dudek 2006), but the combination of task and motion
planning has not been addresses. An embedding of the sym-
bolic state into the continuous space is proposed in (Thoma-
son and Knepper 2019) to enable sampling-based motion
planning methods that simultaneously address symbolic, ge-
ometric, and kinematic constraints; on the other hand, a task
planning heuristic is exploited as a long-horizon symbolic
guidance through the search space. In (Plaku and Hager
2010), RRTs are deployed for motion planning in the config-
uration space, while symbolic task planning is exploited to
support motion planning by providing actions and regions of

the continuous space that the sampling-based motion plan-
ner can further explore to advance its search. In this case,
symbolic and motion planning are therefore associated with
different search strategies and an external black-box sym-
bolic planner is invoked to compute an action plan.

In this paper, we propose and investigate a different ap-
proach that directly deploys the basic RRT-based search
mechanism into an extended search space that combines the
configuration space and the symbolic state space. The aim is
to explore the extent to which a direct deployment of a ba-
sic RRT sampling-based search is feasible and effective in
this extended space. Since the RRT needs a metric space to
be sampled, we firstly introduce a distance measure suitable
for an extended state space that combines configurations and
symbolic states. We then deploy this distance to guide the
expansion of the RRT in the extended metric state. Notice
that we deliberately deployed a vanilla version of the RRT
search (Lavalle and Kuffner 1999) to assess the sampling-
based search mechanism, without the support of other opti-
mizations (Kuffner and Lavalle 2000).

In this work, we detail the approach and discuss its feasi-
bility and scalability in real-world robotic case studies pro-
vided by a hospital logistic scenario. In this context, we con-
sider incrementally complex pick, carry, and place tasks in
cluttered environments. The results collected with the pro-
posed pilot study suggest that the approach is feasible in re-
alistic scenarios.

RRT-based Task and Motion Planning
In this section, we introduce our Task and Motion RRT plan-
ner (TM-RRT) starting from an extended version of a sim-
ple RRT planner. Firstly, our planning problem can be de-
fined by the tuple (C, S,M,A, qinit, sinit, sgoal, G), where
C ⊆ Rn is the n-dimensional configuration space of the
robot, S is the symbolic state space, M and A are sets of
motions and actions respectively, qinit ∈ C and sinit ∈ S
are the initial configuration and initial symbolic state, and
sgoal ∈ S is the symbolic goal state. Each state in the sym-
bolic space S is implicitly represented by means of a finite
set of ground predicates in a set P representing all the pos-
sible properties that can hold in a state (with closed-world
assumption), i.e., S = 2P .

In this framework, we represent motions and actions. A
motion m is a n-dimensional vector of movements that lin-
early drives the robot from a configuration to another. On
the other hand, an action a ∈ A is a STRIPS-like opera-
tor, which is associated with preconditions pre(a), add-list
and delete-list eff (a)+, eff (a)−, specifying the transition
between two symbolic states (preconditions and effects are
represented by sets of ground predicates in P).

Moreover, in order to assess action accomplishment in the
configuration space, we introduce a functionG : A×S → C
such that, given an action a applied in the symbolic state s,
it provides a target configuration q representing the configu-
ration to be reached by the robot in order to finalize a. This
function works as an interface between the symbolic and the
configuration space.

In this context, we want to find a sequence of motions and
actions that can be executed by the robot in order to reach the

desired symbolic state sgoal, starting from the initial con-
figuration qinit and the initial symbolic state sinit. To this
end, we aim at producing a list of action and motion pairs
π = 〈(a1,m1), . . . , (ak,mk)〉, where each motion specifies
a movement to be performed by the robot in order to accom-
plish the associated action, while each action labels motions
to be executed in order to reach the final goal state. For in-
stance, consider a person that wants to open a bottle of water.
At the task level, the action can be decomposed in two ac-
tions: grasp-bottle (a1) and open-bottle (a2). The first one is
needed to hold the bottle in position, while the second one
permits to remove the cap from it. On the other hand, at the
motion level, the first action can be executed by moving the
left arm toward the bottle (m1) and closing the left hand to
hold it (m2), while the second action execution is composed
of a first right hand motion toward the cap (m3) followed by
another one performed to remove it (m4). In this case, the
first two motions are performed in order to accomplish the
grasp-bottle action, while the others are needed to accom-
plish the open-bottle action. Therefore, in the final plan π we
will have four pairs, one for each motion, and two for each
action, that is π = 〈(a1,m1), (a1,m2), (a2,m3), (a2,m4)〉.
Notice that in this plan each pair represents a motion labeled
by a symbolic action (e.g., m1 and m2 are labeled by a1).

An Extended RRT
The RRT algorithm (Lavalle and Kuffner 1999; 2000) is
a sampling-based method that provides a motion plan by
rapidly generating a tree rooted at the starting configura-
tion until the goal configuration is reached. In this work,
for the sake of clarity, we introduce our approach consid-
ering a simple version of the RRT algorithm, which will
be suitably adapted to handle both task and motion plan-
ning. Notice that more sophisticated variants of RRTs can
be similarly deployed (Kuffner and Lavalle 2000; Karaman
and Frazzoli 2011; Gammell, Srinivasa, and Barfoot 2014;
Klemm et al. 2015; Chen et al. 2018).

Following (Lavalle and Kuffner 2000), the class of prob-
lems considered by RRTs is typically defined by the follow-
ing elements: a state space X; boundaries xinit ∈ X and
Xgoal ⊂ X representing initial and goal configurations; a
collision detection function D : X → {true, false} check-
ing whether or not a state is accessible; a set of control inputs
U (motions); a simulator which predicts the state transition;
a metric ρ : X × X → [0, inf) specifying the distance be-
tween states.

We now show how combined task and motion planning
problems can be included in this class and hence solved by
RRTs. For this purpose, we consider a combined state space
X = C×S and a combined set of inputs U = M×A. Start-
ing from these sets, we define as boundary values xinit =
(qinit, sinit) and Xgoal = (·, sgoal) ⊂ C × S, and a colli-
sion detection function D : C × S → {true, false} check-
ing for the constraints of the combined state. Notice that,
in this formulation, inconsistent symbolic states are treated
analogously to obstacles to be avoided along the path.

As for the state transition, we define a simulator such that,
given a combined state x(t) = (q(t), s(t)) and an input
{u(t′) = (m(t′), a(t′))|t ≤ t′ ≤ t + ∆t}, the new state

is computed as follows:

x(t+ ∆t) =

{
(q(t+ ∆t), s(t)) if q(t) 6= G(a(t′), s(t))
(q(t+ ∆t), s(t+ ∆t)) otherwise

(1)
That is, if q(t) is not the target configuration for a, only the
configuration is updated, otherwise, once the target has been
reached the symbolic state is updated as well.

We then define a distance du on the combined space X
obtained as a weighted sum of two distance functions: the
distance dc in the configuration space C and a distance ds
on the symbolic space S. The latter, is based on the notion
of symmetric difference of two sets. More specifically, the
distance du is defined as follows:

du((q′, s′), (q′′, s′′)) = wci+ wsj (2)

where wc, ws ∈ R+ are two positive and non-zero constant
values introduced to weight the configuration distance i and
the symbolic distance j, which are defined as follows:

i = dc(q
′, q′′) (3)

j = ds(s
′, s′′) = |s′ 4 s′′| = |(s′ ∪ s′′) \ (s′ ∩ s′′)| (4)

Here, the distance dc is for any distance between two con-
figurations q′ and q′′ (i.e. the one used to expand the RRT
in the configuration space), while the symbolic distance is
defined as the cardinality of the symmetric difference of the
two symbolic states s′ and s′′. Since symbolic states are rep-
resented by sets of ground predicates, this cardinality pro-
vides a notion of proximity among the states.

We now have to show that du is a distance in the metric
space (X, du). We recall that a function d : X×X → R is a
distance in X iff (i) d(x, y) ≥ 0; (ii) d(x, y) = 0 ⇐⇒ x =
y; (iii) d(x, y) = d(y, x); (iv) d(x, y) ≤ du(x, z) + d(y, z).
Notice that if both dc and ds are distances inC and S respec-
tively, then (i), (ii), (iii), (iv) hold also for du in C × S. On
the other hand, dc is a distance on the configuration space
by assumption, while it can be easily shown that the cardi-
nality of the symmetric difference satisfies all the distance
properties listed above.

RRT-based Task and Motion Planner
Given the distance measure introduced in the previous sec-
tion, we now aim at introducing a RRT algorithm that spans
toward the unified metric space (configurations and sym-
bolic) in search for a plan that is both collision-free and sym-
bolically consistent.

Algorithm 1 TM-RRT algorithm
1: function BUILD TMRRT(xinit, sgoal)
2: T ← addRRT(T , xinit)
3: while ¬ reached(T , sgoal) do
4: xrand← random state(T ,sgoal)
5: T ← extend(T , xrand)
6: end while
7: return T
8: end function

The TM-RRT algorithm that combines task and motion
planning is illustrated in Algorithm 1. It receives in input

the initial state in the combined space xinit = (qinit, sinit)
and a symbolic goal state sgoal, generating a RRT whose
branches are associated with task-level actions and free-
obstacle motions. The output of Algorithm 1 is the tree struc-
ture itself, since the plan can be suitably retrieved by going
backward from the solution vertex (leaf) to the initial vertex
(root). The tree is firstly initialized to the initial configura-
tion (line 2) then, until the goal state sgoal is reached (line
3), the algorithm randomly selects a combined state (line
4) extending the tree in that direction (line 5). Finally, the
tree containing the goal state is given as output (line 7).
Notice that, differently from the basic version of the RRT
in (Lavalle and Kuffner 1999), this algorithm stops when
a feasible path connecting the initial and the goal states is
found. Moreover a suitable random state function is defined
in which symbolic actions are exploited to guide the sam-
pling process toward the goal state.

Algorithm 2 TM-RRT random sampling
1: function RANDOM STATE(T , sgoal)
2: srand← random sym(ps, sgoal)
3: snear ← nearest sym(T , srand)
4: a← select action(snear, srand)
5: qsub ← G(a, snear)
6: qrand← random conf(pc, qsub)
7: return (qrand, srand)
8: end function

The description of the random state function is illustrated
in Algorithm 2. In a first phase, a symbolic state srand is
drawn from the space S (line 2). To bias this sampling to-
wards the goal state, we adopt a randomized choice by se-
lecting the goal state sgoal with probability ps along with a
randomly extracted symbolic state (i.e., a subset of P as in
(Burfoot, Pineau, and Dudek 2006)) with probability 1−ps.
The selected state srand should induce a tree expansion in its
direction. At the symbolic level, this expansion is performed
by a symbolic action. In this respect, given srand, the algo-
rithm selects the nearest state snear of the tree (line 3) and
selects an action a from the state snear towards srand (line
4).

In a second phase, we exploit the G function (line 5) to
retrieve the target-configuration qsub associated with the ac-
tion a executed in snear. The qsub is here exploited as a
guidance that drives motion-level planning towards a trajec-
tory that accomplishes a (sub-goal accomplishment). Also
in this case, a randomized choice is introduced to obtain
this drive: with probability pc the drawn configuration qrand
equals the sub-goal qsub, otherwise, with probability 1−pc a
new random configuration is sampled, with a uniform distri-
bution over C (line 6). Once we have both qrand and srand,
a new sample (qrand, srand) in the unified space is provided
in output. After the random selection of the state, the tree
is expanded in that direction. This process is described in
Algorithm 3. Analogously to the basic version of the RRT
(Lavalle and Kuffner 2000), the extend function takes as in-
put the tree T and the random state x. The function selects
the nearest node of the tree from the random state x accord-

Algorithm 3 TM-RRT extension
1: function EXTEND(T , x)
2: xnear ← nearest neighbor(T , x)
3: unew ← select input(xnear, x, len)
4: xnew ← new state(xnear, unew)
5: if D(xnew) then
6: T ← add vertex(T , xnew)
7: T ← add edge(xnear, xnew, unew)
8: end if
9: return T

10: end function

ing to the combined distance du (line 2); then, a combined
input unew = (m, a), with m of maximum length len is se-
lected (line 3) and applied to the nearest state xnear (line 4).
If the new state is consistent - both obstacle free and sym-
bolically consistent - (line 5) the tree is updated with the new
node (line 6) and new edge (line 7).

Case studies
In this section, we present and discuss case studies provided
by a hospital-logistic scenario (see Figure 1 (right)) where
a mobile robot is involved in multiple pick, carry, and place
tasks. The experiments have been carried out in a realistic
CoppeliaSim simulated environment of 10×10 meters, de-
ploying a laptop Intel i5-5200U 2.20GHz, 8Gb ram, with
a single threaded implementation of the algorithm. An ex-
ample of the simulated environment is provided in Figure
1, where we can find a mobile robot (gray, in simulation),
two carts (cyan) and four target poses (green squares). The
robotic system is an omni-directional mobile platform en-
dowed with four mecanum wheels and an elevator that al-
lows it to go under the carts and lift them from below. The
configuration of the environment (rooms, passages, number
of carts and poses) will be changed in the simulated experi-
ments in order to generate incrementally complex settings.

In this scenario, we assume the robot configuration space
C ⊆ R2×SO(1), hence each q ∈ C is a triple q = [x, y, θ],
where x and y are coordinates and θ is the rotation. The
set A includes two types of actions, pick(Cart, Pose) and
place(Cart, Pose), while the symbolic state is described
by the predicates: free(Pose) that holds if the Pose is
free, carry(Cart) which holds if the robot is carrying
Cart, on(Cart, Pose) stating that Cart is in Pose, and
carrying, that holds if the robot is moving a cart. Both pred-
icates and actions can be instantiated with carts and target-
poses, hence the number of ground actions and predicates
can be defined by the number of carts/target-poses.

Case 1: Parameters setting
The TM-RRT set-up depends on 5 main parameters: the
probabilities pc and ps (see lines 2 and 6 in Algorithm 2) that
regulate the goal-oriented sampling of the RRT, the length of
the motion segment toward the random sample len (see line
3 in Algorithm 3), and the weights wc and ws introduced
to define the unified distance du (see Equation 2). As a pre-
liminary step, we assess the performance of the planner by

Figure 1: Example of simulated (left) and real (right) hospi-
tal environment. In the simulation 2 carts are deployed (c1
and c2) and one of them (c1) is blocking the entrance.

changing the parameters that structurally affect the underly-
ing metric space and its exploration. Namely, we consider
the ratio between the two weights wc and ws used to define
the unified distance along with the len expansion step of the
tree. In contrast, the probabilities pc and ps are both fixed
to 0.3 in order to compare the results with the same search
strategy.

In the following tests, we assume wc = 1 and ws = kwc

and the ratio k ∈ {0.1, 0.5, 1, 2, 5, 10}, and len ranging in
[0.1 − 1] with an increasing step of 0.1. The testing envi-
ronment is illustrated in Figure 1 (left) and includes a small
room with 2 entrances and a bigger outer area. In this setting,
we deploy 2 carts (cyan objects c1 and c2) and introduce 4
target poses (green squares p1 to p4). The goal for the robot
is to place c1 in p3 and c2 in p4. Notice that one of the carts
(c1) is intentionally positioned close to the bigger entrance
in order to obstruct the passage. This way, the mobile robot
can still access the room through the small entrance, but a
free passage is needed anyway to carry out the cart c2. This
environment represents a simple “trap” since all the plans
starting with the pick(c2) action cannot be completed with
carry and place because the only exit from the small room,
available for c2, is blocked. Instead, in order to solve the
task, the robot firstly has to pick carry and place c1 from
pose p1 to pose p3, then cart c2 can be moved from pose p2
to pose p4.

In this scenario, we tested the algorithm by performing 30
execution for each combination of the parameters. We also
introduced a time-limit of 300 seconds considering failures
all the executions exceeding this limit. For each couple of
parameters (lim, k) we measured the time needed to gener-
ate the plan along with its size (average and standard devia-
tion) and the failure rate. The results are illustrated in Figure
2. It is possible to notice that the failure rate decrease rapidly
when the weight ws of the symbolic distance becomes two
or more times greater than wc. Analogously, planning time
also decreases with the increment of both k and len. In con-
trast, the size of the plan increases with the increment of
len. This was expected since longer paths are generally as-
sociated to fast, but inefficient routes, while shorter paths are
more detailed but computationally expensive. On the other
hand, the plan size is still slightly decreasing with the in-
crement of k. These collected results suggest that settings
wherewc > ws are self-defeating (higher failure rate), while

Table 1: Results of Case 2 (60 runs for each setting).
number of carts 1 2 3 4

time (s)
avg 0.22 1.31 11.80 39.27
std 0.32 1.46 10.61 48.85

length (m)
avg 12.66 32.77 55.26 80.61
std 6.64 8.51 12.07 11.88

plan-size avg 142 364 625 906
std 77 97 143 151

success 100% 100% 100% 93%

the len parameter can be regulated to trade-off between ef-
ficiency and quality of the solution. For the other case stud-
ies, we selected the set-up associated with no failures and
minimal execution time (see green line in Figure 2), namely
len = 0.9 and k = 5.

Case 2: Scalability
We now consider the scalability of the proposed approach
with respect to the number of actions and ground predicates
(i.e., the size of the sets A and P). We defined a simulated
environment with 2 rooms and 3 passages between rooms
that are large enough to allow cart transitions (see Figure
3). In this scenario, the robot has to move carts from their
positions in the right-room to the fixed position in the left-
room (e.g., from p1 to p2 in Figure 3, first on the left). We
considered 4 configurations of this scenario with an increas-
ing number of carts (from 1 to 4) and target-poses (from 2
to 8). The increment of tasks/poses induces an increment of
the available ground actions and predicates as illustrated in
Figure 4.

For each setting, we performed 60 runs (240 tests in to-
tal), measuring planning-times (in seconds), size of the plans
(number of steps), paths length (meters) and success rate
(percentage of plans generated in less than 300 seconds).

The empirical results are summarized in Table 1. Tests
with 1 up to 3 carts have been always successfully executed,
while in the 4-carts case, success rate is 93% (planning prob-
lem could be solved within the deadline). Notice that for the
4 considered settings the sizes and lengths of the plans in-
crease almost linearly with the size of the problem, while
planning times grow more rapidly. This was expected and
related to the increasing complexity of the symbolic search
space (number of ground predicates and actions).

Case 3: Anomalies
In order to assess our approach in case of anomalies, we pro-
pose a scenario where the carts configuration is intentionally
designed to hinder task execution. More specifically, we as-
sume that the simulated environment includes 2 small rooms
connected by an outer area and 2 carts (see Figure 5). The
goal is to move the cart c2 (lower-left cart) from the lower
to the upper room and to leave cart c1 in pose p1. In order to
accomplish this task, the robot has to move the cart c1 out-
side of the room (to free the passage), carry the second cart
c2 to the upper room and, finally, take back c1 at the initial
pose. Notice that in this setting the robot is mostly guided

by the symbolic distance to firstly take cart c2 (hence to per-
form pick(c2, p2) and place(c2, p4)) instead of moving c1.
Here the RRT-based sampling allows the robot to overcome
this local minima by rejecting the colliding solutions, while
considering also sub-optimal ones.

The collected empirical results are illustrated in Table 2.
Also in this case 60 tests have been performed with exe-
cutions always successful (plan generated in less then 300
seconds). The task and motion planning process takes in av-
erage 14.82 seconds and produces a plan of 673.71 average
steps. Since in this setting 3 pick-and-place tasks are exe-
cuted, we can compare these results with respect to the ones
of the previous case study (Table 1, 3-carts) observing that
the anomaly induces a slight increment of the planning time
(around 3 seconds (∼ 25%)), while the plan size is analo-
gous (around +8% plan-size and +9% path length).

Table 2: Results of Case 3 (60 runs).
local-minima time length plan-size success

avg 14.84 59.93 673.71 100%std 10.15 12.53 137.67

Conclusions
We presented a RRT-based approach to combined task and
motion planning. While RRTs are widely exploited for solv-
ing motion planning problem in high-dimensional spaces,
their deployment for symbolic task planning problems is
more limited. In this respect, we propose a RRT-based algo-
rithm suitable for finding plans in an extended search space
that combines configuration states and symbolic states. This
extended state space is associated with a distance measure
that combines a distance in the configuration space and dis-
tance on the symbolic state. Given this unified distance, we
deployed a basic version of the RRT-based search on the ex-
tended metric state. We detailed the approach and discussed
its feasibility and scalability in a pilot study provided by
a real-world hospital scenario that involves a mobile robot
executing pick-carry-place tasks. Despite the simplicity of
the algorithm, the collected empirical results show that the
approach is feasible and effective in increasingly complex
realistic test cases, encouraging us towards the deployment
of more sophisticated RRT methods and a more refined im-
plementation of the algorithm (the one tested in this work
is single threaded). As a future work, we plan to compare
the performance of different variants of RRT algorithms and
notions of symbolic distance in both navigation and manip-
ulation tasks.

References
Barry, J. L.; Kaelbling, L. P.; and Lozano-Pérez, T. 2013. A
hierarchical approach to manipulation with diverse actions.
In 2013 IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, May 6-10, 2013, 1799–
1806.
Bidot, J.; Karlsson, L.; Lagriffoul, F.; and Saffiotti, A. 2017.

0.10.5 1 2 5 10 0.2 0.4 0.6 0.8 1
0
5

10
15
20

k len

Average Time

0.10.5 1 2 5 10 0.2 0.4 0.6 0.8 1
400

450

500

550

600

k len

Average Plan-size

0.10.5 1 2 5 10 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

k len

Rate of Failure

Figure 2: Representation of the average times (seconds), plan-size (steps) and the rate of failures for each couple of parameters
over 30 runs. For the next cases we select the parameters producing no failures and minor average time (green line).

Figure 3: Simulated environments for each setting from 1 (left) to 4 (right) carts. In all these settings the robot carries carts from
the right room to the target-poses in the left room. There are three passages between rooms.

1 2 3 4
0

20

40

60

80

Number of carts

actions
predicates

Figure 4: Number of actions and ground predicates for each
domain.

Geometric backtracking for combined task and motion plan-
ning in robotic systems. Artif. Intell. 247:229–265.
Burfoot, D.; Pineau, J.; and Dudek, G. 2006. Rrt-plan: A
randomized algorithm for STRIPS planning. In Proceed-
ings of the Sixteenth International Conference on Automated
Planning and Scheduling, ICAPS 2006, Cumbria, UK, June
6-10, 2006, 362–365.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
I. J. Robotics Res. 28(1):104–126.
Chen, L.; Shan, Y.; Tian, W.; Li, B.; and Cao, D. 2018. A
fast and efficient double-tree rrt ∗̂-like sampling-based plan-
ner applying on mobile robotic systems. IEEE/ASME Trans-
actions on Mechatronics 23(6):2568–2578.
Choi, J., and Amir, E. 2009. Combining planning and mo-
tion planning. In 2009 IEEE International Conference on
Robotics and Automation, ICRA 2009, Kobe, Japan, May
12-17, 2009, 238–244.
Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,

Figure 5: Generated plan (left) and environment (right).The
robot moves the central cart outside of the rooms in order to
free the passage.

L. E. 2016. Incremental task and motion planning: A
constraint-based approach. In Robotics: Science and sys-
tems, volume 12, 00052. Ann Arbor, MI, USA.
de Silva, L.; Pandey, A. K.; and Alami, R. 2013. An inter-
face for interleaved symbolic-geometric planning and back-
tracking. In 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems, Tokyo, Japan, November 3-7,
2013, 232–239.
Erdem, E.; Haspalamutgil, K.; Palaz, C.; Patoglu, V.; and
Uras, T. 2011. Combining high-level causal reasoning
with low-level geometric reasoning and motion planning for
robotic manipulation. In 2011 IEEE International Confer-
ence on Robotics and Automation, 4575–4581. IEEE.
Gammell, J. D.; Srinivasa, S. S.; and Barfoot, T. D. 2014. In-
formed rrt*: Optimal sampling-based path planning focused
via direct sampling of an admissible ellipsoidal heuristic.

In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2997–3004. IEEE.
Ingrand, F., and Ghallab, M. 2017. Deliberation for
autonomous robots: A survey. Artificial Intelligence
247:pp.10–44.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchi-
cal task and motion planning in the now. In IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2011,
Shanghai, China, 9-13 May 2011, 1470–1477.
Karaman, S., and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. The international jour-
nal of robotics research 30(7):846–894.
Klemm, S.; Oberländer, J.; Hermann, A.; Roennau, A.;
Schamm, T.; Zollner, J. M.; and Dillmann, R. 2015. Rrt-
connect: Faster, asymptotically optimal motion planning.
In 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 1670–1677. IEEE.
Kuffner, J. J., and Lavalle, S. M. 2000. Rrt-connect: An
efficient approach to single-query path planning. In Pro-
ceedings IEEE International Conference on Robotics and
Automation, 995–1001.
Lagriffoul, F.; Dimitrov, D.; Bidot, J.; Saffiotti, A.; and
Karlsson, L. 2014. Efficiently combining task and mo-
tion planning using geometric constraints. The International
Journal of Robotics Research 33(14):1726–1747.
Lavalle, S. M., and Kuffner, J. J. 1999. Randomized kino-
dynamic planning. In Proceedings IEEE International Con-
ference on Robotics and Automation, 473–489.
Lavalle, S. M., and Kuffner, J. J. 2000. Rapidly-exploring
random trees: Progress and prospects. In Algorithmic and
Computational Robotics: New Directions, 293–308.
Morgan, S., and Branicky, M. 2004. Sampling-based plan-
ning for discrete spaces. In Proceedings of 2004 IEEE In-
ternational Conference on Intelligent Robots and Systems,
2004, 1938–1945.
Plaku, E., and Hager, G. D. 2010. Sampling-based mo-
tion and symbolic action planning with geometric and dif-
ferential constraints. In IEEE International Conference on
Robotics and Automation, ICRA 2010, Anchorage, Alaska,
USA, 3-7 May 2010, 5002–5008.
Thomason, W., and Knepper, R. A. 2019. A unified
sampling-based approach to integrated task and motion
planning. In International Symposium on Robotics Research
(ISRR).

Two-layered Architecture for Telepresence Robots:
Combining Personalization and Reactivity

Gloria Beraldo and Riccardo De Benedictis and Amedeo Cesta and Gabriella Cortellessa
Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy

Abstract

This paper proposes a system design for integrating the
planning of courses of actions with their execution on
a telepresence robots to face some outstanding chal-
lenges, namely, the need to provide personalised ser-
vices for effective human-robot interaction, and to cre-
ate the robot’s ability to perform reactive behaviors in
autonomous or semi-autonomous way. With this pur-
pose in mind, we put together the strengths of AI and
robotics into a two-layered architecture: the first layer is
in charge of planning and scheduling the daily activities
by respecting the personalised constraints from human
needs, the second implements and adapts the robot’s ac-
tions by evaluating contextual information. Besides pro-
moting the continuous and mutual interaction between
the two layers, the proposed system favors the distribu-
tion of services on the cloud and on board the robot by
considering the trade-off between personalisation and
reactivity. The preliminary tests highlight the feasibil-
ity of the system and lay the basis for developing a new
assistive solution.

Introduction
Recent studies foresee an increment of the old-age depen-
dency ratio (number of people age 65 or above compared
to those age 15-64) from the current 28% to 50% by 2060,
highlighting the necessity of developing new healthcare ser-
vices for assisting elderly people in the daily life activi-
ties (Group and others 2018; Mois and Beer 2020). Age-
ing causes a physiological decrease of motor, sensory and
cognitive abilities in people. Seniors with cognitive disor-
ders could have problems in being self-sufficient and living
alone at home. Furthermore, elderly people need to reduce
the risk of accidents at home, the progressive cognitive de-
cline, dementia and the isolation from the family members
and friends. For these reasons, over the past few years, re-
quests for personalised care services have increased. Given
these premises, it is emerging the demand to combine artifi-
cial intelligence and robotics to develop new care solutions
based on the design of social robots able, to establish em-
pathic bonds with people as well as to monitor and coaching
them in order to anticipate their needs and predict the oc-
currence of impairments (Pollack 2005). Mobile Telepres-
ence Robots, in particular, represent a class of robots that
allow mitigating the problem of isolation of elderly people

living alone (Cesta et al. 2018; Sheridan 1992). Although
the technology used on these robotic platforms has evolved
considerably in recent years (Isabet et al. 2021), these tools
are basically relegated to providing telepresence services on
different mobile robotic platforms that can be controlled
remotely (Melendez-Fernandez, Galindo, and Gonzalez-
Jimenez 2017; Kristoffersson, Coradeschi, and Loutfi 2013;
Tsui et al. 2011), having no or very limited autonomy (Or-
landini et al. 2016). Usability and acceptability of these plat-
forms, however, require that they have a certain level of au-
tonomy, supporting their teleoperation by people typically
not very familiar with technology (e.g., family members of
the assisted persons, as well as doctors and nurses), as well
as endowing the robots with proactive services and capa-
bilities, exploitable when they are not remotely teleoperated
(Isabet et al. 2021; Riano, Burbridge, and Mc Ginnity 2011;
Laniel et al. 2021).

We are currently facing this research topic inside the
project called SI-ROBOTICS (SocIal ROBOTics for active
and healthy ageing), which aims designing and developing
advanced and customized human-robot interaction for sup-
porting elderly people at home. The main goal consists of
creating an holistic system that includes multivariate ser-
vices from the monitoring of the physiological measure-
ments to the motivation of performing cognitive and physi-
cal exercises through the robot, from telepresence services to
advance remote teleoperation to keep the contact with sec-
ondary users (e.g., doctors, medical staff, family, friends).
In this context, one of the challenges is the definition of the
appropriate role of the robot. On the one side, robots are
expected to implement in autonomy reactive and intelligent
behaviors according to the contextualization of the specific
situations to assist the users. On the other, robots have to op-
erate inside predefined boundaries to be acceptable and to
adapt to the necessities of people. In other words, it emerges
the necessity of planning the appropriate tasks involving the
robot during the day, to schedule them by respecting a set of
constraints (e.g., temporal, related to people’s preference) ,
and finally, to implement them exploiting the robot’s capa-
bilities. However, although the planning and scheduling is
essential, at the same time there are some aspects of the in-
teraction that cannot be planned a priori. For instance, you
can imagine if the robot is expected to remember the person
the monitoring of his/her physiological parameters, but the

person is not at home.
To limit the failures, in this paper, we propose to fuse the

strengths of a global planning and scheduler in combination
with the implementation of reactive behaviors that locally
access and interpret the contextual information. With these
purpose, we also focus on designing strategies to modify the
original plan after triggers from the robot. In particular, dur-
ing the execution of the reactive routines, the presented ar-
chitecture incorporates both the capabilities of rearranging
the expected time of the scheduled activity (e.g., delay it)
and/or to completely changing the plan when it is impossi-
ble to be committed (as in the previous example).

Proposing a two-layered architecture
It is worth highlighting that the integration between artifi-
cial intelligence and robotics services is not trivial as merely
solving a problem of task planning and execution. The in-
tegration, indeed, should rely on two different layers of ab-
straction that actively operate and continuously exchange in-
formation among them. The pursued idea is based on the
integration of different AI technologies that support the im-
plementation of capabilities necessary to support humans in
daily living scenarios fostering personalization and adap-
tation of the interaction (Rossi, Ferland, and Tapus 2017;
Moro, Nejat, and Mihailidis 2018). Similarly to other works
(Strannegård et al. 2013; Sun 2015; Augello et al. 2017),
the proposed architecture is inspired by the dual process
theory, a psychological model according to which the hu-
man mind would follow two distinct and parallel reason-
ing processes: one faster and more intuitive (e.g., associ-
ated with robotics), the other slower but more logical and re-
flective (e.g., related to semantic reasoning, automated plan-
ning and scheduling) (James 1890; Wason and Evans 1974;
Petty and Cacioppo 1986; Kahneman 2011). In accordance
with this theory, our goal is to combine the strengths of the
two forms of reasoning and acting into one synergic system,
whose architecture is organized as follows:
• The higher slower layer, associated with the artificial in-

telligence, deals with the problem of abstracting the con-
text, reasoning and planning of a personalised set of ac-
tions performed by the robot. This layer distributes the
services on cloud that are independent from the robotic
platform and require burdensome computation resources.

• The lower faster layer, related to robotics, is in charge
of trying to execute the scheduled actions by rearrang-
ing them proactively according to the specific context and
by defining the aspects that are not established a priori.
For this reason, the services are directly implemented on-
board of the robot.

An illustrative representation of the proposed two-layered
architecture is shown in Figure 1.

Given the structure of the architecture, it is fundamental
to provide a good communication between the two layers
that also takes into account their different “speed”. Indeed,
the lower is more responsive to possible changes because it
acts locally in a limited window of time. The second is more
sophisticated because it evaluates the entire picture of possi-
ble activities but with the trade-off of requiring time to for-

Figure 1: A sketch of the two-layered architecture. The
first is based on the Message Queuing Telemetry Transport
(MQTT), the second on Robot Operating System (ROS).

mulate a feasible solution respecting all the constraints and
adapting it at execution time. The communication function is
managed by a bridge that plays a dual role: put in communi-
cation the previous two layers and translate the information
in the expected format.

In the following sections, we will clarify the roles and the
characteristics of both layers.

The on-cloud layer
As mentioned in the previous section, the overall system
must be able to manage the communication between, and the
interaction with, the different users of the system, whether
they are assisted elderly, medical staff, relatives or just
friends who can interact, through the system, with clients.
These users, in particular, are typically connected to the sys-
tem remotely, from their respective workstations or, some-
times, from their homes. Therefore, it is crucial to establish a
cloud infrastructure that allows the exchange of the informa-
tion among the different components of the overall system.
Such infrastructure, in particular, will cover the deliberative
role of all the autonomous components that characterize the
system, planning the activities for the achievement of objec-
tives related to the well-being of the person and coordinating
their execution, dynamically adapting it to the information
that continuously emerges from the environment.

Specifically, a database is responsible for keeping infor-
mation regarding the different users who have access to the
system, their roles (e.g., assisted users, medical staff, etc.)
and, for the assisted users, those characteristics which are
relevant for the generation of peronalized plans (e.g., any
physical and/or cognitive problems). The database also con-
tains information regarding the associated assistive struc-
tures (the main objective is to minimize hospitalizations,

hence these structures are, mostly, the assisted users’ own
homes), the users who have access to the structure, the en-
vironmental and physiological sensors within the structure
and the available robotic platforms.

As the overall system consists of several building blocks,
as briefly mentioned, coordination among their performed
activities results mandatory. For this reason, the on-cloud
tier also deals with the planning, scheduling and execution,
with possible dynamic adaptation over time, of the highest
level tasks that the various components connected to the sys-
tem must carry out over time. This coordinating role, in par-
ticular, is carried out by different instances (one for each
assistive structure) of a timeline-based planner (Muscettola
et al. 1992), which deals with managing, in an integrated
and homogeneous way, the different forms of semantic and
causal reasoning required by the system’s high-level tasks.
Such activities will then be carried out by the reactive tier,
which in turn will provide feedback for the dynamic adapta-
tion of the personalised generated plans.

Timeline-based planning
In order to better understand what we are talking about,
it is worth introducing some technical background about
timeline-based planning. The building block for the logi-
cal and reflexive reasoning tier, in particular, is the token
which, in its most general form, is described by an ex-
pression having the form n (x0, . . . , xi)χ. In timeline-based
planning tokens are used to represent the single unit of infor-
mation. In particular, n is a predicate symbol and x0, . . . , xi
are its parameters (i.e., constants, numeric variables or ob-
ject variables). Such parameters are constituted, in general,
by the variables of a constraint network (Dechter 2003;
Lecoutre 2009) and can hence be constrained to reduce their
allowed values and bring the system to a desired behavior.
Finally, χ ∈ {f, g} is a constant representing the class of
the token (i.e., either a fact or a goal).

The semantics, in this case, is borrowed from Constraint
Logic Programming (Apt and Wallace 2007). Specifically,
while the facts are considered inherently true, the goals must
be achieved. The achievement of a goal can take place either
through a unification with either a fact or another already
achieved goal with the same predicate (i.e., the parameters
of the current goal and the token with which is unifying are
constrained to be pairwise equal), or through the application
of a rule.

Rules are expressions of the form n (x0, . . . , xk) ← r
where n (x0, . . . , xk) is the head of the rule and r is the
body of the rule, i.e., either another token, a constraint
among tokens (possibly including the x0 . . . xk variables),
a conjunction of requirements or a disjunction of require-
ments. Specifically, rules define the causal relations that
must be complied to in order for a given goal to be achieved.
Roughly speaking, for each goal having the “form” of the
head of a rule, the body of the rule (i.e., further tokens,
constraints, conjunctions and disjunctions) must also be as-
serted. Through the application of the rules it is hence pos-
sible to establish and generate relationships between the in-
formation units represented by the tokens.

Finally, a timeline-based planning problem is a triple P =
(O,R, r), where O is a set of typed objects, needed for in-
stantiating the domains of the constraint network variables,
R is a set of rules and r is the body of a rule, i.e., either a
token (whether a fact or goal), a constraint among tokens,
a conjunction of requirements or a disjunction of require-
ments. In simple terms, the reasoning procedure deals with
applying the rules in order to guarantee the achievement of
goals (note that this process can introduce other (sub)goals)
or with demonstrating their semantic equivalence with other
facts or with other already achieved goals (refer to (De Bene-
dictis and Cesta 2020) for further details).

Note that some of the numeric parameters of the tokens
can be used to represent temporal information such as the
start or the end of some tasks. Additionally, constraints can
be used to impose orderings on such tasks, placing them
at proper times. Some tokens, moreover, may be equipped
with a special object variable τ that identifies the timeline
affected by the token. Different tokens with the same value
of the τ variable interact with each other on the same time-
line. Such interaction, in particular, depends on the nature
of the timeline, prohibiting the temporal overlap in case of
state-variables, or allowing it, as long as the concurrent uses
remain below the resource’s capacity, in case of a reusable-
resource. By doing so, it is possible to homogeneously rep-
resent different types of information that can interact with
each other such as the users’ profile, the tasks that the robot
must perform, and also the tasks that the robot proposes to
users such as physical and cognitive rehabilitation exercises,
hence resulting in the generation of a high-level personalised
interaction with the user.

Comparing with the human mind, a token can be seen
as an “idea”, like the idea of having to perform a certain
task (e.g., a physical rehabilitation exercise) in a given future
temporal interval, or the idea that the person with whom the
system is interacting has certain characteristics which can be
exploited for customizing the interaction. Through the ap-
plication of the rules, the resolution process introduces new
“ideas” and new relationships between them.

Personalization of the daily activities according to
user’s needs and preferences
Given its general modeling flexibility, we have chosen to use
the above form of reasoning at a deliberative tier, to gener-
ate personalised high-level plans and to adapt them accord-
ing to the new information that dynamically emerges from
the environment. Within the proposed architecture, specif-
ically, personalization concerns the generation of activities
over time (e.g., physical and cognitive rehabilitation exer-
cises) personalised on the basis of the user’s characteris-
tics (i.e., any physical problems, the degree of training, the
level of perceived fatigue after a training session, etc.) and
on her/his preferences (e.g., the preferred times to carry out
such activities). In particular, by exploiting a combination of
rules and constraints, and by using constants, whose value
is established starting from the information stored in the
database, to represent the user’s status and her/his prefer-
ences, it is possible to generate a long-term plan containing
several high-level interactions customized according to the

user’s needs.
Figure 2 sketches how it is possible to exploit the

application of the rules, during the resolution process,
to generate personalised plans that aim to keep the user
healthy. Suppose, for example, that from the interaction
with an elderly user u emerges that the person suffers
from memory problems while is free of major physical
problems. The deliberative tier could exploit this knowl-
edge to plan some cognitive rehabilitation exercises,
aiming to limit the person’s further cognitive decline,
and some physical exercises, aiming to keep the person
physically active. A hypothetical high-level goal could
be, therefore, KEEPHEALTY. The rule that describes
the requirements for the achievement of such a goal
could contain, among other things, a first disjunction like
(u.memory issues ∧ CognitiveExercizeg (τ, s, e)) ∨
¬u.memory issues and a second disjunction like
(¬u.physical issues ∧ PhysicalExercizeg (τ, s, e)) ∨
u.physical issues. In order to reach the KEEPHEALTY
goal, specifically, the application of the rule, during the
resolution process, will introduce a COGNITIVEEXERCIZE
sub-goal within the partial plan if and only if the involved
user has memory problems and a PHYSICALEXERCIZE
sub-goal if and only if the involved user has no physical
problems.

It is worth noting that the introduced sub-goals are en-
dowed with the s and e numerical variables, representing the
starting and the ending of the activity. Furthermore, the sub-
goals affect the timeline represented by the object variable
τ . The value of such variables is, in general, decided by the
planner, provided that all the constraints defined both in the
problem and in the applied rules are satisfied. State-variable
timelines, specifically, prevent the temporal overlapping of
their tokens introducing, if needed, ordering constraints be-
tween them avoiding, in our case, the overlapping of a cog-
nitive rehabilitation exercise and a physical one. Finally, it
is worth noticing that the introduced sub-goal are, actually,
goals and, like other goals, require to be achieved, either by
unifying with another already achieved COGNITIVEEXER-
CIZE and PHYSICALEXERCIZE goals, or by applying the
COGNITIVEEXERCIZE’s and PHYSICALEXERCIZE’s asso-
ciated rule, possibly introducing additional constraints and
further sub-goals, such as a WARM-UP exercise preceding
the PHYSICALEXERCIZE.

Executing a timeline-based plan
Generating a personalised plan that manages the coordi-
nation among the different activities that might take place
within an assistive structure constitutes only part of the faced
difficulties. The generated plan, in particular, must deal with
the evolving reality of all the (often, unpredictable) events
that can happen within an assistive structure. In other words,
the plan must be executed. To manage the execution of the
plan, two associative containers are filled with all the tasks
of the plan that will eventually be executed, indexed, respec-
tively, by the value of their start variable and by the value of
their end variable. For convenience, the keys of these con-
tainers are sorted in ascending order, so as to quickly identify
the next tasks which will start/end. An internal current-time

variable is incremented at each execution step (in our case,
every second) and whenever its value exceeds the beginning
(or the end) of a task, these are started (or ended). During
the execution of a plan, however, various things can happen
that require its adaptation (or, in some cases, its cancella-
tion) depending on the fresh information that dynamically
emerges from the environment. In its most general form, in
particular, the types of adaptations we consider fall into three
categories: 1) freezing the start or the end of a task; 2) delay-
ing the start or the end of a task and 3) failing the execution
of one (or more) tasks.

Each of the above adaptations, in particular, can lead to
potentially important consequences for the plan. In the event
of a task failure, for example, it is necessary to take into
account the involved causal relations. In the case shown in
Figure 2, for example, the WARM-UP activity is introduced
so as to allow the achievement of the physical exercise goal.
The failure of the WARM-UP exercise, consequently, implies
the failure of the physical exercise goal, possibly propagat-
ing the failure to the KEEPHEALTY high-level goal. Simi-
larly, in case of a delaying of the start of a task, tightening
the lower-bound of the corresponding temporal variable, by
introducing a new constraint, might imply the propagation to
other variables. In the case shown in Figure 2, for example,
the physical exercise precedes the cognitive one. Delaying
the start of the physical exercise involves updating the value
assigned to the temporal variable that indicates its end, up-
dating the value assigned to the temporal variable indicating
the start of cognitive exercise, and so on. Moreover, when-
ever a task is started (or, similarly, ended), the corresponding
temporal variable must be frozen. Specifically, the value of
the variable is constrained to be equal to its current value.
In so doing, the number of allowed values of other variables
is possibly reduced, for example, forbidding the violation of
max duration constraints. Finally, it is worth noting that the
tightening of a lower-bound on a temporal variable could
make the problem inconsistent, decreeing the failure of the
task associated with the temporal variable.

Considering the positioning of the plan executor in the
cloud, however, it is advisable to limit as much as possi-
ble the exchange of information between the robotic plat-
forms and the planner, so as to reduce the amount of infor-
mation traveling through the network. In this regard, it is
worth highlighting that, depending on the characteristics of
the robot, four (possibly intersecting) sets of tasks can be
identified: 1) notify-start, during the execution of the plan,
all the tokens with these predicates are dispatched when the
start of the tasks is reached; 2) notify-end, during the execu-
tion of the plan, all the tokens with these predicates are dis-
patched when the end of the task is reached; 3) auto-start,
during the execution of the plan, all the tokens with these
predicates are considered started when the start of the task
is reached; 4) auto-end, during the execution of the plan,
all the tokens with these predicates are considered finished
when the end of the task is reached.

This characterization of the predicates allows the plan ex-
ecutor to have a good flexibility, covering most of the sce-
narios that can arise in the case of interaction by a com-
panion robot with the user. In short, the start of the tasks is

Figure 2: Personalization of daily activities through integrated semantic and causal reasoning.

always decided by the planner, which starts them as soon as
the value of the current-time reaches the value of the start
variable. When this happens, the planner freezes the start
variables and stores the starting tasks in an internal execut-
ing set. Auto-end tasks are terminated whenever the value of
the end variable is reached, removing them from the execut-
ing set and freezing their ending variables. In all other cases
the end of the task is delayed by one time unit. Whenever a
task is declared as terminated by the reactive layer, however,
it is removed from the executing set and its ending variable
is frozen. Finally, only the start and the end of tasks classi-
fied as notify-start and notify-end are notified at the reactive
level. In so doing, it is possible to limit the communication
to the sole tasks which are strictly relevant to the reactive tier
which, on the other hand, must only notify their successful
(or ruinous) termination.

As an example, navigation activities, for which the dura-
tion is not known a priori, fall within the sole notify-start
set. Whenever the current-time value reaches the value of
the start variable, the latter is frozen and the start of the ac-
tion is notified to the reactive tier. The end of the task, on the
contrary, will be determined by a notification coming from
the reactive tier. Since the task is not classified as auto-end,
whenever the current-time value reaches the value of the end
variable, the latter will be increased by a time unit at each ex-
ecution step, propagating all the plan constraints with pos-
sible consequences on other future tasks, until the executing
task is notified as successful (or ruinous).

The communication layer

As we previously anticipated, it is essential to introduce
a communication layer which aims at triggering the start-
ing of the activities scheduled by the cloud to the on-board
layers and notifying their conclusions. That service is per-
fectly integrated into the architecture and it is managed by a
bridge as shown in Figure 1. Moreover, the bridge is cru-
cial as intermediate glue for connecting the two different
middlewares on which the on-cloud and the on-board lay-
ers rely. On the one side, we exploit the Message Queue
Telemetry Transport (MQTT) as the standard protocol for

the Internet of Things (IoT)1 and for connecting devices on
the cloud, on the other Robot Operating System (ROS)2 the
standard “de facto” for robotics applications. The main pro
of MQTT is the possibility of connecting different nature
of devices (e.g., sensors, phones, tablets, personal comput-
ers, televisions) over the cloud, while counting on queuing
messages and on guarantees for their delivery (QoS), nec-
essary in all those situations in which disconnections may
occur (e.g., in the case of connections with mobile devices).
The advantage of introducing ROS, conversely, consists of
adding advanced services (e.g., autonomous and shared au-
tonomy navigation, people-aware navigation, Simultaneous
Localization and Mapping (SLAM), skeleton detection) on
board of commercial telepresence robots. These services ex-
ploit the standard provided by ROS and extend some state-
of-the-art algorithms in robotic and computer vision shared
over the wide community.

To allow the exchange of the information in a flexible way,
the bridge3 exploits the common publisher/subscriber pro-
tocol of communication. Specifically, the bridge is in charge
of converting the data in the expected format (e.g, ROS mes-
sage, JavaScript Object Notation (JSON), general chunck of
data) and republishing them in the corresponding topic.

It is worth highlighting the importance of using the bridge
namely the advantage of managing data of different nature
by leading them back to standard messages distributed in
the architecture. Moreover, it allows treating data in the tra-
ditional way from both sides namely independently from the
presence of the other middleware by favoring reusability and
integrity.

The interaction between the on-cloud and
on-board levels
The interaction between the on-cloud and the on-board lev-
els is dynamic and intermittent. However, the two layers are
strictly interconnected: the on-cloud determines the start of
the activities and might estimate their end, the on-board es-

1https://mqtt.org/
2http://wiki.ros.org/
3The bridge relies on the ROS package: https://github.

com/groove-x/mqtt_bridge package

tablishes when they are definitely concluded. Since differ-
ent reactive components may be interested in different high-
level commands produced by the deliberative tier during
execution, the current implementation publishes the com-
mands on different topics identified by the token predicate
corresponding to the command. In this way, each member
can subscribe only to the topics of their interest, limiting
the exchange of less interesting information. Furthermore,
since the predicate is identified by the topic, the information
emitted by the cloud is limited to the value of the token pa-
rameters, two boolean parameters indicate whether the task
is starting or ending. Finally, an additional parameter is used
to identify the command sent from the cloud, allowing the
reactive module to communicate the conclusion or failure of
the tasks.

Given the heterogeneity of the reactive services, we also
arrange an intermediary module, placed on the on-board
layer, that is in charge to directly communicate with the
cloud through the bridge and orchestrates the different mod-
ules. Specifically, this module, that we call local task man-
ager, waits for receiving messages from the bridge. Each
message includes the scheduled activity identified with a
number and the high-level arguments (e.g., the expected
robot’s position at the beginning of the activity). Thus, the
local task manager is in charge of awakening the specific
reactive module (actuators, interaction and navigation). In-
deed, with respect to the executor of the on-cloud layer, it
works at a different level of abstraction. For example, from
the current activity CognitiveExercize communicated by
the on-board layer, the local task manager activates the
robot’s camera, the skeleton tracker to verify the present of
a person and the tts functionalities for managing the interac-
tion.

At the end of the activity, the involved module commu-
nicates the conclusion to the local task manager by spec-
ifying the identifier of the finished activity and its binary
outcome (success or failed). Finally, the local task manager
collects all the identifiers of the activities ended with success
and failed that are published respectively in the topics /done
and /failed to be transmitted to the cloud through the bridge.
The deliberative tier, at this point, removes the completed
tasks from the set of the executing ones and freezes their
final variable. In the case of a failure, on the contrary, the
cloud removes the failed tasks from the plan, properly man-
aging the causal consequences (i.e., eliminating any other
activities that cannot be achieved due to the failure of some
activities) and generating, if allowed by the disjunctions de-
fined within the rules, an alternative plan.

The on-board layer
The on-board layer manages the reactive behaviors imple-
mented by the robot from the formulated plan.

The preliminary version of the architecture provides three
main kinds of services: the ones associated with the direct
movements of robots actuators, the ones related to the robot
navigation and, finally the ones handling the interaction be-
tween humans and the robot. As shown in Figure 1, these
services are managed by three different modules, but not
completely stand-alone.

The first class of services are introduced to implement
basic actions on the robot’s actuators oriented to improve
the interaction with humans (i.e., move hand up to greet,
regulate the robot’s height according to the person’s posi-
tion) and/or to better acquire data from the environment (i.e.,
move the robot’s head to also shift the field of view of the
camera). The low-level control signals are established by the
on-cloud planner to set the default configuration of the joints
and the actuators of the robot according to the user’s needs,
that might be modified by the interaction and the navigation
modules afterwards according to the specific situation. In-
deed, both modules, interaction and navigation ones, process
the context information at higher level than actuators, that
are finally associated with robot’s movements (e.g., from the
robot’s trajectory to velocity commands, from the greeting
sentence to hello gesture).

To manage the robot’s motion in the space, the naviga-
tion module4 abstracts the knowledge of the environment
and outputs navigation goal for the robot. The navigation
goals for the robot are set in multiple ways. The navigation
goals can be statically chose from the on-cloud planner ac-
cording to the preference of the users. For instance, the robot
is expected to move to the utility room during the lunch time.
Then, the navigation goals are directly set by the navigation
module from the robot’s environmental perception resulting
into an autonomous navigation. For instance, this modality
is activated when the robot moves to the charging basis (i.e.,
the goal corresponds to the charging basis position) or when
the robot is required to look for the person to monitor and
interact with him/her (i.e., the goal corresponds to the target
person). Finally, in the proposed architecture, the navigation
goals for the robot can be achieved via the communication
between the navigation module with the one handling the
interaction (see Figure 1). Specifically, the navigation goals
are resulted from the fusion of the context information with
the input received from the user (e.g., turning commands
for the robot). This modality, called shared navigation, aims
facilitating the robot’s control during the telepresence task
where a secondary user remotely teleoperates the robot.
However, it is worth noticing that this modality differentiates
from the traditional manual teleoperation in which the robot
exactly reproduces the user’s commands. Indeed, also in the
shared navigation, the robot is in charge to autonomously
compute a navigation goal that is continuously updated
while it is moving and in particular when the robot receives
a new user’s command. Please refer to (Beraldo et al. 2021;
Beraldo, Tonin, and Menegatti 2021) for further details.

In all the modalities, the navigation module relies on
a module of Simultaneous Localization and Mapping
(SLAM)5 that creates/exploits a representation of the en-
vironment (i.e., map) in real-time from the robot’s sensors
and localizes the robot inside. The SLAM modules is in-
cluded not only to improve the reliability of the navigation

4The navigation module is based on the ROS package http:
//wiki.ros.org/navigation

5SLAM modules relies on the ROS packages: http:
//wiki.ros.org/slam_gmapping and http://wiki.
ros.org/amcl

Figure 3: An illustrative example of the robot’s navigation
service (tested in simulation). In the first case, the robot is
autonomously moving towards the goal position chosen by
the on-cloud planner. In the second, the robot sets the navi-
gation goal in the proximity of the detected person. In both
situations, the robot exploits a map of the environment on
which it estimates the position thanks to the SLAM func-
tionality.

system, but also to enable the robot to reach navigation goals
far from its position (e.g., from a room to another), as com-
monly required in telepresence applications. An example of
the navigation task is shown in Figure 3.

Finally, the current architecture includes multimodal ser-
vices oriented to the two main activities for the elderly mon-
itoring: the cognitive and the physical exercises and the
measure of the physiological parameters. Relying on text to
speech and speech to text functionalities for human-robot di-
alogues, these services enhance the concepts described in
(De Benedictis et al. 2020) by introducing a vision-based
module to detect people. As described previously, specifi-
cally, the topic of the robot’s dialogue is established by the
cloud-layer, while the reactive services deal with managing
the dialogue with the user6, reproducing the personalised
sentences from the robot and interfacing with the micro-
phones to acquire and process human voices. The vocal in-
teraction is triggered from both the cloud and the reactive7

layers. The first happens during the execution of a cognitive
exercise. An example of cognitive exercise consists of re-
quiring the user to count the occurrences of a specific word
in a lists uttered by the robot. The second is triggered when
a person is detected in the neighborhood of the robot. In the
second case, we assume the robot has to be ready to inter-
act with person. Therefore, the robot requires the permission
of activating the microphone and waits for user’s confirma-

6The reactive layer manages natural language understanding
and generation by interfacing with a RASA server (Bocklisch et
al. 2017).

7The reactive layer wrappers the Google Cloud Speech API in
a ROS package: https://cloud.google.com/?hl=it

tion. The detection of the person is managed by a skeleton
tracker based on a RGB-D camera mounted on the robot:
specifically the keypoints are computed on the RGB image,
while the depth is used to estimate the distance between the
person and the robot. The keypoints returned by the skele-
ton detection module8 are also used to compute the center of
gravity of the person (from camera to robot frame) for set-
ting navigation goal when robot needs reaching the person
(for instance in Figure 3). Moreover, the skeleton detection

Figure 4: An explanatory demonstration of a session of
physical exercises. The person is required to raise and stretch
the left arm. In the while, the robot monitors the involved
joints and counts the number of repetitions.

becomes essential to monitor physical exercises. An exam-
ple is shown in Figure 4. During the execution of this ac-
tivity, the robot processes the estimated joints positions by
computing the relative angles according to the exercise and
compares them with the expected range in accordance with a
reference template. By evaluating the change in the position
and in rotation of the joints, the robot is also exploited as a
companion to count the number of repetitions as well as to
encourage the person during the execution.

Finally, since the importance of prevention and elderly
care, the reactive services involve the robot to motivate the
user to measure physiological parameters (e.g., pressure,
heart rate, the temperature) at specific time planned by the
on-cloud layer or during the breaks between one repetition
and another during the physical exercises. The robot is also
in charge of transmitting the sensor’s readings to the cloud.

The adaptive implementation of the reactive
behaviors
It is worth explicitly clarifying that the reactive layer does
not only merely execute the activities proposed by the on-
cloud planner but it is in charge of defining the detailed low-
level robot’s behaviors. Let discuss this aspect by taking one
simple example among the kind of interaction included in
our architecture. A more detailed overview is shown through
the pseudo-code in Algorithm 1.

You can imagine that at 4 pm the scheduler provides the
start of physical exercises. The robot is notified with a mes-
sage of the starting of the corresponding activity. Thus, the
robot is required to move towards a specific position in the
environment (xpe, ype) established in accordance with the

8The skeleton detection module encapsulates the MediaPipe li-
brary https://mediapipe.dev/ in a ROS package

user’s preference. The navigation module is triggered by the
local task manager and the best trajectory from the current
position to the goal (i.e., (xpe, ype) the coordinates provided
by the cloud) is computed by a motion planner inside the
navigation module. Once reached the goal, before starting
the physical exercise, it is necessary the robot ensures of the
presence of the person around (see Algorithm 1). Therefore,
the local task manager requires the activation of the skele-
ton tracker. Only if the skeleton tracker returns the presence
of the keypoints with a quite high confidence (e.g., >0.7),
the local task manager starts the execution of the physical
exercise. Otherwise, more interestingly, an unexpected situ-
ation for the plan occurs that the robot reactively has to face.
With this purpose, the robot autonomously navigates in the
environment to find the person. The autonomous navigation
modality is waked again and the skeleton tracker remains
active. Once the person is detected, this time is the skele-
ton tracker that stops the navigation service and activates
the interaction module to greet the person and reminder the
physical exercises session.

Although this example is very simple, it clearly suggests
how a successful human-robot interaction can be achieved
only by the mutual and continuous interchange of informa-
tion between the two layers.

Discussion
Nothing forces us to follow the footsteps of psychology,
however forms of causal semantic reasoning mimic very
well our system 2, more logical and reflective but slower,
while, on the contrary, policy-based approaches create be-
haviors more similar to our system 1, more impulsive and in-
tuitive but faster in making its decisions. In creating a robotic
system that interacts with people in a constantly evolving en-
vironment, it seemed intuitive to follow a comparison with
the two systems. This separation of responsibilities, how-
ever, paves the way to the problem of which system has to
perform the different tasks.

The benefits of system 2 described in this work are the
correctness guaranteed by the rules, its simpler explainabil-
ity, the possibility of carrying out mathematical reasoning
(for example, ordering the different activities over time) and
the ability to pursue multiple goals at the same time. Fur-
thermore, the different tasks are organized by the reasoner
who chooses and schedules them, pursuing objectives and
respecting constraints that may change from time to time.
The reasoning process, however, in its most general form,
has undecidable complexity and, even in its computation-
ally simpler forms, takes time to generate solutions. Fur-
thermore, the result of the deliberative module is a plan,
i.e. a relatively rigid structure which, with a few exceptions
(mostly temporal adjustments), hardly adapts to the reality
that emerges dynamically.

The system 1 described in this work has almost diamet-
rically opposite characteristics. For this reason, in fact, the
integration of the two approaches seems profitable to us. In
organizing tasks, in particular, system 1 requires the manual
definition of a state machine or, if possible, the need to inter-
act with the environment to learn which actions to perform in
which states. This process becomes easily complex and error

Algorithm 1: Reactive Human-Robot Interaction
while Physical Exercise do

Go to position (xpe, ype)
Activate skeleton tracker
if Person detected then

Reminder of the physical session
Activate microphone
Start the physical session
Processing keypoints
Physiological Monitoring

else
Activate navigation module
while Robot navigation do

if Person detected then
break

end
end

end
end
while Cognitive Exercise do

Go to position (xce, yce)
Activate skeleton tracker
if Person detected then

Reminder of the cognitive session
Activate microphone
Start the cognitive session
Processing voice

else
Activate navigation module
while Robot navigation do

if Person detected then
break

end
end

end
end
while Physiological Monitoring do

Go to position (xpm, ypm)
Activate skeleton tracker
if Person detected then

Request to measure specific parameter
Activate microphone
Processing voice
Register the value

else
Activate navigation module
while Robot navigation do

if Person detected then
break

end
end

end
end

prone, in the first case, as the number of tasks and variables
that describe the environment increase, while, in the second
case, it requires safe environments for the robot and for the
people who live within them, as well as times potentially
very huge for training (only in very simple cases, indeed, it
is possible to exploit reliable simulators that solve, at least
in part, the problems of safety and learning time). Except
in some very specific cases (e.g., navigation tasks), more-
over, system 1 does not behave on the basis of goals that
may come from the outside (e.g., from an operator). Such
goals, furthermore, are strictly related to the specific kind of
task (e.g., navigation tasks can reach only poses (i.e., posi-
tion and orientation). Furthermore, the system 1 is not very
flexible in carrying out tasks of a logical/mathematical type.
Once the policy has been defined (or learned), however, it
easily adapts to the environment surrounding the robot, with
its unpredictable dynamic evolution.

In general, it is not easy to distribute responsibilities be-
tween the two systems. There is, as far as we know, a pre-
cise rule to follow. In building our system, specifically, we
used the following heuristic. As suggested by Kahneman’s
countless experiments, in particular, system 2 believes itself
to be the protagonist of the story but is, on the contrary, a
rather secondary actor who rarely intervenes in decisions.
For this reason, the approach we followed in assigning re-
sponsibilities was to assign as many responsibilities to sys-
tem 1 as possible, so as to ensure a quick adaptation to dy-
namic changes. In all those cases in which long sequences
of activities depend on parameters linked to the profile of
the users and, above all, in all those cases in which forms of
temporal reasoning were required, the responsibility falls on
the system 2.

Conclusion
This paper aims presenting a combination of adaptive plan-
ning with reactive services on board the robot. In particular,
we want to stress that the motivation is to design a system
able to capture and manage the uncertainty of environments,
such as the domestic one, that dynamically and continuously
evolve over time. In this context, on the one side the plan-
ning technologies typically suffer on limited capability of
easily and flexibility introducing modifications to the gen-
erated plans, on the other, pure reactive behaviors are able
to implement only basic forms of semantic reasoning, that
hardly considers the causal and temporal relations. For these
reasons, we strongly promote merging the two approaches
to make the robotic platform more reliable and functional
for elderly people’s needs in the perspective of facilitating a
longer and more safe life at home.

Acknowledgments
Authors are partially supported by the Italian “Ministero
dell’Università e della Ricerca” under the project “SI-
ROBOTICS: SocIal ROBOTICS for active and healthy age-
ing” (PON 676 – Ricerca e Innovazione 2014-2020—G.A.
ARS01 01120) and by CNR under FOE 2020 Strate-
gic Project “Technologies to support the most vulnerable
groups: young and old – CLEVERNESS”.

References
Apt, K. R., and Wallace, M. G. 2007. Constraint Logic
Programming Using ECLiPSe. New York, NY, USA: Cam-
bridge University Press.
Augello, A.; Infantino, I.; Lieto, A.; Maniscalco, U.; Pilato,
G.; and Vella, F. 2017. Towards A Dual Process Approach
to Computational Explanation inHuman-Robot Social Inter-
action. In Proceedings of the 1st CAID workshop at IJCAI.
Beraldo, G.; Tonin, L.; Cesta, A.; and Menegatti, E. 2021.
Brain-driven telepresence robots: A fusion of user’s com-
mands with robot’s intelligence. In Baldoni, M., and Ban-
dini, S., eds., AIxIA 2020 – Advances in Artificial Intelli-
gence, 235–248. Cham: Springer International Publishing.
Beraldo, G.; Tonin, Luca 2021. Shared intelligence for user-
supervised robots: From user’s commands to robot’s actions.
In Baldoni, M., and Bandini, S., eds., AIxIA 2020 – Ad-
vances in Artificial Intelligence, 457–465. Cham: Springer
International Publishing.
Bocklisch, T.; Faulkner, J.; Pawlowski, N.; and Nichol, A.
2017. Rasa: Open Source Language Understanding and Di-
alogue Management. arXiv preprint arXiv:1712.05181.
Cesta, A.; Cortellessa, G.; Fracasso, F.; Orlandini, A.; and
Turno, M. 2018. User needs and preferences on AAL sys-
tems that support older adults and their carers. J. Ambient
Intell. Smart Environ. 10(1):49–70.
De Benedictis, R., and Cesta, A. 2020. Lifted Heuristics
for Timeline-based Planning. In ECAI-2020, 24th European
Conference on Artificial Intelligence.
De Benedictis, R.; Umbrico, A.; Fracasso, F.; Cortellessa,
G.; Orlandini, A.; and Cesta, A. 2020. A two-layered ap-
proach to adaptive dialogues for robotic assistance. In 2020
29th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), 82–89.
Dechter, R. 2003. Constraint Processing. Elsevier Morgan
Kaufmann.
Group, A. W., et al. 2018. The 2018 ageing report under-
lying assumptions and projection methodologies. Economy,
finance and the euro publications.
Isabet, B.; Pino, M.; Lewis, M.; Benveniste, S.; and Rigaud,
A.-S. 2021. Social Telepresence Robots: A Narrative Re-
view of Experiments Involving Older Adults before and dur-
ing the COVID-19 Pandemic. International Journal of En-
vironmental Research and Public Health 18(7).
James, W. 1890. The Principles of Psychology, in two vol-
umes. New York: Henry Holt and Company.
Kahneman, D. 2011. Thinking, Fast and Slow. New York:
Farrar, Straus and Giroux.
Kristoffersson, A.; Coradeschi, S.; and Loutfi, A. 2013. A
review of mobile robotic telepresence. Advances in human-
computer interaction 2013:1–17.
Laniel, S.; Létourneau, D.; Grondin, F.; Labbé, M.; Ferland,
F.; and Michaud, F. 2021. Toward enhancing the autonomy
of a telepresence mobile robot for remote home care assis-
tance. Paladyn, Journal of Behavioral Robotics 12(1):214–
237.

Lecoutre, C. 2009. Constraint Networks: Techniques and
Algorithms. Wiley-IEEE Press.
Melendez-Fernandez, F.; Galindo, C.; and Gonzalez-
Jimenez, J. 2017. A web-based solution for robotic telep-
resence. International Journal of Advanced Robotic Systems
14(6):1729881417743738.
Mois, G., and Beer, J. M. 2020. The role of health-
care robotics in providing support to older adults: a socio-
ecological perspective. Current Geriatrics Reports.
Moro, C.; Nejat, G.; and Mihailidis, A. 2018. Learning and
personalizing socially assistive robot behaviors to aid with
activities of daily living. ACM Trans. Hum.-Robot Interact.
7(2):15:1–15:25.
Muscettola, N.; Smith, S.; Cesta, A.; and D’Aloisi, D. 1992.
Coordinating Space Telescope Operations in an Integrated
Planning and Scheduling Architecture. IEEE Control Sys-
tems 12.
Orlandini, A.; Kristoffersson, A.; Almquist, L.; Björkman,
P.; Cesta, A.; Cortellessa, G.; Galindo, C.; Gonzalez-
Jimenez, J.; Gustafsson, K.; Kiselev, A.; Loutfi, A.; Melen-
dez, F.; Nilsson, M.; Hedman, L. O.; Odontidou, E.; Ruiz-
Sarmiento, J.-R.; Scherlund, M.; Tiberio, L.; von Rump,
S.; and Coradeschi, S. 2016. ExCITE Project: A Review
of Forty-Two Months of Robotic Telepresence Technology
Evolution. Presence 25(3):204–221.
Petty, R. E., and Cacioppo, J. T. 1986. The Elaboration Like-
lihood Model of Persuasion. In Advances in Experimental
Social Psychology. Elsevier. 123–205.
Pollack, M. E. 2005. Intelligent technology for an aging
population: The use of AI to assist elders with cognitive im-
pairment. AI Magazine 26(2):9.
Riano, L.; Burbridge, C.; and Mc Ginnity, M. 2011. A study
of enhanced robot autonomy in telepresence. In Proceed-
ings of Artificial Intelligence and Cognitive Systems, AICS ;
Conference date: 31-08-2011, 271–283. Ireland: AICS.
Rossi, S.; Ferland, F.; and Tapus, A. 2017. User profiling
and behavioral adaptation for HRI: A survey. Pattern Recog-
nition Letters 99:3 – 12.
Sheridan, T. B. 1992. Musings on Telepresence and Vir-
tual Presence. Presence: Teleoperators and Virtual Environ-
ments 1(1):120–126.
Strannegård, C.; von Haugwitz, R.; Wessberg, J.; and Balke-
nius, C. 2013. A Cognitive Architecture Based on Dual
Process Theory. In Artificial General Intelligence. Springer
Berlin Heidelberg. 140–149.
Sun, R. 2015. The CLARION Cognitive Architecture. Ox-
ford University Press.
Tsui, K. M.; Desai, M.; Yanco, H. A.; and Uhlik, C. 2011.
Exploring use cases for telepresence robots. In 2011 6th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 11–18.
Wason, P., and Evans, J. 1974. Dual processes in reasoning?
Cognition 3(2):141–154.

	PlanRob_2021_paper_2
	PlanRob_2021_paper_3
	PlanRob_2021_paper_4
	PlanRob_2021_paper_6
	PlanRob_2021_paper_7
	PlanRob_2021_paper_8
	PlanRob_2021_paper_10
	PlanRob_2021_paper_11
	PlanRob_2021_paper_12
	Introduction
	Related Work
	Contributions
	Environment
	Setup
	Action space
	State space
	Reward function
	Key RL Attributes
	Performance Evaluation
	Implementation details
	State-of-the-art RL algorithms comparison
	Multi-dimensional difficulty
	Learned policy evaluation
	Comparison with frontier-based methodologies for varying terrain sizes

	Conclusions

	PlanRob_2021_paper_13
	Introduction
	Related Work
	Preliminaries
	Top-k skeleton planning
	Graph expansion for optimistic object generation
	Searching top-k action plans
	Building top-k skeletons
	The top-k skeleton planning algorithm

	Tree search in the extended decision space
	The extended decision tree
	Binding search in the extended decision tree
	The eTAMP algorithm

	Empirical evaluation
	The transportation task
	The cooking task
	The regrasping task

	Acknowledgement
	Conclusion

	PlanRob_2021_paper_14
	PlanRob_2021_paper_15
	PlanRob_2021_paper_16
	PlanRob_2021_paper_17
	Introduction
	Related Work
	Architecture
	Representation, Reasoning, and Learning
	Transparent Decision Making

	Experimental Setup and Results
	Experimental Setup
	Execution Traces
	Experimental Results

	Conclusion

	PlanRob_2021_paper_18
	Introduction
	Related Work
	Architecture of Bench-MR
	Bench-MR Planning Components
	Sampling-Based Motion-Planning Algorithms
	Extend Functions
	Collision Checkers
	Post-Smoothing Algorithms
	Optimization Criteria

	Bench-MR Evaluation Components
	Navigation Scenarios
	Performance Metrics

	Example Usage
	Introductory Example
	Parallel Benchmark Execution
	Comparison: Random and Halton Sequences, State Lattice
	Metrics

	Conclusions

	PlanRob_2021_paper_19
	Introduction
	Related Work
	Background
	Problem Definition
	Assumptions
	Human Trust and Monitoring strategy

	Base Decision-Making Problem
	Meta-MDP Problem
	Evaluation and Implementation
	Rover Domain Demonstration
	Human Subject Experiment

	Conclusion and Discussion

	PlanRob_2021_paper_21
	PlanRob_2021_paper_23
	PlanRob_2021_paper_24
	PlanRob_2021_paper_25

